TS482
100mW Stereo Headphone Amplifier
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Operating from Vcc=2V to 5.5V 100mW into 16Ω at 5V 38mW into 16Ω at 3.3V 11.5mW into 16Ω at 2V Switch ON/OFF click reduction circuitry High power supply rejection ratio: 85dB at 5V High signal-to-noise ratio: 110dB(A) at 5V High crosstalk immunity: 100dB (F=1kHz) Rail-to-rail input and output Unity-gain stable Available in SO-8, MiniSO-8 & DFN8
TS482ID, TS482IDT - SO-8
OUT (1) VIN- (1) VIN+ (1) GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN- (2) VIN+ (2)
TS482IST - MiniSO-8
OUT (1) VIN- (1) VIN+ (1) GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN- (2) VIN+ (2)
TS482IQT - DFN8
Description
OUT (1)
1 2 3 4
8 7 6 5
Vcc OUT (2) VIN - (2) VIN + (2)
The TS482 is a dual audio power amplifier able to drive a 16 or 32Ω stereo headset down to low voltages. It is delivering up to 100mW per channel (into 16Ω loads) of continuous average power with 0.1% THD+N from a 5V power supply. The unity gain stable TS482 can be configured by external gain-setting resistors.
VIN - (1) VIN + (1) GND
Typical application schematic
Rfeed1 3.9k RpolVcc Cs 100k 8 3.9k 2 1 Rin1 3 + Cb TS482 + 5 + 7 Rin2 1µF 6 3.9k 4 100k Rpol 3.9k
+
1µF
Vcc
+
■ ■ ■ ■ ■ ■
Stereo headphone amplifier Optical storage Computer motherboard PDA, organizers & notebook computers High-end TV, set-top box, DVD players Sound cards
Left In
2.2µF 2.2µF
+
Cin2
Rfeed2
Order Codes
Part Number TS482ID/IDT TS482IST TS482IQT -40, +85°C Temperature Range Package SO-8 miniSO-8 DFN8 Packing Tube or Tape & Reel Tape & Reel 482I Marking
November 2005
+ +
Applications
Right In Cin1
220µF Cout1 Cout2
+
RL=32Ohms
+
RL=32Ohms
220µF
Rev 2 1/26
www.st.com
26
Absolute Maximum Ratings
TS482
1
Absolute Maximum Ratings
Table 1.
Symbol VCC Vi Toper Tstg Tj Supply voltage (1) Input Voltage Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient Rthja SO8 MiniSO8 DFN8 Power Dissipation (2) Pd SO-8 MiniSO-8 DFN8 Human Body Model (pin to pin) Machine Model - 220pF - 240pF (pin to pin) Latch-up Immunity (all pins) Lead Temperature (soldering, 10sec) Lead Temperature (soldering, 10sec) for lead-free Output Short-Circuit Duration
1. All voltages values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C. 3. Attention must be paid to continuous power dissipation. Exposure of the IC to a short circuit on one or two amplifiers simultaneously can cause excessive heating and the destruction of the device.
Key parameters and their absolute maximum ratings
Parameter Value 6 -0.3 to VCC +0.3 -40 to + 85 -65 to +150 150 Unit V V °C °C °C
175 215 70
°C/W
0.71 0.58 1.79 2 200 200 250 260 see note (3)
W
ESD ESD Latch-up
kV V mA °C °C
Table 2.
Symbol VCC RL CL
Operating conditions
Parameter Supply Voltage Load Resistor Load Capacitor RL = 16 to 100Ω RL > 100Ω Common Mode Input Voltage Range Thermal Resistance Junction to Ambient 400 100 G ND to VCC pF Value 2 to 5.5 >= 16 Unit V Ω
Vicm
V
Rthja
SO-8 MiniSO-8 DFN8(1)
150 190 41
°C/W
1. When mounted on a 4-layer PCB.
2/26
TS482
Electrical Characteristics
2
Electrical Characteristics
Table 3.
Symbol ICC VIO IIB Supply Current No input signal, no load Input Offset Voltage (VICM = V CC/2) Input Bias Current (V ICM = VCC/2) Output Power PO THD+N = THD+N = THD+N = THD+N = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 60 95 65 67.5 100 107 mW
Electrical characteristics when VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Parameter Min. Typ. 5.5 1 200 Max. 7.2 5 500 Unit mA mV nA
Total Harmonic Distortion + Noise (Av=-1) (1) THD + N RL = 32 Ω, Pout = 60mW, 20Hz ≤F ≤20kHz RL = 16 Ω, Pout = 90mW, 20Hz ≤F ≤20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 Ω connected between out and VCC /2 Output Swing VOL: R L = 32Ω VOH: R L = 32Ω VOL: R L = 16Ω VOH: R L = 16Ω Signal-to-Noise Ratio (Filter Type A, Av=-1) RL = 32 Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz 95 110 106 120 85 0.03 0.03 %
PSRR
dB
IO
mA
VO
4.45 4.2
0.4 4.6 0.55 4.4
0.48 V 0.65
SNR
dB
Channel Separation, R L = 32 Ω F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, R L = 16 Ω F = 1kHz F = 20Hz to 20kHz CI GBP SR Input Capacitance Gain Bandwidth Product (R L = 32Ω) Slew Rate, Unity Gain Inverting (R L = 16Ω) 1.35 0.45
100 80 100 80 1 2.2 0.7
dB
pF MHz V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
3/26
Electrical Characteristics
Table 4.
Symbol ICC VIO IIB Supply Current No input signal, no load Input Offset Voltage (VICM = V CC/2) Input Bias Current (V ICM = VCC/2) Output Power PO THD+N = THD+N = THD+N = THD+N = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 23 36 27 28 38 42
TS482
Electrical characteristics when VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) (1)
Parameter Min. Typ. 5.3 1 200 Max. 7.2 5 500 Unit mA mV nA
mW
Total Harmonic Distortion + Noise (Av=-1) (1) THD + N RL = 32 Ω, Pout = 16mW, 20Hz ≤F ≤20kHz RL = 16 Ω, Pout = 35mW, 20Hz ≤F ≤20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 Ω connected between out and VCC/2 Output Swing VOL: R L = 32Ω VOH: R L = 32Ω VOL: R L = 16Ω VOH: R L = 16Ω Signal-to-Noise Ratio (Filter Type A, Av=-1) RL = 32 Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz 92 107 64 75 80 0.03 0.03 %
PSRR
dB
IO
mA
VO
2.85 2.68
0.3 3 0.45 2.85
0.38 V 0.52
SNR
dB
Channel Separation, R L = 32 Ω F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, R L = 16 Ω F = 1kHz F = 20Hz to 20kHz CI GBP SR Input Capacitance Gain Bandwidth Product (R L = 32Ω) Slew Rate, Unity Gain Inverting (R L = 16Ω) 1.2 0.45
100 80 100 80 1 2 0.7
dB
pF MHz V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
1. All electrical values are guaranteed with correlation measurements at 2V and 5V.
4/26
Electrical Characteristics
Table 5.
Symbol ICC VIO IIB Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = V CC/2) Output Power PO THD+N THD+N THD+N THD+N = 0.1% Max, F = 1kHz, RL = 32 Ω = 1% Max, F = 1kHz, RL = 32Ω = 0.1% Max, F = 1kHz, RL = 16 Ω = 1% Max, F = 1kHz, RL = 16Ω 12.5 17.5 13.5 14.5 20.5 22
TS482
Electrical characteristics when VCC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified) (2)
Parameter Min. Typ. 5.1 1 200 Max. 7.2 5 500 Unit mA mV nA
mW
Total Harmonic Distortion + Noise (Av=-1) (1) THD + N RL = 32Ω, Pout = 10mW, 20Hz ≤F ≤20kHz RL = 16Ω, Pout = 16mW, 20Hz ≤F ≤20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16Ω connected between out and V CC/2 Output Swing VOL: RL = 32Ω VOH: RL = 32Ω VOL: RL = 16Ω VOH: RL = 16Ω Signal-to-Noise Ratio (Filter Type A, Av=-1) RL = 32Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz 89 102 45 56 75 0.03 0.03 %
PSRR
dB
IO
mA
VO
2.14 1.97
0.25 2.25 0.35 2.15
0.325 V 0.45
SNR
dB
Channel Separation, RL = 32Ω F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, RL = 16Ω F = 1kHz F = 20Hz to 20kHz CI GBP SR Input Capacitance Gain Bandwidth Product (RL = 32Ω) Slew Rate, Unity Gain Inverting (RL = 16Ω) 1.2 0.45
100 80 100 80 1 2 0.7
dB
pF MHz V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
2. All electrical values are guaranteed with correlation measurements at 2V and 5V.
5/26
Electrical Characteristics
Table 6.
Symbol ICC VIO IIB
TS482
Electrical characteristics when VCC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = V CC/2) Input Bias Current (V ICM = VCC/2) Output Power 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω Min. Typ. 5 1 200 Max. 7.2 5 500 Unit mA mV nA
PO
THD+N = THD+N = THD+N = THD+N =
7 9.5
8 9 11.5 13
mW
Total Harmonic Distortion + Noise (Av=-1) (1) THD + N RL = 32 Ω, Pout = 6.5mW, 20Hz ≤F ≤20kHz RL = 16 Ω, Pout = 8mW, 20Hz ≤F ≤20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16Ω connected between out and VCC/2 Output Swing VOL: R L = 32Ω VOH: R L = 32Ω VOL: R L = 16Ω VOH: R L = 16Ω Signal-to-Noise Ratio (Filter Type A, Av=-1) RL = 32 Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz 88 101 33 41.5 75 0.02 0.025 %
PSRR
dB
IO
mA
VO
1.67 1.53
0.24 1.73 0.33 1.63
0.295 V 0.41
SNR
dB
Channel Separation, R L = 32 Ω F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, R L = 16 Ω F = 1kHz F = 20Hz to 20kHz CI GBP SR Input Capacitance Gain Bandwidth Product (R L = 32Ω) Slew Rate, Unity Gain Inverting (R L = 16Ω) 1.2 0.42
100 80 100 80 1 2 0.65
dB
pF MHz V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
6/26
Electrical Characteristics
Table 7. Components description
Functional Description
TS482
Components Rin Cin Rfeed Cs Cb Cout Rpol Av
Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Feed back resistor which sets the closed loop gain in conjunction with Rin Supply Bypass capacitor which provides power supply filtering Bypass capacitor which provides half supply filtering Output coupling capacitor which blocks the DC voltage at the load input terminal This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout)) These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers. Closed loop gain = -Rfeed / Rin
7/26
Electrical Characteristics
Table 8. Index of graphics
Description Figure
TS482
Page
Open loop gain and phase vs. frequency response Phase and Gain Margin vs. Power Supply Voltage Output power vs. power supply voltage Output power vs. load resistance Power dissipation vs. output power Power derating vs. ambient temperature Current consumption vs. power supply voltage Power supply rejection ratio vs. frequency THD + N vs. output power THD + N vs. frequency Signal to noise ratio Equivalent input noise voltage vs. frequency Output voltage swing vs. power supply Crosstalk vs. frequency Lower cut off frequency vs. output capacitor Lower cut off frequency vs. input capacitor Typical distribution of TDH + N
Figure 1 to10 Figure 11 to 20 Figure 21 to 23 Figure 24 to 27 Figure 28 to 31 Figure 32 Figure 33 Figure 34 Figure 35 to 49 Figure 50 to 54 Figure 55 to 58 Figure 59 Figure 60 Figure 61 to 65 Figure 66 Figure 67 Figure 68 to 79
Page 9 to10 Page 10 to12 Page 12 Page 12 to13 Page 13 to14 Page 14 Page 14 Page 14 Page 14 to17 Page 17 Page 18 Page 18 Page 18 Page 19 Page 19 Page 20 Page 20 to22
8/26
Electrical Characteristics
Figure 1. Open loop gain and phase vs. frequency response Figure 2. Open loop gain and phase vs. frequency response
TS482
80 Gain 60 40
Gain (dB)
180 Vcc = 5V RL = 8Ω Tamb = 25°C 160 140 120
Phase (Deg) Gain (dB)
80 Gain 60 40 20 0 -20 -40 0.1 Phase Vcc = 2V RL = 8Ω Tamb = 25°C
180 160 140 120 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Phase (Deg) Phase (Deg) Phase (Deg)
100 20 0 -20 -40 0.1 Phase 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Figure 3.
Open loop gain and phase vs. frequency response
Figure 4.
Open loop gain and phase vs. frequency response
180 80 60
Gain (dB)
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 16Ω Tamb = 25°C
160 140 120
Gain
Vcc = 2V RL = 16Ω Tamb = 25°C
160 140 120
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Figure 5.
Open loop gain and phase vs. frequency response
Figure 6.
Open loop gain and phase vs. frequency response
180 80 60
Gain (dB)
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 32Ω Tamb = 25°C
160 140 120
Gain
Vcc = 2V RL = 32Ω Tamb = 25°C
160 140 120
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
9/26
Electrical Characteristics
Figure 7. Open loop gain and phase vs. frequency response
180 80 60
Gain (dB)
TS482
Figure 8. Open loop gain and phase vs. frequency response
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 600Ω Tamb = 25°C
160 140 120
Gain
Vcc = 2V RL = 600Ω Tamb = 25°C
160 140 120 100
Phase (Deg) Phase (Deg)
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20
40 20 0 -20 -40 0.1 Phase
80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Figure 9.
Open loop gain and phase vs. frequency response
180
Figure 10. Open loop gain and phase vs. frequency response
180 80 60 Gain Vcc = 2V RL = 5kΩ Tamb = 25°C 160 140 120
80 60
Gain (dB)
Gain
Vcc = 5V RL = 5kΩ Tamb = 25°C
160 140 120
Phase (Deg)
100 Phase 80 60
Gain (dB)
40 20 0 -20 -40 0.1
40 20 0 -20 Phase
100 80 60 40 20 0
40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20
-40 0.1
1
10 100 Frequency (kHz)
1000
10000
-20
Figure 11.
Phase margin vs. power supply voltage Figure 12. Phase margin vs. power supply voltage
50 RL=8Ω Tamb=25°C 40
Phase Margin (Deg)
50 RL=8Ω Tamb=25°C 40
30
Gain Margin (dB)
30
20
CL= 0 to 500pF
20
CL=0 to 500pF
10
10
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
10/26
Electrical Characteristics
TS482
Figure 13. Phase margin vs. power supply voltage Figure 14. Gain margin vs. power supply voltage
50 50 RL=16Ω Tamb=25°C 40
Phase Margin (Deg)
40
30
Gain Margin (dB)
CL= 0 to 500pF
30
20
20
CL=0 to 500pF
10 RL=16Ω Tamb=25°C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
10
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
Figure 15. Phase margin vs. power supply voltage Figure 16. Gain margin vs. power supply voltage
50
50 RL=32Ω Tamb=25°C
40
Phase Margin (Deg)
40 CL= 0 to 500pF
Gain Margin (dB)
30
30
20
20 CL=0 to 500pF 10
10 RL=32Ω Tamb=25°C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
Figure 17. Phase margin vs. power supply voltage Figure 18. Gain margin vs. power supply voltage
70 60
Phase Margin (Deg)
20
CL=0pF CL=100pF CL=200pF
CL=0pF 40 30 20 10 RL=600Ω Tamb=25°C 2.5
CL=500pF
Gain Margin (dB)
50
10
CL=500pF
RL=600Ω Tamb=25°C 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
0 2.0
11/26
Electrical Characteristics
Figure 19.
70 60
Phase Margin (Deg)
TS482
Phase margin vs. power supply voltage Figure 20. Gain margin vs. power supply voltage
20
CL=0pF
Gain Margin (dB)
50 40 30 20 10 0 2.0 RL=5kΩ Tamb=25°C 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 CL=0pF CL=300pF CL=500pF
CL=100pF
10
CL=200pF
CL=500pF
RL=5kΩ Tamb=25°C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
Figure 21.
250 225 200
Output power (mW)
Output power vs. power supply voltage Figure 22.
200 Av = -1 RL = 8Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% 175 THD+N=1% 150
Output power (mW)
Output power vs. power supply voltage
175 150 125 100 75 50 25
125 100 75 50
Av = -1 RL = 16Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10%
THD+N=1%
THD+N=0.1% 25 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 0 2.0 2.5 3.0 3.5 4.0 Vcc (V)
THD+N=0.1%
0 2.0
4.5
5.0
5.5
Figure 23.
Output power vs. power supply voltage Figure 24. Output power vs. load resistance
200
100 Av = -1 RL = 32Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10%
180
THD+N=1%
160
Output power (mW)
THD+N=1%
Output power (mW)
140 120 100 80 60 40 20 THD+N=0.1%
75
Av = -1 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10%
50
25
THD+N=0.1%
0 2.0
2.5
3.0
3.5 4.0 Vcc (V)
4.5
5.0
5.5
0
8
16
24
32 40 48 Load Resistance ( )
56
64
12/26
Electrical Characteristics
Figure 25. Output power vs. load resistance
TS482
Figure 26. Output power vs. load resistance
50
70 60
Output power (mW)
THD+N=1%
Output power (mW)
50 40
Av = -1 Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C
45 40 35 30 25 20 15 10 5 THD+N=0.1% 8 16 24 32 40 48 Load Resistance (ohm) THD+N=1%
Av = -1 Vcc = 2.6V F = 1kHz BW < 125kHz Tamb = 25°C
THD+N=10% 30 20 10 0 THD+N=0.1%
THD+N=10%
8
16
24
32 40 48 Load Resistance (ohm)
56
64
0
56
64
Figure 27. Output power vs. load resistance
Figure 28. Power dissipation vs. output power
25 Av = -1 Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25°C
20
Output power (mW)
Power Dissipation (mW)
160 Vcc=5V F=1kHz 140 THD+N