0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS482

TS482

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    TS482 - 100mW Stereo Headphone Amplifier - STMicroelectronics

  • 数据手册
  • 价格&库存
TS482 数据手册
TS482 100mW Stereo Headphone Amplifier ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Operating from Vcc=2V to 5.5V 100mW into 16Ω at 5V 38mW into 16Ω at 3.3V 11.5mW into 16Ω at 2V Switch ON/OFF click reduction circuitry High power supply rejection ratio: 85dB at 5V High signal-to-noise ratio: 110dB(A) at 5V High crosstalk immunity: 100dB (F=1kHz) Rail-to-rail input and output Unity-gain stable Available in SO-8, MiniSO-8 & DFN8 TS482ID, TS482IDT - SO-8 OUT (1) VIN- (1) VIN+ (1) GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN- (2) VIN+ (2) TS482IST - MiniSO-8 OUT (1) VIN- (1) VIN+ (1) GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN- (2) VIN+ (2) TS482IQT - DFN8 Description OUT (1) 1 2 3 4 8 7 6 5 Vcc OUT (2) VIN - (2) VIN + (2) The TS482 is a dual audio power amplifier able to drive a 16 or 32Ω stereo headset down to low voltages. It is delivering up to 100mW per channel (into 16Ω loads) of continuous average power with 0.1% THD+N from a 5V power supply. The unity gain stable TS482 can be configured by external gain-setting resistors. VIN - (1) VIN + (1) GND Typical application schematic Rfeed1 3.9k RpolVcc Cs 100k 8 3.9k 2 1 Rin1 3 + Cb TS482 + 5 + 7 Rin2 1µF 6 3.9k 4 100k Rpol 3.9k + 1µF Vcc + ■ ■ ■ ■ ■ ■ Stereo headphone amplifier Optical storage Computer motherboard PDA, organizers & notebook computers High-end TV, set-top box, DVD players Sound cards Left In 2.2µF 2.2µF + Cin2 Rfeed2 Order Codes Part Number TS482ID/IDT TS482IST TS482IQT -40, +85°C Temperature Range Package SO-8 miniSO-8 DFN8 Packing Tube or Tape & Reel Tape & Reel 482I Marking November 2005 + + Applications Right In Cin1 220µF Cout1 Cout2 + RL=32Ohms + RL=32Ohms 220µF Rev 2 1/26 www.st.com 26 Absolute Maximum Ratings TS482 1 Absolute Maximum Ratings Table 1. Symbol VCC Vi Toper Tstg Tj Supply voltage (1) Input Voltage Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient Rthja SO8 MiniSO8 DFN8 Power Dissipation (2) Pd SO-8 MiniSO-8 DFN8 Human Body Model (pin to pin) Machine Model - 220pF - 240pF (pin to pin) Latch-up Immunity (all pins) Lead Temperature (soldering, 10sec) Lead Temperature (soldering, 10sec) for lead-free Output Short-Circuit Duration 1. All voltages values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C. 3. Attention must be paid to continuous power dissipation. Exposure of the IC to a short circuit on one or two amplifiers simultaneously can cause excessive heating and the destruction of the device. Key parameters and their absolute maximum ratings Parameter Value 6 -0.3 to VCC +0.3 -40 to + 85 -65 to +150 150 Unit V V °C °C °C 175 215 70 °C/W 0.71 0.58 1.79 2 200 200 250 260 see note (3) W ESD ESD Latch-up kV V mA °C °C Table 2. Symbol VCC RL CL Operating conditions Parameter Supply Voltage Load Resistor Load Capacitor RL = 16 to 100Ω RL > 100Ω Common Mode Input Voltage Range Thermal Resistance Junction to Ambient 400 100 G ND to VCC pF Value 2 to 5.5 >= 16 Unit V Ω Vicm V Rthja SO-8 MiniSO-8 DFN8(1) 150 190 41 °C/W 1. When mounted on a 4-layer PCB. 2/26 TS482 Electrical Characteristics 2 Electrical Characteristics Table 3. Symbol ICC VIO IIB Supply Current No input signal, no load Input Offset Voltage (VICM = V CC/2) Input Bias Current (V ICM = VCC/2) Output Power PO THD+N = THD+N = THD+N = THD+N = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 60 95 65 67.5 100 107 mW Electrical characteristics when VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Parameter Min. Typ. 5.5 1 200 Max. 7.2 5 500 Unit mA mV nA Total Harmonic Distortion + Noise (Av=-1) (1) THD + N RL = 32 Ω, Pout = 60mW, 20Hz ≤F ≤20kHz RL = 16 Ω, Pout = 90mW, 20Hz ≤F ≤20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 Ω connected between out and VCC /2 Output Swing VOL: R L = 32Ω VOH: R L = 32Ω VOL: R L = 16Ω VOH: R L = 16Ω Signal-to-Noise Ratio (Filter Type A, Av=-1) RL = 32 Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz 95 110 106 120 85 0.03 0.03 % PSRR dB IO mA VO 4.45 4.2 0.4 4.6 0.55 4.4 0.48 V 0.65 SNR dB Channel Separation, R L = 32 Ω F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, R L = 16 Ω F = 1kHz F = 20Hz to 20kHz CI GBP SR Input Capacitance Gain Bandwidth Product (R L = 32Ω) Slew Rate, Unity Gain Inverting (R L = 16Ω) 1.35 0.45 100 80 100 80 1 2.2 0.7 dB pF MHz V/µs 1. Fig. 68 to 79 show dispersion of these parameters. 3/26 Electrical Characteristics Table 4. Symbol ICC VIO IIB Supply Current No input signal, no load Input Offset Voltage (VICM = V CC/2) Input Bias Current (V ICM = VCC/2) Output Power PO THD+N = THD+N = THD+N = THD+N = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 23 36 27 28 38 42 TS482 Electrical characteristics when VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) (1) Parameter Min. Typ. 5.3 1 200 Max. 7.2 5 500 Unit mA mV nA mW Total Harmonic Distortion + Noise (Av=-1) (1) THD + N RL = 32 Ω, Pout = 16mW, 20Hz ≤F ≤20kHz RL = 16 Ω, Pout = 35mW, 20Hz ≤F ≤20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 Ω connected between out and VCC/2 Output Swing VOL: R L = 32Ω VOH: R L = 32Ω VOL: R L = 16Ω VOH: R L = 16Ω Signal-to-Noise Ratio (Filter Type A, Av=-1) RL = 32 Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz 92 107 64 75 80 0.03 0.03 % PSRR dB IO mA VO 2.85 2.68 0.3 3 0.45 2.85 0.38 V 0.52 SNR dB Channel Separation, R L = 32 Ω F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, R L = 16 Ω F = 1kHz F = 20Hz to 20kHz CI GBP SR Input Capacitance Gain Bandwidth Product (R L = 32Ω) Slew Rate, Unity Gain Inverting (R L = 16Ω) 1.2 0.45 100 80 100 80 1 2 0.7 dB pF MHz V/µs 1. Fig. 68 to 79 show dispersion of these parameters. 1. All electrical values are guaranteed with correlation measurements at 2V and 5V. 4/26 Electrical Characteristics Table 5. Symbol ICC VIO IIB Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = V CC/2) Output Power PO THD+N THD+N THD+N THD+N = 0.1% Max, F = 1kHz, RL = 32 Ω = 1% Max, F = 1kHz, RL = 32Ω = 0.1% Max, F = 1kHz, RL = 16 Ω = 1% Max, F = 1kHz, RL = 16Ω 12.5 17.5 13.5 14.5 20.5 22 TS482 Electrical characteristics when VCC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified) (2) Parameter Min. Typ. 5.1 1 200 Max. 7.2 5 500 Unit mA mV nA mW Total Harmonic Distortion + Noise (Av=-1) (1) THD + N RL = 32Ω, Pout = 10mW, 20Hz ≤F ≤20kHz RL = 16Ω, Pout = 16mW, 20Hz ≤F ≤20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16Ω connected between out and V CC/2 Output Swing VOL: RL = 32Ω VOH: RL = 32Ω VOL: RL = 16Ω VOH: RL = 16Ω Signal-to-Noise Ratio (Filter Type A, Av=-1) RL = 32Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz 89 102 45 56 75 0.03 0.03 % PSRR dB IO mA VO 2.14 1.97 0.25 2.25 0.35 2.15 0.325 V 0.45 SNR dB Channel Separation, RL = 32Ω F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, RL = 16Ω F = 1kHz F = 20Hz to 20kHz CI GBP SR Input Capacitance Gain Bandwidth Product (RL = 32Ω) Slew Rate, Unity Gain Inverting (RL = 16Ω) 1.2 0.45 100 80 100 80 1 2 0.7 dB pF MHz V/µs 1. Fig. 68 to 79 show dispersion of these parameters. 2. All electrical values are guaranteed with correlation measurements at 2V and 5V. 5/26 Electrical Characteristics Table 6. Symbol ICC VIO IIB TS482 Electrical characteristics when VCC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified) Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = V CC/2) Input Bias Current (V ICM = VCC/2) Output Power 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω Min. Typ. 5 1 200 Max. 7.2 5 500 Unit mA mV nA PO THD+N = THD+N = THD+N = THD+N = 7 9.5 8 9 11.5 13 mW Total Harmonic Distortion + Noise (Av=-1) (1) THD + N RL = 32 Ω, Pout = 6.5mW, 20Hz ≤F ≤20kHz RL = 16 Ω, Pout = 8mW, 20Hz ≤F ≤20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16Ω connected between out and VCC/2 Output Swing VOL: R L = 32Ω VOH: R L = 32Ω VOL: R L = 16Ω VOH: R L = 16Ω Signal-to-Noise Ratio (Filter Type A, Av=-1) RL = 32 Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz 88 101 33 41.5 75 0.02 0.025 % PSRR dB IO mA VO 1.67 1.53 0.24 1.73 0.33 1.63 0.295 V 0.41 SNR dB Channel Separation, R L = 32 Ω F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, R L = 16 Ω F = 1kHz F = 20Hz to 20kHz CI GBP SR Input Capacitance Gain Bandwidth Product (R L = 32Ω) Slew Rate, Unity Gain Inverting (R L = 16Ω) 1.2 0.42 100 80 100 80 1 2 0.65 dB pF MHz V/µs 1. Fig. 68 to 79 show dispersion of these parameters. 6/26 Electrical Characteristics Table 7. Components description Functional Description TS482 Components Rin Cin Rfeed Cs Cb Cout Rpol Av Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Feed back resistor which sets the closed loop gain in conjunction with Rin Supply Bypass capacitor which provides power supply filtering Bypass capacitor which provides half supply filtering Output coupling capacitor which blocks the DC voltage at the load input terminal This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout)) These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers. Closed loop gain = -Rfeed / Rin 7/26 Electrical Characteristics Table 8. Index of graphics Description Figure TS482 Page Open loop gain and phase vs. frequency response Phase and Gain Margin vs. Power Supply Voltage Output power vs. power supply voltage Output power vs. load resistance Power dissipation vs. output power Power derating vs. ambient temperature Current consumption vs. power supply voltage Power supply rejection ratio vs. frequency THD + N vs. output power THD + N vs. frequency Signal to noise ratio Equivalent input noise voltage vs. frequency Output voltage swing vs. power supply Crosstalk vs. frequency Lower cut off frequency vs. output capacitor Lower cut off frequency vs. input capacitor Typical distribution of TDH + N Figure 1 to10 Figure 11 to 20 Figure 21 to 23 Figure 24 to 27 Figure 28 to 31 Figure 32 Figure 33 Figure 34 Figure 35 to 49 Figure 50 to 54 Figure 55 to 58 Figure 59 Figure 60 Figure 61 to 65 Figure 66 Figure 67 Figure 68 to 79 Page 9 to10 Page 10 to12 Page 12 Page 12 to13 Page 13 to14 Page 14 Page 14 Page 14 Page 14 to17 Page 17 Page 18 Page 18 Page 18 Page 19 Page 19 Page 20 Page 20 to22 8/26 Electrical Characteristics Figure 1. Open loop gain and phase vs. frequency response Figure 2. Open loop gain and phase vs. frequency response TS482 80 Gain 60 40 Gain (dB) 180 Vcc = 5V RL = 8Ω Tamb = 25°C 160 140 120 Phase (Deg) Gain (dB) 80 Gain 60 40 20 0 -20 -40 0.1 Phase Vcc = 2V RL = 8Ω Tamb = 25°C 180 160 140 120 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 Phase (Deg) Phase (Deg) Phase (Deg) 100 20 0 -20 -40 0.1 Phase 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 Figure 3. Open loop gain and phase vs. frequency response Figure 4. Open loop gain and phase vs. frequency response 180 80 60 Gain (dB) 180 80 60 Phase (Deg) Gain (dB) Gain Vcc = 5V RL = 16Ω Tamb = 25°C 160 140 120 Gain Vcc = 2V RL = 16Ω Tamb = 25°C 160 140 120 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 Figure 5. Open loop gain and phase vs. frequency response Figure 6. Open loop gain and phase vs. frequency response 180 80 60 Gain (dB) 180 80 60 Phase (Deg) Gain (dB) Gain Vcc = 5V RL = 32Ω Tamb = 25°C 160 140 120 Gain Vcc = 2V RL = 32Ω Tamb = 25°C 160 140 120 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 9/26 Electrical Characteristics Figure 7. Open loop gain and phase vs. frequency response 180 80 60 Gain (dB) TS482 Figure 8. Open loop gain and phase vs. frequency response 180 80 60 Phase (Deg) Gain (dB) Gain Vcc = 5V RL = 600Ω Tamb = 25°C 160 140 120 Gain Vcc = 2V RL = 600Ω Tamb = 25°C 160 140 120 100 Phase (Deg) Phase (Deg) 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20 40 20 0 -20 -40 0.1 Phase 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 Figure 9. Open loop gain and phase vs. frequency response 180 Figure 10. Open loop gain and phase vs. frequency response 180 80 60 Gain Vcc = 2V RL = 5kΩ Tamb = 25°C 160 140 120 80 60 Gain (dB) Gain Vcc = 5V RL = 5kΩ Tamb = 25°C 160 140 120 Phase (Deg) 100 Phase 80 60 Gain (dB) 40 20 0 -20 -40 0.1 40 20 0 -20 Phase 100 80 60 40 20 0 40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20 -40 0.1 1 10 100 Frequency (kHz) 1000 10000 -20 Figure 11. Phase margin vs. power supply voltage Figure 12. Phase margin vs. power supply voltage 50 RL=8Ω Tamb=25°C 40 Phase Margin (Deg) 50 RL=8Ω Tamb=25°C 40 30 Gain Margin (dB) 30 20 CL= 0 to 500pF 20 CL=0 to 500pF 10 10 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 10/26 Electrical Characteristics TS482 Figure 13. Phase margin vs. power supply voltage Figure 14. Gain margin vs. power supply voltage 50 50 RL=16Ω Tamb=25°C 40 Phase Margin (Deg) 40 30 Gain Margin (dB) CL= 0 to 500pF 30 20 20 CL=0 to 500pF 10 RL=16Ω Tamb=25°C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 10 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Figure 15. Phase margin vs. power supply voltage Figure 16. Gain margin vs. power supply voltage 50 50 RL=32Ω Tamb=25°C 40 Phase Margin (Deg) 40 CL= 0 to 500pF Gain Margin (dB) 30 30 20 20 CL=0 to 500pF 10 10 RL=32Ω Tamb=25°C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Figure 17. Phase margin vs. power supply voltage Figure 18. Gain margin vs. power supply voltage 70 60 Phase Margin (Deg) 20 CL=0pF CL=100pF CL=200pF CL=0pF 40 30 20 10 RL=600Ω Tamb=25°C 2.5 CL=500pF Gain Margin (dB) 50 10 CL=500pF RL=600Ω Tamb=25°C 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 11/26 Electrical Characteristics Figure 19. 70 60 Phase Margin (Deg) TS482 Phase margin vs. power supply voltage Figure 20. Gain margin vs. power supply voltage 20 CL=0pF Gain Margin (dB) 50 40 30 20 10 0 2.0 RL=5kΩ Tamb=25°C 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 CL=0pF CL=300pF CL=500pF CL=100pF 10 CL=200pF CL=500pF RL=5kΩ Tamb=25°C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Figure 21. 250 225 200 Output power (mW) Output power vs. power supply voltage Figure 22. 200 Av = -1 RL = 8Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% 175 THD+N=1% 150 Output power (mW) Output power vs. power supply voltage 175 150 125 100 75 50 25 125 100 75 50 Av = -1 RL = 16Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% THD+N=1% THD+N=0.1% 25 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) THD+N=0.1% 0 2.0 4.5 5.0 5.5 Figure 23. Output power vs. power supply voltage Figure 24. Output power vs. load resistance 200 100 Av = -1 RL = 32Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% 180 THD+N=1% 160 Output power (mW) THD+N=1% Output power (mW) 140 120 100 80 60 40 20 THD+N=0.1% 75 Av = -1 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% 50 25 THD+N=0.1% 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 0 8 16 24 32 40 48 Load Resistance ( ) 56 64 12/26 Electrical Characteristics Figure 25. Output power vs. load resistance TS482 Figure 26. Output power vs. load resistance 50 70 60 Output power (mW) THD+N=1% Output power (mW) 50 40 Av = -1 Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C 45 40 35 30 25 20 15 10 5 THD+N=0.1% 8 16 24 32 40 48 Load Resistance (ohm) THD+N=1% Av = -1 Vcc = 2.6V F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% 30 20 10 0 THD+N=0.1% THD+N=10% 8 16 24 32 40 48 Load Resistance (ohm) 56 64 0 56 64 Figure 27. Output power vs. load resistance Figure 28. Power dissipation vs. output power 25 Av = -1 Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25°C 20 Output power (mW) Power Dissipation (mW) 160 Vcc=5V F=1kHz 140 THD+N
TS482 价格&库存

很抱歉,暂时无法提供与“TS482”相匹配的价格&库存,您可以联系我们找货

免费人工找货