TS482
100mW STEREO HEADPHONE AMPLIFIER
s Operating from Vcc=2V to 5.5V s 100mW into 16Ω at 5V s 38mW into 16Ω at 3.3V s 11.5mW into 16Ω at 2V s Switch ON/OFF click reduction circuitry s High Power Supply Rejection Ratio: 85dB at
5V PIN CONNECTIONS (top view)
TS482ID, TS482IDT - SO8
OUT (1) VIN- (1) VIN+ (1) GND
1 2 3 4
8 7 6 5
VCC OUT (2) VIN- (2) VIN+ (2)
s High Signal-to-Noise ratio: 110dB(A) at 5V s High Crosstalk immunity: 100dB (F=1kHz) s Rail to Rail input and output s Unity-Gain Stable s Available in SO8, MiniSO8 & DFN8
DESCRIPTION The TS482 is a dual audio power amplifier able to drive a 16 or 32Ω stereo headset down to low voltages. It’s delivering up to 100mW per channel (into 16Ω loads) of continuous average power with 0.1% THD+N from a 5V power supply.
TS482IST - MiniSO8
OUT (1) VIN- (1) VIN+ (1) GND
1 2 3 4
8 7 6 5
VCC OUT (2) VIN- (2) VIN+ (2)
TS482IQT - DFN8
OUT
(1)
1 2 3 4
8 7 6 5
Vcc OUT (2) VIN - (2) VIN + (2)
The unity gain stable TS482 can be configured by external gain-setting resistors.
VIN - (1) VIN + (1) GND
APPLICATIONS s Stereo Headphone Amplifier s Optical Storage s Computer Motherboard s PDA, organizers & Notebook computers s High end TV, Set Top Box, DVD Players s Sound Cards ORDER CODE
Part Number TS482ID/DT TS482IST TS482IQT Temperature Range Package Marking D • -40, +85°C • • 482I S Q
TYPICAL APPLICATION SCHEMATIC
Rfeed1 1µF Right In Cin1
+
2.2µF 2.2µF
+
Left In
Cin2
Rfeed2
MiniSO & DFN only available in Tape & Reel with T suffix, SO is available in Tube (D) and in Tape & Reel (DT))
June 2003
+
+
3.9k RpolVcc Cs 100k 8 3.9k 2 1 Rin1 3 + Cb TS482 + 5 + 7 Rin2 1µF 6 3.9k 4 100k Rpol 3.9k
+
Vcc
220µF + Cout1 Cout2
RL=32Ohms
+
RL=32Ohms
220µF
1/24
TS482
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vi Toper Tstg Tj Rthja Supply voltage Input Voltage Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8
1)
Parameter
Value 6 -0.3 to VCC +0.3 -40 to + 85 -65 to +150 150 175 215 70 0.71 0.58 1.79 2 200 200 250 see note 3)
Unit V V °C °C °C
°C/W
Power Dissipation 2) SO8 Pd MiniSO8 DFN8 ESD Human Body Model (pin to pin) ESD Machine Model - 220pF - 240pF (pin to pin) Latch-up Latch-up Immunity (All pins) Lead Temperature (soldering, 10sec) Output Short-Circuit Duration
W kV V mA °C
1. All voltages values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C. 3. Attention must be paid to continuous power dissipation. Exposure of the IC to a short circuit on one or two amplifiers simultaneously can cause excessive heating and the destruction of the device.
OPERATING CONDITIONS
Symbol VCC RL CL VICM RTHJA Supply Voltage Load Resistor Load Capacitor RL = 16 to 100Ω RL > 100Ω Common Mode Input Voltage Range Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN81) Parameter Value 2 to 5.5 >= 16 400 100 GND to VCC 150 190 41 Unit V Ω pF V
°C/W
1. When mounted on a 4-layer PCB.
Components Rin Cin Rfeed Cs Cb Cout Rpol Av 2/24
Functional Description Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Feed back resistor which sets the closed loop gain in conjunction with Rin Supply Bypass capacitor which provides power supply filtering Bypass capacitor which provides half supply filtering Output coupling capacitor which blocks the DC voltage at the load input terminal This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout)) These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers. Closed loop gain = -Rfeed / Rin
TS482
ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol ICC VIO IIB Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω Min. Typ. 5.5 1 200 Max. 7.2 5 500 Unit mA mV nA
PO
60 95
65 67.5 100 107
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32Ω, Pout = 60mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 90mW, 20Hz ≤ F ≤ 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16Ω connected between out and VCC/2 Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32Ω, THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz) Channel Separation, RL = 32Ω F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32Ω) Slew Rate, Unity Gain Inverting (RL = 16Ω) 1.35 0.45 106
0.03 0.03 85 120
%
PSRR IO
dB mA
VO
4.45 4.2 95
0.4 4.6 0.55 4.4 110
0.48 V 0.65
SNR
dB
Crosstalk
100 80 100 80 1 2.2 0.7
dB
CI GBP SR
pF MHz V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
3/24
TS482
ELECTRICAL CHARACTERISTICS VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) 2)
Symbol ICC VIO IIB Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω Min. Typ. 5.3 1 200 Max. 7.2 5 500 Unit mA mV nA
PO
23 36
27 28 38 42
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 35mW, 20Hz ≤ F ≤ 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16Ω connected between out and VCC/2 Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32Ω, THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz) Channel Separation, RL = 32Ω F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwith Product (RL = 32Ω) Slew Rate, Unity Gain Inverting (RL = 16Ω) 1.2 0.45 64
0.03 0.03 80 75
%
PSRR IO
dB mA
VO
2.85 2.68 92
0.3 3 0.45 2.85 107
0.38 V 0.52
SNR
dB
Crosstalk
100 80 100 80 1 2 0.7
dB
CI GBP SR
pF MHz V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
2. All electrical values are guaranted with correlation measurements at 2V and 5V
4/24
TS482
ELECTRICAL CHARACTERISTICS VCC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified) 2)
Symbol ICC VIO IIB Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω Min. Typ. 5.1 1 200 Max. 7.2 5 500 Unit mA mV nA
PO
12.5 17.5
13.5 14.5 20.5 22
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32Ω, Pout = 10mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16Ω connected between out and VCC/2 Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32Ω, THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz) Channel Separation, RL = 32Ω F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32Ω) Slew Rate, Unity Gain Inverting (RL = 16Ω) 1.2 0.45 45
0.03 0.03 75 56
%
PSRR IO
dB mA
VO
2.14 1.97 89
0.25 2.25 0.35 2.15 102
0.325 V 0.45
SNR
dB
Crosstalk
100 80 100 80 1 2 0.7
dB
CI GBP SR
pF MHz V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
2. All electrical values are guaranted with correlation measurements at 2V and 5V
5/24
TS482
ELECTRICAL CHARACTERISTICS VCC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol ICC VIO IIB Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω Min. Typ. 5 1 200 Max. 7.2 5 500 Unit mA mV nA
PO
7 9.5
8 9 11.5 13
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32Ω, Pout = 6.5mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 8mW, 20Hz ≤ F ≤ 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16Ω connected between out and VCC/2 Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32Ω, THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz) Channel Separation, RL = 32Ω F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwith Product (RL = 32Ω) Slew Rate, Unity Gain Inverting (RL = 16Ω) 1.2 0.42 33
0.02 0.025 75 41.5
%
PSRR IO
dB mA
VO
1.67 1.53 88
0.24 1.73 0.33 1.63 101
0.295 V 0.41
SNR
dB
Crosstalk
100 80 100 80 1 2 0.65
dB
CI GBP SR
pF MHz V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
6/24
TS482
Index of Graphs
Description Open Loop Gain Phase and Gain Margin vs Power Supply Voltage Output Power vs Power Supply Voltage Output Power vs Load Resistance Power Dissipation vs Output Power Power Derating Curves Current Consumption vs Power Supply Voltage PSRR vs Frequency THD + N vs Output Power THD + N vs Frequency Signal to Noise Ratio vs Power Supply Voltage Equivalent Input Noise voltage vs Frequency Output Voltage Swing vs Supply Voltage Crosstalk vs Frequency Lower Cut Off Frequency Curves Statistical Results on THD+N Figure 1 to 10 11 to 20 21 to 23 23 to 27 28 to 31 32 33 34 35 to 49 50 to 54 55 to 58 59 60 61 to 65 66, 67 68 to 79 Page 8, 9 9 to 11 11 11, 12 12, 13 13 13 13 13 to 16 16 17 17 17 18 18, 19 19 to 21
7/24
TS482
Fig. 1 : Open Loop Gain and Phase vs Frequency Fig. 2 : Open Loop Gain and Phase vs Frequency
80 Gain 60 40
Gain (dB)
180 Vcc = 5V RL = 8Ω Tamb = 25°C 160 140 120
Phase (Deg)
80 Gain 60 40
Gain (dB)
180 Vcc = 2V RL = 8Ω Tamb = 25°C 160 140 120 100
Phase (Deg) Phase (Deg) Phase (Deg)
100 20 0 -20 -40 0.1 Phase 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
20 0 -20 -40 0.1
Phase
80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Fig. 3 : Open Loop Gain and Phase vs Frequency
Fig. 4 : Open Loop Gain and Phase vs Frequency
180 80 60
Gain (dB)
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 16Ω Tamb = 25°C
160 140 120
Gain
Vcc = 2V RL = 16Ω Tamb = 25°C
160 140 120
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Fig. 5 : Open Loop Gain and Phase vs Frequency
Fig. 6 : Open Loop Gain and Phase vs Frequency
180 80 60
Gain (dB)
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 32Ω Tamb = 25°C
160 140 120
Gain
Vcc = 2V RL = 32Ω Tamb = 25°C
160 140 120
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
8/24
TS482
Fig. 7 : Open Loop Gain and Phase vs Frequency Fig. 8 : Open Loop Gain and Phase vs Frequency
180 80 60
Gain (dB)
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 600Ω Tamb = 25°C
160 140 120
Gain
Vcc = 2V RL = 600Ω Tamb = 25°C
160 140 120 100
Phase (Deg) Phase (Deg)
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20
40 20 0 -20 -40 0.1 Phase
80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Fig. 9 : Open Loop Gain and Phase vs Frequency
Fig. 10 : Open Loop Gain and Phase vs Frequency
180 80 60
Gain (dB)
180 80 60 Gain Vcc = 2V RL = 5kΩ Tamb = 25°C 160 140 120
Gain
Vcc = 5V RL = 5kΩ Tamb = 25°C
160 140 120
Phase (Deg)
100 Phase 80 60
Gain (dB)
40 20 0 -20 -40 0.1
40 20 0 -20 Phase
100 80 60 40 20 0
40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20
-40 0.1
1
10 100 Frequency (kHz)
1000
10000
-20
Fig. 11 : Phase Margin vs Power Supply Voltage
Fig. 12 : Gain Margin vs Power Supply Voltage
50 RL=8Ω Tamb=25°C 40
Phase Margin (Deg)
50 RL=8Ω Tamb=25°C 40
30
Gain Margin (dB)
30
20
CL= 0 to 500pF
20
CL=0 to 500pF
10
10
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
9/24
TS482
Fig. 13 : Phase Margin vs Power Supply Voltage Fig. 14 : Gain Margin vs Power Supply Voltage
50
50 RL=16Ω Tamb=25°C
40
Phase Margin (Deg)
40
30
Gain Margin (dB)
CL= 0 to 500pF
30
20
20
CL=0 to 500pF
10 RL=16Ω Tamb=25°C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
10
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
Fig. 15 : Phase Margin vs Power Supply Voltage
Fig. 16 : Gain Margin vs Power Supply Voltage
50
50 RL=32Ω Tamb=25°C
40
Phase Margin (Deg)
40 CL= 0 to 500pF
Gain Margin (dB)
30
30
20
20 CL=0 to 500pF 10
10 RL=32Ω Tamb=25°C 0 2.0 2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
Fig. 17 : Phase Margin vs Power Supply Voltage
Fig. 18 : Gain Margin vs Power Supply Voltage
70 60
Phase Margin (Deg)
20
CL=0pF CL=100pF CL=200pF
CL=0pF 40 30 20 10 RL=600Ω Tamb=25°C 2.5
CL=500pF
Gain Margin (dB)
50
10
CL=500pF
RL=600Ω Tamb=25°C 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
0 2.0
10/24
TS482
Fig. 19 : Phase Margin vs Power Supply Voltage Fig. 20 : Gain Margin vs Power Supply Voltage
70 60
Phase Margin (Deg)
20
CL=0pF
Gain Margin (dB)
50 40 30 20 10 0 2.0 RL=5kΩ Tamb=25°C 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 CL=0pF CL=300pF CL=500pF
CL=100pF
10
CL=200pF
CL=500pF
RL=5kΩ Tamb=25°C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
Fig. 21 : Output Power vs Power Supply Voltage
Fig. 22 : Output Power vs Power Supply Voltage
250 225 200 Output power (mW) 175 150 125 100 75 50 25 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 THD+N=0.1% Av = -1 RL = 8Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10%
200 175 THD+N=1% 150
Output power (mW)
125 100 75 50
Av = -1 RL = 16Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10%
THD+N=1%
THD+N=0.1% 25 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5
Fig. 23 :Output Power vs Power Supply Voltage
Fig. 24 : Output Power vs Load Resistance
200
100 Av = -1 RL = 32Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10%
180
THD+N=1%
160
Output power (mW)
THD+N=1%
Output power (mW)
140 120 100 80 60 40 20 THD+N=0.1%
75
Av = -1 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10%
50
25
THD+N=0.1%
0 2.0
2.5
3.0
3.5 4.0 Vcc (V)
4.5
5.0
5.5
0
8
16
24
32 40 48 Load Resistance ( )
56
64
11/24
TS482
Fig. 25 : Output Power vs Load Resistance Fig. 26 : Output Power vs Load Resistance
50
70 60
Output power (mW)
THD+N=1%
Output power (mW)
50 40
Av = -1 Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C
45 40 35 30 25 20 15 10 5 THD+N=0.1% 8 16 24 32 40 48 Load Resistance (ohm) THD+N=1%
Av = -1 Vcc = 2.6V F = 1kHz BW < 125kHz Tamb = 25°C
THD+N=10% 30 20 10 0 THD+N=0.1%
THD+N=10%
8
16
24
32 40 48 Load Resistance (ohm)
56
64
0
56
64
Fig. 27 : Output Power vs Load Resistance
Fig. 28 : Power Dissipation vs Output Power
25 Av = -1 Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25°C
20
Output power (mW)
Power Dissipation (mW)
160 Vcc=5V F=1kHz 140 THD+N