0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS4851IJT

TS4851IJT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    TS4851IJT - MONO 1 W SPEAKER AND STEREO 160 mW HEADSET BTL DRIVERS WITH DIGITAL VOLUME CONTROL - STM...

  • 数据手册
  • 价格&库存
TS4851IJT 数据手册
TS4851 Mono 1W Speaker and Stereo 160mW Headset BTL Drivers with Digital Volume Control ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Operating from VCC = 3V to 5.5V Rail to rail input/output Speaker driver with 1 W output @ Vcc = 5V, THD+N = 1%, F = 1kHz, 8Ω load Headset drivers with 160 mW output @ Vcc = 5V, THD+N = 1%, F = 1kHz, 32Ω load Headset output is 30mW in stereo @ Vcc = 3V THD+N < 0.5% Max @ 20mW into 32Ω BTL, 50Hz < Frequency < 20kHz 32-step digital volume control from 34.5dB to +12dB +6dB power up volume and full standby 8 different output modes Pop & click reduction circuitry Low shutdown current (< 100nA) Thermal shutdown protection Flip-chip package 18 x 300µm bumps Pin Connections (top view) TS485IJT - Flip-chip TS485EIJT - Lead free Flip-chip Pin Out (top view) Description The TS4851 is a low power audio amplifier that can drive either both a mono speaker or a stereo headset. To the speaker, it can deliver 400 mW (typ.) of continuous RMS output power into an 8Ω load with a 1% THD+N value. To the headset driver, the amplifier can deliver 30 mW (typ.) per channel of continuous average power into a stereo 32 Ω bridged-tied load with 0.5% THD+N @ 3.3V. This device features a 32-step digital volume control and 8 different output selections. The digital volume and output modes are controlled through a three-digit SPI interface bus. R OUT< R OUT + R IN L IN PHONE IN SPKR OUT+ BYPASS GND VCC SPKR OUT CLK VCC GND L OUT + DATA L OUT - NC ENB Applications ■ Mobile Phones Order Codes Part Number TS4851IJT TS4851EIJT Temperature Range -40, +85°C Package Flip-Chip Lead free Flip-Chip Packaging Tape & Reel Marking A51 A51 J = Flip Chip Package - only available in Tape & Reel (JT)) March 2005 Revision 5 1/28 TS4851 Application Information 1 Application Information Figure 1: Application information for a typical application Table 1. External component description Component Cin Functional Description This is the input coupling capacitor. It blocks the DC voltage at, and couples the input signal to the amplifier’s input terminals. Cin also creates a highpass filter with the internal input impedance Zin at Fc =1/ (2πi x Zin x Cin). This is the Supply Bypass capacitor. It provides power supply filtering. This is the Bypass pin capacitor. It provides half-supply filtering. Cs CB 2/28 SPI Bus Interface TS4851 2 SPI Bus Interface Table 2. Pin description Pin DATA CLK ENB Functional Description This is the serial data input pin. This is the clock input pin. This is the SPI enable pin active at high level. 2.1 Description of SPI operation The serial data bits are organized into a field containing 8 bits of data as shown in Table 3. The DATA 0 to DATA 2 bits determine the output mode of the TS4851 as shown in Table 2. The DATA 3 to DATA 7 bits determine the gain level setting as illustrated by Table 3. For each SPI transfer, the data bits are written to the DATA pin with the least significant bit (LSB) first. All serial data are sampled at the rising edge of the CLK signal. Once all the data bits have been sampled, ENB transitions from logic-high to logic low to complete the SPI sequence. All 8 bits must be received before any data latch can occur. Any excess CLK and DATA transitions will be ignored after the height rising clock edge has occurred. For any data sequence longer than 8 bits, only the first 8 bits will get loaded into the shift register and the rest of the bits will be disregarded. Table 3. Bit allocation DATA LSB DATA 0 DATA 1 DATA 2 DATA 3 DATA 4 DATA 5 DATA 6 DATA 7 MODES Mode 1 Mode 2 Mode 3 gain 1 gain 2 gain 3 gain 4 gain 5 MSB Table 4. Output mode selection: G from -34.5dB to +12dB (by steps of 1.5dB) Output Mode # 0 1 2 3 4 5 6 7 1) DATA 2 0 0 0 0 1 1 1 1 DATA 1 0 0 1 1 0 0 1 1 DATA 0 0 1 0 1 0 1 0 1 SPKERout1 SD 6dBxP SD Gx(R+L) SD Gx(R+L) +6dBxP SD 6dBxP Rout SD SD 0dBxP SD GxR SD GxR+0dBxP GxR+0dBxP Lout SD SD 0dBxP SD GxL SD GxL+0dBxP GxL+0dBxP SD = Shutdown Mode, P = Phone in Input, R = Rin input and L = Lin input 3/28 TS4851 Table 5. Volume control settings K : Gain (dB) -34.5 -33.0 -31.5 -30.0 -28.5 -27.0 -25.5 -24.0 -22.5 -21.0 -19.5 -18.0 -16.5 -15.0 -13.5 -12.0 -10.5 -9.0 -7.5 -6.0 -4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6 7.5 9 10.5 12 SPI Bus Interface DATA 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DATA 6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 DATA 5 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 DATA 4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 DATA 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 4/28 SPI Bus Interface Figure 2: SPI timing diagram TS4851 5/28 TS4851 Absolute Maximum Ratings 3 Absolute Maximum Ratings Table 6. Key parameters and their absolute maximum ratings Symbol VCC Toper Tstg Tj Rthja Pd ESD ESD Parameter Supply voltage1 Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Flip Chip Thermal Resistance Junction to Ambient Power Dissipation Human Body Model Machine Model Latch-up Immunity Lead Temperature (soldering, 10sec) Lead Temperature (soldering, 10sec) for Lead-Free version 2 Value 6 -40 to + 85 -65 to +150 150 200 Internally Limited 2 100 200 250 260 Unit V °C °C °C °C/W kV V mA °C 1) 2) All voltages values are measured with respect to the ground pin. Device is protected in case of over temperature by a thermal shutdown active @ 150°C Table 7. Operating conditions Symbol VCC Vphin VRin/VLin TSD Rthja 1) Parameter Supply Voltage Maximum Phone In Input Voltage Maximum Rin & Lin Input Voltage Thermal Shut Down Temperature Flip Chip Thermal Resistance Junction to Ambient1 Value 3 to 5.5 GND to VCC GND to VCC 150 90 Unit V V V °C °C/W Device is protected in case of over temperature by a thermal shutdown active @ 150°C 6/28 Electrical Characteristics TS4851 4 Electrical Characteristics Table 8. Electrical characteristics at VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC Parameter Supply Current Output Mode 7, Vin = 0V, no load All other output modes, Vin = 0V, no load Standby Current Output Mode 0 Output Offset Voltage (differential) Vin = 0V “Logic low” input Voltage “Logic high” input Voltage Output Power SPKERout, RL = 8Ω, THD = 1%, F = 1kHz Rout & Lout, RL = 32Ω, THD = 0.5%, F = 1kHz Total Harmonic Distortion + Noise Rout & Lout, Po = 80mW, F = 1kHz, RL = 32Ω SPKERout, Po = 800mW, F = 1kHz, RL = 8Ω Rout & Lout, Po = 50mW, 20Hz < F < 20kHz, RL = 32Ω SPKERout, Po = 40mW, 20Hz < F < 20kHz, RL = 8Ω Signal To Noise Ratio (A-Weighted) Power Supply Rejection Ratio1 Vripple = 200mV Vpp, F = 217Hz, Input(s) Terminated 10Ω Ouput Mode 1 Ouput Mode 2 Ouput Mode 3 (G=+12dB) Ouput Mode 4 (G=+12dB) Ouput Mode 5 (G=+12dB) Ouput Mode 6, 7 (G=+12dB) Digital Gain Range - Rin & Lin no load Digital gain stepsize Stepsize G ≥ -22.5dB G < -22.5dB Phone In Gain, no load BTL gain from Phone In to SPKERout BTL gain from Phone In to Rout & Lout Phone In Input Impedance Rin & Lin Input Impedance (all gain setting) Enable Stepup Time - ENB Enable Hold Time - ENB Enable Low Time - ENB Data Setup Time- DATA Data Hold Time - DATA Clock Setup time - CLK Clock Logic High Time - CLK Clock Logic Low Time - CLK Clock Frequency - CLK Min. Typ. 8 4.5 0.1 5 Max. 11 6.5 Unit mA ISTANDBY Voo Vil Vih Po µA 2 mV 0 1.4 800 80 1000 120 % 0.5 1 0.5 1 90 50 0.4 5 V V mW THD + N SNR PSRR dB dB 70 70 55 57 52 56 dB -34.5 1.5 -0.5 -1 6 0 20 50 +0.5 +1 dB +12 dB dB G Zin Zin tes teh tel tds tdh tcs tch tcl fclk 1) 15 37.5 20 20 30 20 20 20 50 50 DC 25 62.5 10 kΩ kΩ ns ns ns ns ns ns ns ns MHz Dynamic measurements [20 x log(rms(Vout)/rms(Vripple)]. Vripple is the superimposed sinus signal to Vcc @ F = 217Hz 7/28 TS4851 Electrical Characteristics Table 9. Electrical characteristics at VCC = +3V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC Parameter Supply Current Output Mode 7, Vin = 0V,no load All other output modes, Vin = 0V,no load Standby Current Output Mode 0 Output Offset Voltage (differential) Vin = 0V “Logic low” input Voltage “Logic high” input Voltage Output Power SPKERout, RL = 8Ω, THD = 1%, F = 1kHz Rout & Lout, RL = 32Ω, THD = 0.5%, F = 1kHz Total Harmonic Distortion + Noise Rout & Lout, Po = 20mW, F = 1kHz, RL = 32Ω SPKERout, Po = 300mW, F = 1kHz, RL = 8Ω Rout & Lout, Po = 15mW, 20Hz < F < 20kHz, RL = 32Ω SPKERout, Po = 250mW, 20Hz < F < 20kHz, RL = 8Ω Signal To Noise Ratio (A-Weighted) Power Supply Rejection Vripple = 200mV Vpp, F = 217Hz, Input(s) Terminated 10Ω Ouput Mode 1 Ouput Mode 2 Ouput Mode 3 (G=+12dB) Ouput Mode 4 (G=+12dB) Ouput Mode 5 (G=+12dB) Ouput Mode 6, 7 (G=+12dB) Digital Gain Range - Rin & Lin no load Digital gain stepsize Stepsize error G ≥ -22.5dB G < -22.5dB Phone In Gain, no load BTL gain from Phone In to SPKERout BTL gain from Phone In to Rout & Lout Phone In Input Impedance 1 Rin & Lin Input Impedance (All Gain Setting) 1 Enable Stepup Time - ENB Enable Hold Time - ENB Enable Low Time - ENB Data Setup Time- DATA Data Hold Time - DATA Clock Setup time - CLK Clock Logic High Time - CLK Clock Logic Low Time - CLK Clock Frequency - CLK Ratio2 Min. Typ. 7.5 4.5 0.1 5 Max. 10 6.5 Unit mA ISTANDBY Voo Vil Vih Po µA 2 mV 0 1.4 300 20 340 30 % 0.5 1 0.5 1 86 50 0.4 5 V V mW THD + N SNR PSRR1 dB dB 65 70 54 54 51 53 dB -34.5 1.5 +12 dB dB +0.5 +1 dB 6 0 20 50 G -0.5 -1 Zin Zin tes teh tel tds tdh tcs tch tcl fclk 1) 2) 15 37.5 20 20 30 20 20 20 50 50 DC 25 62.5 kΩ kΩ ns ns ns ns ns ns ns ns MHz 10 All PSRR data limits are guaranted by evaluation desgin test. Dynamic measurements [20 x log(rms(Vout)/rms(Vripple)]. Vripple is the superimposed sinus signal to Vcc @ F = 217Hz 8/28 Electrical Characteristics Table 10. Index of graphics Description THD + N vs. Output Power THD + N vs. Frequency Output Power vs. Power Supply Voltage PSRR vs. Frequency Frequency Response Signal to Noise Ratio vs. Power Supply Voltage Crosstalk vs. Frequency -3 dB Lower Cut Off Frequency vs. Input Capacitor Current Consumption vs. Power Supply Voltage Power Dissipation vs. Output Power Power Derating Curves -3 dB Lower Cut Off Frequency vs. Gain Setting TS4851 Figure Figures 3 to 12 Figures 13 to 22 Figures 23 to 30 Figures 31 to 40 Figures 41 to 44 Figures 45 to 48 Figures 49 to 50 Figures 51 to 52 Figure 53 Figures 54 to 57 Figure 58 Figure 59 Page page 10 to page 11 page 11 to page 13 page 13 to page 14 page 14 to page 16 page 16 page 17 page 18 page 18 page 18 page 18 to page 19 page 19 page 19 Note: In the graphs that follow, the abbreviations Spkout = Speaker Output, and HDout = Headphone Output are used. All measurements made with Cin = 220nF, Cb = Cs = 1µF except in PSRR condition where Cs = 0. 9/28 TS4851 Figure 3: Spkout THD+N vs. output power (output modes 1, 7) 10 RL = 4Ω Output mode 1, 7 BW < 125 kHz Tamb = 25°C 1 THD + N (%) Electrical Characteristics Figure 6: HDout THD+N vs. output power (output mode 2) 10 Vcc=5V F=20kHz Vcc=3V F=20kHz THD + N (%) 1 RL = 16Ω Output mode 2 BW < 125 kHz Tamb = 25°C Vcc=5V F=20kHz Vcc=3V F=20kHz 0.1 Vcc=3V F=1kHz 0.1 Vcc=3V F=1kHz 0.01 1E-3 0.01 0.1 Output power (W) Vcc=5V F=1kHz 1 0.01 1E-3 0.01 Output power (W) 0.1 Vcc=5V F=1kHz Figure 4: Spkout THD+N vs. output power (output modes 1, 7) 10 RL = 8Ω Output mode 1, 7 BW < 125 kHz Tamb = 25°C Vcc=5V F=20kHz Vcc=3V F=20kHz Figure 7: HDout THD+N vs. output power (output mode 2) 10 RL = 32Ω Output mode 2 BW < 125 kHz Tamb = 25°C Vcc=5V F=20kHz Vcc=3V F=20kHz 1 THD + N (%) 1 THD + N (%) 0.1 0.1 Vcc=3V F=1kHz 0.01 1E-3 0.01 Vcc=3V F=1kHz 0.1 Vcc=5V F=1kHz 1 0.01 1E-3 0.01 Output power (W) Vcc=5V F=1kHz 0.1 Output power (W) Figure 5: Spkout THD+N vs. output power (output modes 1, 7) 10 RL = 16Ω Output mode 1, 7 BW < 125 kHz Tamb = 25°C Vcc=5V F=20kHz Vcc=3V F=20kHz Figure 8: Spkout THD+N vs. output power (output mode 3, G=+12dB) 10 RL = 4Ω Out. mode 3; G = +12dB BW < 125 kHz Tamb = 25°C Vcc=5V F=20kHz Vcc=3V F=20kHz 1 THD + N (%) THD + N (%) Vcc=5V F=1kHz 1 0.1 Vcc=3V F=1kHz 0.01 1E-3 0.01 0.1 0.1 1E-3 Vcc=3V F=1kHz 0.01 0.1 Vcc=5V F=1kHz 1 1 Output power (W) Output power (W) 10/28 Electrical Characteristics Figure 9: Spkout THD+N vs. output power (output mode 3, G=+12dB) 10 RL = 8Ω Out. mode 3; G = +12dB BW < 125 kHz Tamb = 25°C Vcc=5V F=20kHz Vcc=3V F=20kHz THD + N (%) TS4851 Figure 12: HDout THD+N vs. output power (output mode 4, G=+12dB) 10 RL = 32Ω Output mode 4 G = +12dB BW < 125 kHz Tamb = 25°C Vcc=5V F=20kHz Vcc=3V F=20kHz THD + N (%) 1 1 0.1 0.1 Vcc=3V F=1kHz 1E-3 0.01 Vcc=5V F=1kHz 0.1 1 0.01 1E-3 Vcc=3V F=1kHz Vcc=5V F=1kHz 0.01 Output power (W) 0.1 Output power (W) Figure 10: Spkout THD+N vs. output power (output mode 3, G=+12dB) 10 RL = 16Ω Output mode 3 G = +12dB BW < 125 kHz Tamb = 25°C Vcc=5V F=20kHz Vcc=3V F=20kHz Figure 13: Spkout THD+N vs. frequency (output modes 1, 7) 10 RL = 4Ω Output mode 1, 7 BW < 125kHz Tamb = 25°C Vcc=3V P=400mW Vcc=5V P=1.1W 1 THD + N (%) 1 THD + N (%) 0.1 Vcc=3V F=1kHz Vcc=5V F=1kHz 0.1 0.01 1E-3 0.01 0.1 1 0.01 100 1000 Frequency (Hz) 10000 Output power (W) Figure 11: HDout THD+N vs. output power (output mode 4, G=+12dB) 10 RL = 16Ω Output mode 4 G = +12dB BW < 125 kHz Tamb = 25°C Vcc=5V F=20kHz Vcc=3V F=20kHz Figure 14: Spkout THD+N vs. frequency (output modes 1, 7) 10 RL = 8Ω Output mode 1, 7 BW < 125kHz Tamb = 25°C 1 THD + N (%) 1 THD + N (%) Vcc=3V P=320mW Vcc=5V P=800mW 0.1 Vcc=3V F=1kHz Vcc=5V F=1kHz 0.01 1E-3 0.01 Output power (W) 0.1 0.1 0.01 100 1000 Frequency (Hz) 10000 11/28 TS4851 Figure 15: Spkout THD+N vs. frequency (output modes 1, 7) 10 Electrical Characteristics Figure 18: Spkout THD+N vs.frequency (output mode 3, G = +12 dB) 10 RL = 4Ω Output mode 3 G = +12dB BW < 125kHz Tamb = 25°C RL = 16Ω Output mode 1, 7 BW < 125kHz Tamb = 25°C 1 THD + N (%) THD + N (%) Vcc=3V P=150mW Vcc=5V P=550mW 1 Vcc=3V P=400mW Vcc=5V P=1.1W 0.1 0.1 0.01 100 1000 Frequency (Hz) 10000 100 1000 Frequency (Hz) 10000 Figure 16: HDout THD+N vs. frequency (output mode 2) 10 RL = 16Ω Output mode 2 BW < 125kHz Tamb = 25°C 1 THD + N (%) Figure 19: Spkout THD+N vs. frequency (output mode 3, G = +12 dB) 10 RL = 8Ω Output mode 3 G = +12dB BW < 125kHz Tamb = 25°C THD + N (%) Vcc=3V P=40mW 0.1 Vcc=5V P=220mW 1 Vcc=3V P=320mW Vcc=5V P=800mW 0.1 0.01 100 1000 Frequency (Hz) 10000 100 1000 Frequency (Hz) 10000 Figure 17: HDout THD+N vs. frequency (output mode 2) 10 RL = 32Ω Output mode 2 BW < 125kHz Tamb = 25°C 1 THD + N (%) Figure 20: Spkout THD+N vs. frequency (output mode 3, G = +12 dB) 10 RL = 16Ω Output mode 3 G = +12dB BW < 125kHz 1 Tamb = 25°C Vcc=3V P=180mW Vcc=3V P=20mW 0.1 Vcc=5V P=140mW THD + N (%) 0.1 Vcc=5V P=550mW 0.01 100 1000 Frequency (Hz) 10000 0.01 100 1000 Frequency (Hz) 10000 12/28 Electrical Characteristics Figure 21: HDout THD+N vs. frequency (output mode 4, G = +12 dB) 10 Output power at 10% THD + N (W) TS4851 Figure 24: Speaker output power vs. power supply voltage (output mode 1, 7) 2.4 F = 1kHz Output mode 1, 7 2.0 BW < 125kHz Tamb = 25°C RL = 16Ω Output mode 4 G = +12dB BW < 125kHz 1 Tamb = 25°C THD + N (%) Vcc=3V P=40mW 1.6 1.2 4Ω 8Ω 16Ω 0.1 Vcc=5V P=220mW 0.8 0.4 0.0 3.0 32Ω 0.01 100 1000 Frequency (Hz) 10000 3.5 4.0 Vcc (V) 4.5 5.0 5.5 Figure 22: HDout THD+N vs. frequency (output mode 4, G = +12 dB) 10 Figure 25: Headphone output power vs. load resistor (output mode 2) 0.35 Output power at 1% THD + N (W) RL = 32Ω Output mode 4 G = +12dB BW < 125kHz 1 Tamb = 25°C THD + N (%) 0.30 0.25 0.20 0.15 F = 1kHz Output mode 2 BW < 125kHz Tamb = 25°C 16Ω Vcc=3V P=20mW 32Ω 0.1 Vcc=5V P=140mW 64Ω 0.10 0.05 0.00 3.0 0.01 100 1000 Frequency (Hz) 10000 3.5 4.0 Vcc (V) 4.5 5.0 5.5 Figure 23: Speaker output power vs. power supply voltage (output mode 1, 7) 2.0 Figure 26: Headphone output power vs. load resistor (output mode 2) 0.40 Output power at 10% THD + N (W) Output power at 1% THD + N (W) 1.6 F = 1kHz Output mode 1, 7 BW < 125kHz Tamb = 25°C F = 1kHz 0.35 Output mode 2 0.30 0.25 0.20 0.15 0.10 0.05 0.00 3.0 3.5 4.0 Vcc (V) BW < 125kHz Tamb = 25°C 16Ω 4Ω 8Ω 16Ω 32Ω 1.2 32Ω 0.8 64Ω 0.4 0.0 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 4.5 5.0 5.5 13/28 TS4851 Figure 27: Speaker output power vs. power supply voltage (output mode 3) 2.0 Electrical Characteristics Figure 30: Headphone output power vs. load resistance (output mode 2) 0.40 F = 1kHz Output power at 10% THD + N (W) Output power at 1% THD + N (W) F = 1kHz Output mode 3 1.6 BW < 125kHz Tamb = 25°C 0.35 Output mode 4 BW < 125kHz 0.30 Tamb = 25°C 16Ω 32Ω 4Ω 8Ω 16Ω 32Ω 1.2 0.25 0.20 0.15 0.10 0.05 0.00 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 64Ω 0.8 0.4 0.0 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 Figure 28: Speaker output power vs. power supply voltage (output mode 3) 2.4 Output power at 10% THD + N (W) Figure 31: Spkout PSRR vs. frequency (output modes 1, 7, input grounded) 0 Output mode 1, 7 -10 RL = 8Ω Vripple = 0.2Vpp -20 Tamb = 25°C -30 PSRR (dB) 2.0 1.6 F = 1kHz Output mode 3 BW < 125kHz Tamb = 25°C 4Ω 8Ω 1.2 16Ω 0.8 0.4 0.0 3.0 32Ω -40 -50 -60 -70 -80 Vcc=5V Vcc=3V 3.5 4.0 Vcc (V) 4.5 5.0 5.5 -90 100 1000 10000 Frequency (Hz) 100000 Figure 29: Headphone output power vs. load resistor (output mode 4) 0.35 Figure 32: HDout PSRR vs. frequency (output mode 2, input grounded) 0 Output power at 1% THD + N (W) 0.30 0.25 0.20 0.15 0.10 0.05 F = 1kHz Output mode 4 BW < 125kHz Tamb = 25°C 16Ω 32Ω -10 -20 Output mode 2 RL = 32Ω Vripple = 0.2Vpp Tamb = 25°C PSRR (dB) -30 -40 -50 -60 Vcc = 3V & 5V 64Ω -70 -80 0.00 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 100 1000 10000 Frequency (Hz) 100000 14/28 Electrical Characteristics Figure 33: Spkout PSRR vs. frequency (output mode 3, inputs grounded) 0 -10 -20 -30 PSRR (dB) TS4851 Figure 36: HDout PSRR vs. frequency (output mode 4, inputs grounded) 0 Output mode 4 -10 Vcc = +3V RL = 32 Ω -20 Vripple=0.2Vpp Tamb = 25°C G=+12dB G=+6dB PSRR (Hz) G=+6dB G=+12dB G=+9dB -40 -50 -60 -70 -80 -30 -40 G=-12dB -50 G=+9dB Output mode 3 Vcc = +5V RL = 8Ω Vripple = 0.2Vpp Tamb = 25 ° 100000 G=-12dB G=-34.5dB G=0dB G=0dB -60 G=-34.5dB -70 100 1000 10000 Frequency (Hz) 100000 -90 100 1000 10000 Frequency (Hz) Figure 34: Spkout PSRR vs. frequency (output mode 3, inputs grounded) 0 -10 -20 Output mode 3 Vcc = +3V RL = 8Ω Vripple=0.2Vpp Tamb = 25°C Figure 37: Spkout PSRR vs. frequency (output mode 5, inputs grounded) 0 -10 Output mode 5 Vcc = +5V RL = 8Ω Vripple=0.2Vpp Tamb = 25°C G=+6dB G=+12dB G=+9dB G=-12dB G=0dB G=-34.5dB G=+12dB -20 PSRR (dB) -30 -40 PSRR (Hz) G=-34.5dB G=-12dB G=+6dB -30 -40 -50 -60 -70 G=+9dB -50 -60 -70 -80 100 G=0dB 1000 10000 Frequency (Hz) 100000 100 1000 10000 Frequency (Hz) 100000 Figure 35: HDout PSRR vs. frequency (output mode 4, inputs grounded) 0 -10 -20 Output mode 4 Vcc = +5V RL = 32Ω Vripple=0.2Vpp Tamb = 25°C Figure 38: Spkout PSRR vs. frequency (output mode 5, inputs grounded) 0 -10 Output mode 5 Vcc = +3V RL = 8Ω Vripple=0.2Vpp Tamb = 25°C G=+6dB G=+12dB G=+9dB G=-12dB G=0dB G=-34.5dB G=+12dB G=+6dB -20 PSRR (dB) -30 -40 -50 -60 -70 -80 PSRR (Hz) G=0dB G=-34.5dB 100000 G=+9dB G=-12dB -30 -40 -50 -60 -70 100 1000 10000 Frequency (Hz) 100 1000 10000 Frequency (Hz) 100000 15/28 TS4851 Figure 39: HDout PSRR vs. frequency (output modes 6, 7, inputs grounded) 0 Output mode 6, 7 -10 Vcc = +5V RL = 32Ω -20 Vripple=0.2Vpp Tamb = 25°C -30 -40 -50 G=0dB -60 G=-34.5dB -70 100 1000 10000 100000 G=+6dB Electrical Characteristics Figure 42: HDout frequency response (output mode 2) 0 -2 G=+12dB G=+9dB Output level (dB) Vcc=3V Vcc=5V PSRR (Hz) G=-12dB -4 Output mode 2 RL = 32Ω Cin = 220 nF BW < 125 kHz Tamb = 25°C -6 20 100 1000 Frequency (Hz) 10000 Frequency (Hz) Figure 40: HDout PSRR vs. freq., (output modes 6, 7, inputs grounded) 0 -10 -20 Output mode 6, 7 Vcc = +3V RL = 32Ω Vripple=0.2Vpp Tamb = 25°C G=+6dB Figure 43: Spkout frequency response (output mode 3) 12 10 8 6 4 2 Output mode 3 RL = 8Ω G = +12dB Cin = 220 nF BW < 125 kHz Tamb = 25°C Vcc=5V Vcc=3V -30 -40 -50 G=+9dB G=-12dB G=0dB -60 G=-34.5dB -70 100 1000 10000 Frequency (Hz) 100000 Output level (dB) G=+12dB PSRR (Hz) 0 20 100 1000 Frequency (Hz) 10000 Figure 41: Spkout frequency response (output mode 1, 7) 6 Figure 44: HDout frequency response (output mode 4) 12 10 4 Vcc=3V Vcc=5V Vcc=5V Vcc=3V Output level (dB) Output level (dB) 8 6 4 2 0 20 Output mode 4 RL = 32Ω G = +12dB Cin = 220 nF BW < 125 kHz Tamb = 25°C 2 Output mode 1, 7 RL = 8Ω Cin = 220 nF BW < 125 kHz Tamb = 25°C 0 20 100 1000 Frequency (Hz) 10000 100 1000 Frequency (Hz) 10000 16/28 Electrical Characteristics Figure 45: Spkout SNR vs. power supply voltage, unweighted filter, BW = 20 Hz to 20 kHz 100 98 96 94 92 SNR (dB) 90 88 86 84 82 80 78 76 1 2 3 4 Output mode 5 6 7 G=+12dB TS4851 Figure 47: HDout SNR vs. power supply voltage, unweighted filter, BW = 20 Hz to 20 kHz 100 SNR (dB) Vcc=3V Vcc=5V RL = 8Ω Unweighted filter (20Hz to 20kHz) THD + N < 0.7% Tamb = 25°C 98 96 94 92 90 88 86 84 82 80 78 76 1 2 3 Vcc=3V Vcc=5V RL = 32Ω Unweighted filter (20Hz to 20kHz) THD + N < 0.7% Tamb = 25°C G=+12dB 4 Output mode 5 6 7 Figure 46: Spkout SNR vs. power supply voltage, weighted filter A, BW = 20 Hz to 20 kHz 104 102 100 98 Figure 48: HDout SNR vs. power supply voltage, weighted filter A, BW = 20 Hz to 20 kHz 104 102 100 98 SNR (dB) SNR (dB) 96 94 92 90 88 86 1 2 Vcc=3V Vcc=5V RL = 8Ω Weighted filter type A THD + N < 0.7% Tamb = 25°C 96 94 92 90 88 86 Vcc=3V Vcc=5V RL = 32Ω Weighted filter type A THD + N < 0.7% Tamb = 25°C G=+12dB G=+12dB 3 4 Output mode 5 6 7 1 2 3 4 Output mode 5 6 7 17/28 TS4851 Figure 49: Crosstalk vs. frequency (output mode 4) 0 Lower -3dB Cut Off Frequency (Hz) Electrical Characteristics Figure 52: -3 dB lower cut off frequency vs. input capacitance Crosstalk Level (dB) Output mode 4 Vcc = 5V -20 RL = 32Ω G = +12dB Pout = 100mW BW < 125kHz -40 Tamb = 25°C Lout -> Rout Rout -> Lout Rin & Lin Inputs All gain setting Tamb=25°C 10 Typical Input Impedance Minimum Input Impedance Maximum Input Impedance -60 -80 20 100 1000 Frequency (Hz) 10000 1 0.1 Input Capacitor (µF) 1 Figure 50: Crosstalk vs. frequency (output mode 4) 0 Output mode 4 Vcc = 3V -20 RL = 32Ω G = +12dB Pout = 20mW BW < 125kHz -40 Tamb = 25°C -60 Lout -> Rout Rout -> Lout Figure 53: Current consumption vs. power supply voltage 10 No loads 9 Tamb = 25°C 8 7 6 Icc (mA) Mode 7 Crosstalk Level (dB) Mode 2, 4, 6 5 4 3 2 Mode 1, 3, 5 Reset state -80 100 1000 Frequency (Hz) 10000 1 0 0 1 2 Vcc (V) 3 4 5 Figure 51: -3 dB lower cut off frequency vs. input capacitor 100 Lower -3dB Cut Off Frequency (Hz) Figure 54: Power dissipation vs. output power (speaker output) 1.4 Phone In Input Tamb=25°C Power Dissipation (W) Vcc=5V 1.2 F=1kHz THD+N
TS4851IJT 价格&库存

很抱歉,暂时无法提供与“TS4851IJT”相匹配的价格&库存,您可以联系我们找货

免费人工找货