0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS4855EIJT

TS4855EIJT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    18-UFBGA,FCBGA

  • 描述:

    IC AMP AUDIO 1.1W AB 18FLIPCHIP

  • 数据手册
  • 价格&库存
TS4855EIJT 数据手册
TS4855 LOUDSPEAKER & HEADSET DRIVER WITH VOLUME CONTROL ■ ■ OPERATING FROM VCC = 3.0 V to 5.0 V ■ HEADSET: Stereo, THD+N @ 1 kHz is 0.5% Max. @ 85 mW into 32 Ω BTL PIN CONNECTIONS (top view) SPEAKER: Mono, THD+N @ 1 kHz is 1% Max @ 1 W into 8 Ω BTL ■ VOLUME CONTROL: 32-step digital volume control ■ ■ ■ ■ ■ ■ OUTPUT MODE: Eight different selections ) s ( ct TS4855IJT - Flip Chip u d o r P e Ultra low pop-and-click Low Shutdown Current (0.1 µA, typ.) t e l o Thermal Shutdown Protection FLIP-CHIP Package 18 X 300 µm Bumps TS4855E IJT Lead-Free option available DESCRIPTION ) (s The TS4855 is a complete low power audio amplifier solution targeted at mobile phones. It integrates, into an extremely compact flip-chip package, an audio amplifier, a speaker driver, and a headset driver. s b O t c u d o r P e The Audio Power Amplifier can deliver 1.1 W (typ.) of continuous RMS output power into an 8 Ω speaker with a 1% THD+N value. To the headset driver, the amplifier can deliver 85 mW (typ.) per channel of continuous average power into stereo 32 Ω bridged-tied load with 0.5% THD+N @ 5 V. Pin Out (top view) t e l o s b O This device features a 32-step digital volume control and 8 different output selections. The digital volume and output modes are controlled through a three-digit SPI interface bus. APPLICATIONS • Mobile Phones ORDER CODE Part Number TS4855IJT TS4855EIJT Temperature Range Package -40, +85°C -40, +85°C • • J = Flip Chip Package - only available in Tape & Reel (JT)) March 2004 J 1/27 TS4855 1 Application Information for a Typical Application APPLICATION INFORMATION FOR A TYPICAL APPLICATION ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o External component descriptions s b O Component 2/27 Functional Description Cin This is the input coupling capacitor. It blocks the DC voltage at, and couples the input signal to the amplifier’s input terminals. Cin also creates a highpass filter with the internal input impedance Zin at Fc = 1 / (2π x Zin x Cin). Cs This is the Supply Bypass capacitor. It provides power supply filtering. CB This is the Bypass pin capacitor. It provides half-supply filtering. SPI Bus Interface 2 TS4855 SPI BUS INTERFACE 2.1 Pin Descriptions Pin Functional Description DATA This is the serial data input pin CLK This is the clock input pin ENB This is the SPI enable pin active at high level 2.2 SPI Operation Description The serial data bits are organized into a field containing 8 bits of data as shown in Table 1. The DATA 0 to DATA 2 bits determine the output mode of the TS4855 as shown in Table 2. The DATA 3 to DATA 7 bits determine the gain level setting as illustrated by Table 3. For each SPI transfer, the data bits are written to the DATA pin with the least significant bit (LSB) first. All serial data are sampled at the rising edge of the CLK signal. Once all the data bits have been sampled, ENB transitions from logic-high to logic low to complete the SPI sequence. All 8 bits must be received before any data latch can occur. Any excess CLK and DATA transitions will be ignored after the height rising clock edge has occurred. For any data sequence longer than 8 bits, only the Output Mode # DATA u d o r P e LSB DATA 0 MSB Mode 1 DATA 1 Mode 2 DATA 2 Mode 3 DATA 3 gain 1 DATA 4 gain 2 DATA 5 gain 3 DATA 6 gain 4 DATA 7 gain 5 t e l o bs MODES Table 2: Output Mode Selection DATA 1 DATA 0 SPKRout Rout Lout 0 0 0 SD SD SD 0 0 1 +12dBxPIHF SD SD 2 0 1 0 MUTE G1xPHS G1xPHS 3 0 1 1 +12dBxPIHF G1xPHS G1xPHS 4 1 0 0 MUTE G2xRin G2xLin 5 1 0 1 +12dBxPIHF G2xRin G2xLin 6 1 1 0 MUTE G1xPHS+ G2xRin G1xPHS+ G2xLin 7 1 1 1 +12dBxPIHF G1xPHS+ G2xRin G1xPHS+ G2xLin t e l o 0 bs 1 O P e ro ) s ( ct Table 1: Bit Allocation O ) t(s c u d first 8 bits will get loaded into the shift register and the rest of the bits will be disregarded. DATA 2 (SD = Shut Down Mode, PHS = Non Filtered Phone In HS, PIHF = External High Pass Filtered Phone In IHF) 3/27 TS4855 SPI Bus Interface Table 3: Gain Control Settings G2: Gain (dB) G1: Gain (dB) DATA 7 DATA 6 DATA 5 DATA 4 DATA 3 -34.5 -40.5 0 0 0 0 0 -33.0 -39.0 0 0 0 0 1 -31.5 -37.5 0 0 0 1 0 -30.0 -36.0 0 0 0 1 1 -28.5 -34.5 0 0 1 0 0 -27.0 -33.0 0 0 1 0 1 -25.5 -31.5 0 0 1 1 -24.0 -30.0 0 0 1 1 -22.5 -28.5 0 1 0 0 -21.0 -27.0 0 1 0 -19.5 -25.5 0 1 0 -18.0 -24.0 0 1 0 -16.5 -22.5 0 1 -15.0 -21.0 0 1 -13.5 -19.5 0 1 -12.0 -18.0 0 -10.5 -16.5 1 -9.0 -15.0 O ) -7.5 -13.5 -6.0 -12.0 -4.5 -1.5 Pr 0.0 u d o ) s ( ct 0 Pr 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 -7.5 1 0 1 1 0 o s b -6.0 1 0 1 1 1 -4.5 1 1 0 0 0 3.0 -3.0 1 1 0 0 1 4.5 -1.5 1 1 0 1 0 6.0 0.0 1 1 0 1 1 7.5 1.5 1 1 1 0 0 9.0 3.0 1 1 1 0 1 10.5 4.5 1 1 1 1 0 12.0 6.0 1 1 1 1 1 -3.0 1.5 O 4/27 e t e l -9.0 uc od -10.5 t(s 1 1 e t e l 1 o s b Absolute Maximum Ratings TS4855 2.3 SPI Timing Diagram ) s ( ct u d o r P e 3 t e l o ABSOLUTE MAXIMUM RATINGS Symbol Parameter )- 1 s b O Value Unit VCC Supply voltage 6 V Toper Operating Free Air Temperature Range -40 to + 85 °C Tstg Storage Temperature -65 to +150 °C 150 °C 166 °C/W Tj s ( t c u d o Rthja Maximum Junction Temperature Flip Chip Thermal Resistance Junction to Ambient Power Dissipation Pd 2 r P e Human Body Model 3 ESD let ESD o s b Internally Limited 2 4 Machine Model Latch-up Immunity Lead Temperature (soldering, 10sec) kV 100 V 200 250 mA °C 1) All voltage values are measured with respect to the ground pin. O 2) Device is protected in case of over temperature by a thermal shutdown active @ 150°C typ. 3) Human body model, 100pF discharged through a 1.5 kΩ resistor into pin of device. 4) This is a minimum Value. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device. 5.) All PSRR data limits are guaranteed by evaluation tests. 4 OPERATING CONDITIONS Symbol VCC Vphin Parameter Supply Voltage Value Unit 3 to 5 V Maximum Phone In Input Voltage GND to VCC V VRin/VLin Maximum Rin & Lin Input Voltage GND to VCC V 150 °C TSD Thermal Shutdown Temperature 5/27 TS4855 5 Electrical Characteristics ELECTRICAL CHARACTERISTICS Table 4: Electrical characteristics at VCC = +5.0 V, GND = 0 V, Tamb = 25°C (unless otherwise specified) Symbol ICC Parameter ISTANDBY Voo Min. Typ. Max. Supply Current, all gain @ max settings Output Mode 1, Vin = 0 V, no load Output Mode 1, Vin = 0 V, loaded (8Ω) Output Mode 2,3,4,5,6,7 Vin = 0 V, no loads Output mode 2,3,4,5,6,7 Vin = 0 V, loaded (8Ω, 32Ω) 4.0 5.5 8.0 10 8 9 11 12 Standby Current Output Mode 0 0.75 mA Vil “Logic low” input Voltage Vih “Logic high” input Voltage Po Output Power SPKR out, RL = 8Ω, THD+N = 1%, f = 1 kHz Rout & Lout, RL = 32Ω, THD+N = 0.5%, f = 1 kHz let O ) 800 70 b O mV 20 40 0.4 V 5 V mW 1100 100 % 1 0.5 0.5 u d o so 2 0.5 s ( t c Pr Signal To Noise Ratio A-Weighted, f = 1 kHz e t e l 5 5 1.4 THD + N Total Harmonic Distortion + Noise Rout & Lout, Po = 70 mW, f = 1 kHz, RL = 32Ω SPKR out, Po = 800 mW, f = 1 kHz, RL = 8Ω Rout & Lout, Po = 50 mW, 20 Hz < f < 20 kHz, RL = 32Ω SPKR out, Po = 400 mW, 20 Hz < f < 20 kHz, RL = 8Ω Power Supply Rejection Ratio SPKRout;Vripple = 200 mV Vpp, F = 217 Hz, Input Terminated 50Ω Gain (BTL) = 12 dB, Output mode 1,3,5,7 Rout& Lout;Vripple = 200 mV Vpp, F = 217 Hz, Input Terminated 50Ω Maximum gain setting, Output mode 2,3 Rout& Lout;Vripple = 200 mV Vpp, F = 217 Hz, Input Terminated 50Ω Maximum gain setting, Output mode 4,5 Rout& Lout;Vripple = 200 mV Vpp, F = 217 Hz, Input Terminated 50Ω Maximum gain setting, Output mode 6,7 t c u od r P e 0 o s b PSRR 5) (s) µA Output Offset Voltage (differential) Output Mode 1 to 7, Vin = 0 V, no load, Speaker Out Output Mode 2 to 7 Vin = 0 V, no loads, Headset Out SNR Unit 80 dB dB 58 62 52 61 50 58 46 53 G2 Digital Gain Range (Rin & Lin) to R out, Lout -34.5 12 dB G1 Digital Gain Range (Phone In HS) to Rout, Lout -40.5 6 dB Digital Gain Stepsize Stepsize Error 6/27 1.5 dB ± 0.6 dB Electrical Characteristics TS4855 Table 4: Electrical characteristics at VCC = +5.0 V, GND = 0 V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Phone In Volume BTL maximum GAIN from Phone In HS to R out, Lout BTL minimum GAIN from Phone In HS to R out, Lout 5.4 -41.1 6 -40.5 6.6 -39.9 Phone In Volume BTL maximum gain from Rin, Lin to R out, Lout BTL minimum gain from Rin, Lin to R out, Lout 11.4 -35.1 12 -34.5 12.6 -33.9 11.4 12 12.6 Unit dB dB Phone In Volume BTL gain from Phone In IHF to SPKR out Zin Phone In IHF Input Impedance Zin Phone In HS, Rin & Lin Input Impedance, All Gain setting tes Enable Step up Time - ENB teh Enable Hold Time - ENB tel Enable Low Time - ENB tds Data Setup Time- DATA tdh Data Hold Time - DATA tcs Clock Setup time - CLK tch Clock Logic High Time - CLK tcl fclk c u d 16 o r P 42.5 ) s ( t 20 50 dB 24 kΩ 57.5 kΩ 20 ns 20 ns 30 ns 20 ns 20 ns 20 ns 50 ns Clock Logic Low Time - CLK 50 ns Clock Frequency - CLK DC e t e l o s b ) s ( ct -O u d o r P e 10 MHz Table 5: Electrical characteristics at VCC = +3.0 V, GND = 0 V, Tamb = 25°C (unless otherwise specified) t e l o Symbol bs ICC O ISTANDBY Voo Parameter Min. Typ. Max. Supply Current, all gain @ max settings Output Mode 1, Vin = 0 V, no load Output Mode 1, Vin = 0 V, loaded (8Ω) Output Mode 2,3,4,5,6,7 Vin = 0 V, no loads Output mode 2,3,4,5,6,7 Vin = 0 V, loaded (8Ω, 32Ω) 3.5 4.5 7.5 9 7 8 10 11 Standby Current Output Mode 0 0.6 2 5 5 20 40 Unit mA µA Output Offset Voltage (differential) Output Mode 1 to 7, Vin = 0 V, no load, Speaker Out Output Mode 2 to 7 Vin = 0 V, no loads, Headset Out mV Vil “Logic low” input Voltage 0 0.4 V Vih “Logic high” input Voltage 1.4 3 V 7/27 TS4855 Electrical Characteristics Table 5: Electrical characteristics at VCC = +3.0 V, GND = 0 V, Tamb = 25°C (unless otherwise specified) Symbol Po Parameter Output Power SPKRout, RL = 8Ω, THD = 1%, f = 1 kHz Rout & Lout, RL = 32Ω, THD = 0.5%, f = 1 kHz Min. Typ. 300 20 340 25 Signal To Noise Ratio A-Weighted, f = 1 kHz % 0.5 1 PSRR 5) Power Supply Rejection Ratio SPKRout,Vripple = 200 mV Vpp, F = 217 Hz, Input Terminated 50Ω Gain (BTL) = 12 dB, Output Mode 1,3,5,7 Rout & Lout Vripple = 200 mV Vpp, F = 217 Hz, Input Terminated 50Ω Maximum gain setting, Output Mode 2,3 Rout & Lout Vripple = 200 mV Vpp, F = 217 Hz, Input Terminated 50Ω Maximum gain setting, Output Mode 4,5 Rout & Lout Vripple = 200 mV Vpp, F = 217 Hz, Input Terminated 50Ω Maximum gain setting, Output Mode 6,7 e t e l so b O ct ) s ( ct 0.5 0.5 du 80 ) (s Unit mW THD + N Total Harmonic Distortion + Noise Rout & Lout, Po = 20 mW, f = 1 kHz, RL = 32Ω SPKRout, Po = 300 mW, f = 1 kHz, RL = 8Ω Rout & Lout, Po = 15 mW, 20 Hz < f < 20 kHz, RL = 32Ω SPKRout, Po = 250 mW, 20 Hz < f < 20 kHz, RL = 8Ω SNR Max. o r P 58 62.5 52 56.5 49 55 45 49.5 dB dB G2 Digital Gain Range - Rin & Lin to Rout ,Lout -34.5 12 dB G1 Digital Gain Range - Phone In HS to Rout ,Lout -40.5 6 dB u d o Pr Digital Gain stepsize Stepsize Error e t e ol s b O 1.5 dB ± 0.6 dB dB Phone In Volume BTL maximum GAIN from Phone In HS to Rout, Lout BTL minimum GAIN from Phone In HS to Rout, Lout 5.4 -41.1 6 -40.5 6.6 -39.9 Phone In Volume BTL maximum gain from Rin, Lin to Rout, Lout BTL minimum gain from Rin, Lin to Rout, Lout 11.4 -35.1 12 -34.5 12.6 -33.9 Phone In Volume BTL gain from Phone In IHF to SPKRout 11.4 12 12.6 16 20 24 kΩ 42.5 50 57.5 kΩ dB dB Zin Phone In IHF Input Impedance, all gains setting Zin Phone In HS, Rin & Lin Input Impedance, all gains setting tes Enable Step up Time - ENB 20 ns teh Enable Hold Time - ENB 20 ns tel Enable Low Time - ENB 30 ns 8/27 Electrical Characteristics TS4855 Table 5: Electrical characteristics at VCC = +3.0 V, GND = 0 V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit tds Data Setup Time- DATA 20 ns tdh Data Hold Time - DATA 20 ns tcs Clock Setup time - CLK 20 ns tch Clock Logic High Time - CLK 50 ns tcl Clock Logic Low Time - CLK 50 ns fclk Clock Frequency - CLK DC (s) 10 t c u Index of Graphics Description d o r Figure THD + N vs. Output Power MHz P e Figures 1 to 11 let Page page 10 to page 11 THD + N vs. Frequency Figures 12 to 18 page 11 to page 12 Output Power vs. Power Supply Voltage Figures 19 to 22 page 13 Figures 23 to 26 page 13 to page 14 Figures 27 to 34 page 14 to page 15 Figure 35 page 15 Figures 36 to 38 page 15 to page 16 Figures 39 to 40 page 16 Figure 39 page 16 Figure 42 page 16 Signal to Noise Ratio vs. Power Supply Voltage Figures 43 to 50 page 17 to page 18 Current Consumption vs. Power Supply Voltage Figure 51 page 18 Figures 52 to 55 page 18 to page 19 o s b Output Power vs. Load Resistor O ) PSRR vs. Frequency Mute Attenuation vs. Frequency s ( t c Frequency Response -3 dB Lower Cut Off Frequency vs. Input Capacitor u d o -3 dB Lower Cut Off Frequency vs. Gain Setting Pr Power Derating Curves e t e ol Power Dissipation vs. Output Power s b O Note: In the graphs that follow, the abbreviations Spkout = Speaker Output, and HDout = Headphone Output are used. 9/27 TS4855 Electrical Characteristics Figure 1: Spkout THD+N vs. output power (Output modes 1, 3, 5, 7) 10 RL = 4Ω BW < 125kHz Tamb = 25°C Vcc=5V F=20kHz Vcc=3V F=20kHz THD + N (%) THD + N (%) 10 Figure 4: HDout THD+N vs. output power (Output modes 2, 3 G=+6dB) 1 RL = 16Ω BW < 125kHz Tamb = 25°C Vcc=5V F=20kHz Vcc=3V F=20kHz 1 0.1 0.1 Vcc=5V F=1kHz Vcc=3V F=1kHz 1E-3 0.01 0.1 Output Power (W) 0.01 1E-3 1 Vcc=5V F=20kHz ) (s 1 t c u 0.1 0.01 1E-3 Pr 0.01 e t e ol od Vcc=3V F=1kHz Vcc=5V F=20kHz 0.1 0.01 1E-3 10/27 RL = 32Ω BW < 125kHz Tamb = 25°C 1 0.1 Vcc=3V F=1kHz 0.01 0.1 Output Power (W) 0.01 Output Power (W) 0.1 Figure 6: HDout THD+N vs. output power (Output modes 2, 3 G=+6dB) 10 Vcc=3V F=20kHz Vcc=5V F=20kHz Vcc=3V F=1kHz 0.01 1E-3 1 RL = 16Ω BW < 125kHz Tamb = 25°C 1 Vcc=3V F=20kHz 1 0.1 THD + N (%) THD + N (%) 10 s b O RL = 16Ω BW < 125kHz Tamb = 25°C Vcc=5V F=1kHz Figure 3: Spkout THD+N vs. output power (Output modes 1, 3, 5, 7) s b O 0.1 r P e Vcc=5V F=1kHz 0.1 Output Power (W) u d o t e l o THD + N (%) THD + N (%) Vcc=3V F=20kHz 0.01 Output Power (W) Figure 5: HDout THD+N vs. output power (Output modes 2, 3 G=+3dB) 10 RL = 8Ω BW < 125kHz Tamb = 25°C ) s ( ct Vcc=5V F=1kHz Figure 2: Spkout THD+N vs. output power (Output modes 1, 3, 5, 7) 10 Vcc=3V F=1kHz Vcc=5V F=20kHz Vcc=3V F=20kHz Vcc=3V F=1kHz Vcc=5V F=1kHz Vcc=5V F=1kHz 1 0.01 1E-3 0.01 Output Power (W) 0.1 Electrical Characteristics TS4855 Figure 7: HDout THD+N vs. output power (Output modes 2, 3 G=+3dB) 10 RL = 32Ω BW < 125kHz Tamb = 25°C 1 Vcc=5V F=20kHz Vcc=3V F=20kHz 0.1 Vcc=3V F=1kHz Vcc=5V F=1kHz RL = 32Ω BW < 125kHz Tamb = 25°C 1 THD + N (%) THD + N (%) 10 Figure 10: HDout THD+N vs. output power (Output modes 4, 5 G=+12dB) Vcc=5V F=20kHz Vcc=3V F=20kHz 0.1 Vcc=3V F=1kHz ) s ( ct Vcc=5V F=1kHz 0.01 Output Power (W) 0.1 Figure 8: HDout THD+N vs. output power (Output modes 4, 5 G=+12dB) THD + N (%) 10 Vcc=5V F=20kHz ) (s Vcc=3V F=20kHz t c u 0.1 Vcc=5V F=1kHz 0.01 1E-3 e t e ol od Pr Vcc=3V F=1kHz 0.01 Output Power (W) 0.1 Figure 9: HDout THD+N vs. output power (Output modes 4, 5 G=+6dB) THD + N (%) 10 RL = 16Ω BW < 125kHz Tamb = 25°C 0.1 0.1 o r P RL = 32Ω BW < 125kHz Tamb = 25°C Vcc=3V F=20kHz 1 Vcc=5V F=20kHz 0.1 Vcc=3V F=1kHz Vcc=5V F=1kHz 0.01 1E-3 0.01 Output Power (W) 0.1 Figure 12: HDout THD+N vs. frequency (Output modes 1, 3, 5, 7) Vcc=5V F=20kHz RL = 4Ω BW < 125kHz Tamb = 25°C 1 Vcc=5V P=1W Vcc=3V P=450mW Vcc=3V F=1kHz Vcc=5V F=1kHz 0.01 1E-3 s b O 10 Vcc=3V F=20kHz 1 e t e ol THD + N (%) s b O du 0.01 Output Power (W) Figure 11: HDout THD+N vs. output power (Output modes 4, 5 G=+6dB) 10 RL = 16Ω BW < 125kHz Tamb = 25°C 1 0.01 1E-3 THD + N (%) 0.01 1E-3 0.1 0.01 Output Power (W) 0.1 100 1000 Frequency (Hz) 10000 11/27 TS4855 Electrical Characteristics Figure 13: Spkout THD+N vs. frequency (Output modes 1, 3, 5, 7) 10 RL = 8Ω BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) 10 Figure 16: HDout THD+N vs. Frequency (Output modes 2, 3 G=+6dB) 1 Vcc=5V P=800mW Vcc=3V P=250mW RL = 32Ω G=+6dB BW < 125kHz Tamb = 25°C Vcc=3V, P=25mW 1 0.1 Vcc=5V, P=75mW ) s ( ct 0.1 100 1000 Frequency (Hz) 10000 Figure 14: Spout THD+N vs. frequency (Output modes 1, 3, 5, 7) ) (s 1 Vcc=5V P=500mW Vcc=3V P=180mW t c u 0.1 0.01 d o r P e 100 t e l o 1000 Frequency (Hz) 10000 Figure 15: HDout THD+N vs. frequency (Output modes 2, 3 G=+6dB) THD + N (%) 10 RL = 16Ω G=+6dB BW < 125kHz Tamb = 25°C 1 0.01 12/27 100 10000 r P e RL = 16Ω G=+12dB BW < 125kHz Tamb = 25°C Vcc=3V P=50mW 1 0.1 0.01 Vcc=5V P=150mW 100 1000 Frequency (Hz) 10000 Figure 18: HDout THD+N vs. frequency (Output modes 4, 5 G=+12dB) 10 RL = 32Ω G=+12dB BW < 125kHz Tamb = 25°C Vcc=3V, P=50mW Vcc=5V, P=150mW 0.1 s b O THD + N (%) s b O u d o 1000 Frequency (Hz) t e l o 10 RL = 16Ω BW < 125kHz Tamb = 25°C 100 Figure 17: HDout THD+N vs. frequency (Output modes 4, 5 G=+12dB) THD + N (%) THD + N (%) 10 0.01 1000 Frequency (Hz) Vcc=3V P=25mW 1 0.1 10000 0.01 Vcc=5V P=75mW 100 1000 Frequency (Hz) 10000 Electrical Characteristics TS4855 Figure 22: Headphone output power vs. power supply voltage (Output modes 2, 3, 4, 5, 6, 7) 2.0 450 F = 1kHz 1.8 BW < 125kHz 1.6 Tamb = 25°C F = 1kHz 400 BW < 125kHz Tamb = 25°C 350 Output power at 10% THD + N (W) Output power at 1% THD + N (W) Figure 19: Speaker output power vs. power supply voltage (Output modes 1, 3, 5, 7) 8Ω 4Ω 1.4 1.2 1.0 0.8 0.6 0.4 16 Ω 0.2 0.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 ) s ( ct 50 3.0 3.5 4.0 Vcc (V) 4.5 u d o t e l o )- 1.4 s ( t c 1.2 1.0 u d o 0.6 0.4 0.2 3.0 Pr 3.5 4.0 Vcc (V) 4.5 5.0 5.5 1.4 1.2 1.0 0.8 THD+N=1% 0.6 0.2 5.0 0.0 5.5 s b O 0.7 F = 1kHz 300 BW < 125kHz Tamb = 25°C 0.6 Output power (W) 16 Ω 200 150 32 Ω 4 6 8 10 12 Load Resistance (Ohm) 14 16 Figure 24: Speaker output power vs. load resistance (Output modes 1, 3, 5, 7) 350 100 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C 0.4 16 Ω Figure 21: Headphone output power vs. power supply voltage (Output modes 2, 3, 4, 5, 6, 7) 250 THD+N=10% 1.6 4Ω 0.8 s b O 1.8 8Ω 1.6 THD+N=10% 0.5 Vcc = 3V F = 1kHz BW < 125kHz Tamb = 25°C 0.4 0.3 THD+N=1% 0.2 0.1 50 0 2.5 32 Ω 100 r P e Output power (W) Output power at 10% THD + N (W) 150 2.0 2.2 F = 1kHz BW < 125kHz 2.0 Tamb = 25°C 1.8 e t e ol Output power at 1% THD + N (W) 200 Figure 23: Speaker output power vs. load resistance (Output modes 1, 3, 5, 7) 2.4 0.0 2.5 250 0 2.5 5.5 Figure 20: Speaker output power vs. power supply voltage (Output modes 1, 3, 5, 7) 16 Ω 300 0.0 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 4 6 8 10 12 Load Resistance (ohm) 14 16 13/27 TS4855 Electrical Characteristics Figure 28: Spkout PSRR vs. frequency (Output modes 2, 4, 6 input grounded) Figure 25: Headphone output power vs. load resistance (Output modes 2, 3, 4, 5, 6, 7) 0 350 300 -20 PSRR (dB) Output power (mW) 250 200 150 THD+N=1% 100 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C 50 0 16 20 24 28 32 36 40 Load Resistance (Ohm) 44 -40 Vcc=5V -50 -70 48 t(s THD+N=1% 40 c u d 20 0 16 20 24 e t e ol -20 o r P 44 Output mode 2, 3 Vcc=+5V RL = 32Ω Vripple=0.2Vpp Tamb = 25°C G=-6dB -40 G=+6dB G=0dB G=-18dB 100 1000 10000 Frequency (Hz) 100000 Figure 30: HDout PSRR vs. frequency (Output modes 2, 3 input grounded) 0 Ouput mode 1, 3, 5, 7 RL = 8Ω Vripple=0.2Vpp Tamb = 25°C -20 -10 -20 PSRR (dB) -30 -40 -50 -60 Output mode 2, 3 Vcc=+3V RL = 32Ω Vripple=0.2Vpp Tamb = 25°C G=-18dB G=-6dB -40 Vcc=5V G=+6dB G=0dB G=+3dB -50 -80 G=-40.5dB -30 -70 14/27 G=-40.5dB -30 -70 48 0 -10 -90 G=+3dB -60 Figure 27: Spkout PSRR vs. frequency (Output modes 1, 3, 5, 7 input grounded) s b O r P e -50 Vcc = 3V F = 1kHz BW < 125kHz Tamb = 25°C 28 32 36 40 Load Resistance (Ohm) 100000 t e l o s b O PSRR (dB) )- 60 1000 10000 Frequency (Hz) Figure 29: HDout PSRR vs. frequency (Output modes 2, 3 input grounded) -10 80 u d o 100 0 THD+N=10% ) s ( ct Vcc=3V -80 100 Output power (mW) -30 -60 Figure 26: Headphone output power vs. load resistance (Output modes 2, 3, 4, 5, 6, 7) PSRR (dB) Ouput mode 2, 4, 6 RL = 8Ω Vripple=0.2Vpp Tamb = 25°C -10 THD+N=10% Vcc=3V 100 1000 10000 Frequency (Hz) 100000 -60 100 1000 10000 Frequency (Hz) 100000 Electrical Characteristics Figure 31: HDout PSRR vs. frequency (Output modes 4, 5 inputs grounded) Figure 34: HDout PSRR vs. frequency (Output modes 6, 7 inputs grounded) 0 0 Output mode 4, 5 Vcc=+5V RL = 32Ω Vripple=0.2Vpp Tamb = 25°C -20 G=-34.5dB -30 G=-12dB G=0dB -40 G=+6dB G=+12dB -50 Output mode 6, 7 Vcc=+3V RL = 32Ω Vripple=0.2Vpp Tamb = 25°C -10 PSRR (dB) -10 PSRR (dB) TS4855 -20 -30 1000 10000 Frequency (Hz) 100000 Figure 32: HDout PSRR vs. frequency (Output modes 4, 5 inputs grounded) Output mode 4, 5 Vcc=+3V RL = 32Ω Vripple=0.2Vpp Tamb = 25°C 100000 r P e Figure 35: Spkout mute attenuation vs. frequency (Output modes 2, 4, 6) t e l o )- G=-34.5dB s ( t c G=-12dB -30 G=0dB -40 G=+12dB G=+9dB u d o G=+6dB -50 -60 r P e 100 t e l o -20 -30 -40 -50 -60 -70 Vcc=3V Vcc=5V -80 -90 -100 1000 10000 Frequency (Hz) 100000 Figure 33: HDout PSRR vs. frequency (Output modes 6, 7 inputs grounded) s b O s b O Ouput mode 2, 4, 6 RL = 8Ω VinPIHF=1Vrms BW < 125kHz Tamb = 25°C -10 Mute attenuation (dB) PSRR (dB) -20 0 100 1000 Frequency (Hz) 10000 Figure 36: Spkout frequency response (Output modes 1, 3, 5, 7) 12 Output mode 6, 7 Vcc=+5V RL = 32Ω Vripple=0.2Vpp Tamb = 25°C G1=-40.5dB G2=-34.5dB G1=+3dB G2=+9dB G1=-18dB G2=-12dB -30 G1=+6dB G2=+12dB 10 Output level (dB) PSRR (dB) 1000 10000 Frequency (Hz) 0 -10 G1=-6dB G1=0dB G2=0dB G2=+6dB 8 Vcc=3V Vcc=5V 6 Ouput mode 1, 3, 5, 7 RL = 8Ω Cin=220nF VinPIHF=0.2Vrms BW < 125kHz Tamb = 25°C 4 2 -50 -60 u d o 100 0 -40 ) s ( ct -50 100 -20 G1=-18dB G2=-12dB G=+9dB -60 -10 G1=+3dB G2=+9dB G1=-6dB G1=0dB G2=0dB G2=+6dB G1=+6dB G2=+12dB -40 G1=-40.5dB G2=-34.5dB 100 1000 10000 Frequency (Hz) 100000 0 20 100 1000 Frequency (Hz) 10000 15/27 TS4855 Electrical Characteristics Figure 37: HDout frequency response (Output modes 2, 3 G=+6dB) Figure 40: HDout -3dB lower cut-off frequency vs. input capacitor (Output modes 2, 3, 4, 5, 6, 7) 6 Output level (dB) 5 Vcc=5V Vcc=3V 4 3 Ouput mode 2, 3 RL = 32Ω Cin=220nF VinPHS=0.2Vrms G=+6dB BW < 125kHz Tamb = 25°C 2 1 0 20 100 1000 Frequency (Hz) Lower -3dB Cut Off Frequency (Hz) 40 Figure 38: HDout frequency response (Output modes 4, 5 G=+12dB) Vcc=3V 8 )- 6 Ouput mode 4, 5 RL = 32Ω Cin=220nF VinR/L=0.2Vrms G=+12dB BW < 125kHz Tamb = 25°C s ( t c 4 0 20 u d o 100 e t e ol Pr 1000 Frequency (Hz) Lower -3dB Cut Off Frequency (Hz) Output level (dB) Vcc=5V 2 Maximum Input Impedance 10 0.2 0.3 10000 Phone In IHF Input Tamb=25°C Typical Input Impedance Minimum Input Impedance 60 Maximum Input Impedance 40 20 0.2 0.3 0.4 0.5 0.6 0.7 Input Capacitor ( F) 0.8 u d o 0.9 1.0 t e l o Cin=100nF Cin=220nF 10 Cin=1µF Cin=470nF -20 -36 0 -6 12 6 Gain Setting (dB) 100 80 0.4 0.5 0.6 0.7 Input Capacitor ( F) Phone In Hs / Rin & Lin Inputs Tamb=25°C 1 -34.5 -40.5 0.8 0.9 1.0 Figure 42: Power derating curves Flip-Chip Package Power Dissipation (W) s b O ) s ( ct r P e s b O Figure 39: Spkout -3dB lower cut off freq. vs. input capacitor (Output modes 1, 3, 5, 7) Lower -3dB Cut Off Frequency (Hz) 20 100 10 16/27 Minimum Input Impedance Figure 41: HDout -3dB lower cut-off freq. vs. gain setting (Output modes 2, 3, 4, 5, 6, 7) 12 0 0.1 30 0 0.1 10000 Phone In HS Input Rin & Lin Inputs All gain setting Tamb=25°C Typical Input Impedance 1.4 1.2 Heat sink surface = 125mm 2 1.0 0.8 0.6 0.4 No Heat sink 0.2 0.0 0 25 50 75 100 Ambiant Temperature ( C) 125 150 Electrical Characteristics TS4855 Figure 43: Spkout SNR vs. power supply voltage, unweighted filter, BW = 20 Hz to 20 kHz Figure 46: HDout SNR vs. power supply voltage, weighted filter A, BW=20Hz to 20kHz 110 100 Vcc = 3V Vcc = 5V RL=8Ω Unweighted filter (20Hz to 20kHz) THD + N < 0.7% Tamb = 25°C 108 106 102 96 94 SNR (dB) SNR (dB) 104 100 98 88 86 84 92 82 90 80 2 3 4 5 Output Mode 6 7 106 ) (s 104 t c u 102 100 98 96 1 2 e t e ol od Pr 3 4 5 Output Mode 7 r P e 86 82 7 1 2 3 4 5 Output Mode 6 7 Figure 48: HDout SNR vs. power supply voltage, weighted filter A, BW = 20 Hz to 20 kHz 100 100 96 94 92 90 88 98 Vcc = 3V Vcc = 5V RL = 32Ω 94 G=+12dB Weighted filter A 92 (20Hz to 20kHz) 90 THD + N < 0.7% Tamb = 25°C 88 96 SNR (dB) Vcc = 3V Vcc = 5V RL = 32Ω G=+6dB Unweighted filter (20Hz to 20kHz) THD + N < 0.7% Tamb = 25°C 98 86 86 84 84 82 82 80 6 84 Figure 45: HDout SNR vs. power supply voltage, unweighted filter, BW= 20 Hz to 20 kHz s b O u d o 4 5 Output Mode s b O 96 80 6 3 Vcc = 3V Vcc = 5V RL = 32Ω 94 G=+12dB Unweighted filter 92 (20Hz to 20kHz) 90 THD + N < 0.7% Tamb = 25°C 88 98 SNR (dB) Vcc = 3V Vcc = 5V RL=8Ω Weighted filter A (20Hz to 20kHz) THD + N < 0.7% Tamb = 25°C 2 t e l o 100 108 1 ) s ( ct Figure 47: HDout SNR vs. Power supply voltage, unweighted filter, BW=20Hz to 20kHz 110 SNR (dB) 90 94 Figure 44: Spkout SNR vs. power supply voltage, weighted filter A, BW = 20 Hz to 20 kHz SNR (dB) 92 96 1 Vcc = 3V Vcc = 5V RL = 32Ω G=+6dB Weighted filter A (20Hz to 20kHz) THD + N < 0.7% Tamb = 25°C 98 80 1 2 3 4 5 Output Mode 6 7 1 2 3 4 5 Output Mode 6 7 17/27 TS4855 Electrical Characteristics Figure 49: HDout SNR vs. power supply voltage, unweighted filter, BW = 20 Hz to 20 kHz) Figure 52: Power dissipation vs. output power: speaker output 1.4 100 96 94 SNR (dB) 92 90 Vcc = 3V Vcc = 5V RL = 32Ω G=+6dB and +12dB Unweighted filter (20Hz to 20kHz) THD + N < 0.7% Tamb = 25°C Power Dissipation (W) 98 88 86 84 1 2 3 4 5 Output Mode 6 )- s ( t c u d o 84 r P e 82 1 2 3 t e l o 9 4 5 Output Mode 6 1.6 Output mode 2 to 7 RL=8Ω and 2x32Ω 5 4 Output mode 1 RL=8Ω 1 2.0 0.3 0.2 RL=8Ω 0.1 0.1 0.2 0.3 0.4 0.5 Figure 54: Power dissipation vs. output power. headphone output one channel 0.4 Output mode 2 to 7 no loads 2 RL=4Ω Output Power (W) Power Dissipation (W) Icc (mA) s b O 7 3 18/27 1.4 u d o t e l o Tamb = 25°C 7 0 1.5 0.8 1.0 1.2 Output Power (W) RL=16Ω 8 6 0.6 r P e 0.0 0.0 Figure 51: Current consumption vs. power supply voltage 10 0.4 Vcc=3V F=1kHz 0.4 THD+N
TS4855EIJT 价格&库存

很抱歉,暂时无法提供与“TS4855EIJT”相匹配的价格&库存,您可以联系我们找货

免费人工找货