0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS487

TS487

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    TS487 - 100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY MODE - STMicroelectronics

  • 数据手册
  • 价格&库存
TS487 数据手册
TS486 TS487 100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY MODE s OPERATING FROM Vcc=2V to 5.5V s STANDBY MODE ACTIVE LOW (TS486) or s OUTPUT POWER: 102mW @5V, 38mW HIGH (TS487) @3.3V into 16Ω with 0.1% THD+N max (1kHz) PIN CONNECTIONS (top view) TS486IDT: SO8, TS486IST, TS486-1IST, TS486-2IST, TS486-4IST: MiniSO8 s LOW CURRENT CONSUMPTION: 2.5mA max s High Signal-to-Noise ratio: 103dB(A) at 5V s High Crosstalk immunity: 83dB (F=1kHz) s PSRR: 58 dB (F=1kHz), inputs grounded s ON/OFF click reduction circuitry s Unity-Gain Stable s SHORT CIRCUIT LIMITATION s Available in SO8, MiniSO8 & DFN 3x3mm DESCRIPTION The TS486/7 is a dual audio power amplifier capable of driving, in single-ended mode, either a 16 or a 32Ω stereo headset. Capable of descending to low voltages, it delivers up to 90mW per channel (into 16Ω loads) of continuous average power with 0.3% THD+N in the audio bandwitdth from a 5V power supply. An externally-controlled standby mode reduces the supply current to 10nA (typ.). The unity gain stable TS486/7 can be configured by external gain-setting resistors or used in a fixed gain version. APPLICATIONS OUT (1) VIN (1) BYPASS GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN (2) SHUTDOWN TS486-IQT, TS486-1IQT, TS486-2IQT, TS486-4IQT: DFN8 OUT (1) 1 2 3 4 8 7 6 5 Vcc OUT (2) VIN (2) SHUTDOWN VIN (1) BYPASS GND TS487IDT: SO8, TS487IST, TS487-1IST, TS487-2IST, TS487-4IST: MiniSO8 s Headphone Amplifier s Mobile phone, PDA, computer motherboard s High end TV, portable audio player ORDER CODE Part Temperature Package Number Range: I DSQ TS486 TS487 TS486 TS486-1 TS486-2 TS486-4 TS487 TS487-1 TS487-2 TS487-4 • • • tba tba tba • tba tba tba • tba tba tba • tba tba tba Gain Marking OUT (1) VIN (1) BYPASS GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN (2) SHUTDOWN -40, +85°C external TS486I external TS487I external K86A x1/0dB K86B x2/6dB K86C x4/12dB K86D external K87A x1/0dB K87B x2/6dB K87C x4/12dB K87D TS487-IQT, TS487-1IQT, TS487-2IQT, TS487-4IQT: DFN8 OUT (1) VIN (1) BYPASS GND 1 2 3 4 8 7 6 5 Vcc OUT ( 2) VIN (2) SHUTDOWN MiniSO & DFN only available in Tape & Reel with T suffix, SO is available in Tube (D) and in Tape & Reel (DT) June 2003 1/31 TS486-TS487 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vi Tstg Tj Rthja Supply voltage Input Voltage Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 Power Dissipation 2) SO8 MiniSO8 DFN8 1) Parameter Value 6 -0.3v to VCC +0.3v -65 to +150 150 175 215 70 0.71 0.58 1.79 1.5 100 200 250 continous 4) Unit V V °C °C °C/W Pd W Human Body Model (pin to pin): TS486, TS4873) ESD Machine Model - 220pF - 240pF (pin to pin) Latch-up Latch-up Immunity (All pins) Lead Temperature (soldering, 10sec) ESD Output Short-Circuit to Vcc or GND 1. All voltage values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C. kV V mA °C 3. TS487 stands 1.5KV on all pins except standby pin which stands 1KV. 4. Attention must be paid to continous power dissipation (VDD x 300mA). Exposure of the IC to a short circuit for an extended time period is dramatically reducing product life expectancy. OPERATING CONDITIONS Symbol VCC RL Toper CL Supply Voltage Load Resistor Operating Free Air Temperature Range Load Capacitor RL = 16 to 100Ω RL > 100Ω Standby Voltage Input TS486 ACTIVE / TS487 in STANDBY TS486 in STANDBY / TS487 ACTIVE Parameter Value 2 to 5.5 ≥ 16 -40 to + 85 400 100 1.5 ≤ VSTB ≤ VCC GND ≤ VSTB ≤ 0.4 1) Unit V Ω °C pF VSTB V 1. Thermal Resistance Junction to Ambient SO8 150 RTHJA MiniSO8 190 41 DFN82) The minimum current consumption (ISTANDBY) is guaranteed at GND (TS486) or VCC (TS487) for the whole temperature range. When mounted on a 4-layer PCB. °C/W 2. 2/31 TS486-TS487 FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS VCC from +5V to +2V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol RIN 1,2 Input Resistance 1) Gain value for Gain TS486/TS487-1 G Gain value for Gain TS486/TS487-2 Gain value for Gain TS486/TS487-4 1. See figure 30 to establish the value of Cin vs. -3dB cut off frequency. Parameter Min. Typ. 20 0dB 6dB 12dB Max. Unit kΩ dB APPLICATION COMPONENTS INFORMATION Components RIN1,2 CIN1,2 RFEED1,2 CS CB COUT1,2 Functional Description Inverting input resistor which sets the closed loop gain in conjunction with RFEED. This resistor also forms a high pass filter with CIN (fc = 1 / (2 x Pi x RIN x CIN)) . Not needed in fixed gain versions. Input coupling capacitor which blocks the DC voltage at the amplifier’s input terminal. Feedback resistor which sets the closed loop gain in conjunction with RIN. AV= Closed Loop Gain= -RFEED/RIN. Not needed in fixed gain versions. Supply Bypass capacitor which provides power supply filtering. Bypass capacitor which provides half supply filtering. Output coupling capacitor which blocks the DC voltage at the load input terminal. This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x COUT )). TYPICAL APPLICATION SCHEMATICS 3/31 TS486-TS487 ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS486, RL=32Ω No input signal, VSTANDBY=Vcc for TS487, RL=32Ω Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) 1) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω Min. Typ. 1.8 10 1 90 200 Max. 2.5 1000 Unit mA ISTANDBY VIO IIB nA mV nA PO 60 95 64 65 102 108 mW THD + N Total Harmonic Distortion + Noise (Av=-1) RL = 32Ω, Pout = 60mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 90mW, 20Hz ≤ F ≤ 20kHz Power Supply Rejection Ratio, inputs grounded 2) (Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp Max Output Current THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2 Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω Signal-to-Noise Ratio (A weighted, Av=-1) 2) (RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz) Channel Separation, RL = 32Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32Ω) Slew Rate, Unity Gain Inverting (RL = 16Ω) 53 106 0.3 0.3 58 115 % PSRR IO dB mA VO 4.45 4.2 80 0.45 4.52 0.6 4.35 103 0.5 V 0.7 SNR dB Crosstalk 83 79 80 72 1 1.1 0.4 dB CI GBP SR pF MHz V/µs 1. Only for external gain version. 2. Guaranteed by design and evaluation. 4/31 TS486-TS487 ELECTRICAL CHARACTERISTICS VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) 1) Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS486, RL=32Ω No input signal, VSTANDBY=Vcc for TS487, RL=32Ω Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) 2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω Min. Typ. 1.8 10 1 90 200 Max. 2.5 1000 Unit mA ISTANDBY VIO IIB nA mV nA PO 23 36 26 28 38 42 mW THD + N Total Harmonic Distortion + Noise (Av=-1) RL = 32Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 35mW, 20Hz ≤ F ≤ 20kHz Power Supply Rejection Ratio, inputs grounded 3) (Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp Max Output Current THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2 Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω Signal-to-Noise Ratio (A weighted, Av=-1) 3) (RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz) Channel Separation, RL = 32Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32Ω) Slew Rate, Unity Gain Inverting (RL = 16Ω) 53 64 0.3 0.3 58 75 % PSRR IO dB mA VO 2.85 2.68 80 0.3 3 0.45 2.85 98 0.38 V 0.52 SNR dB Crosstalk 80 76 77 69 1 1.1 0.4 dB CI GBP SR 1. pF MHz V/µs All electrical values are guaranted with correlation measurements at 2V and 5V. 2. 3. Only for external gain version. Guaranteed by design and evaluation. 5/31 TS486-TS487 ELECTRICAL CHARACTERISTICS VCC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified)1) Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, No input signal, VSTANDBY=GND for TS486, RL=32Ω VSTANDBY=Vcc for TS487, RL=32Ω Min. Typ. 1.7 10 1 90 200 Max. 2.5 1000 Unit mA ISTANDBY VIO IIB nA mV nA Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) 2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω PO 12.5 17.5 13 14 21 22 mW THD + N Total Harmonic Distortion + Noise (Av=-1) RL = 32Ω, Pout = 10mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz Power Supply Rejection Ratio, inputs grounded 3) (Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp Max Output Current THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2 Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω Signal-to-Noise Ratio (A weighted, Av=-1) 3) (RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz) Channel Separation, RL = 32Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32Ω) Slew Rate, Unity Gain Inverting (RL = 16Ω) 53 45 0.3 0.3 58 56 % PSRR IO dB mA VO 2.14 1.97 80 0.25 2.25 0.35 2.15 95 0.32 V 0.45 SNR dB Crosstalk 80 76 77 69 1 1.1 0.4 dB CI GBP SR 1. pF MHz V/µs All electrical values are guaranted with correlation measurements at 2V and 5V. 2. 3. Only for external gain version. Guaranteed by design and evaluation. 6/31 TS486-TS487 ELECTRICAL CHARACTERISTICS VCC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS486, RL=32Ω No input signal, VSTANDBY=Vcc for TS487, RL=32Ω Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) 1) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.3% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω Min. Typ. 1.7 10 1 90 200 Max. 2.5 1000 Unit mA ISTANDBY VIO IIB nA mV nA PO 7 9.5 8 9 12 13 mW THD + N Total Harmonic Distortion + Noise (Av=-1) RL = 32Ω, Pout = 6.5mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 8mW, 20Hz ≤ F ≤ 20kHz Power Supply Rejection Ratio, inputs grounded 2) (Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp Max Output Current THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2 Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω Signal-to-Noise Ratio (A weighted, Av=-1) 2) (RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz) Channel Separation, RL = 32Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32Ω) Slew Rate, Unity Gain Inverting (RL = 16Ω) 52 33 0.3 0.3 57 41 % PSRR IO dB mA VO 1.67 1.53 80 0.24 1.73 0.33 1.63 93 0.29 V 0.41 SNR dB Crosstalk 80 76 77 69 1 1.1 0.4 dB CI GBP SR pF MHz V/µs 1. Only for external gain version. 2. Guaranteed by design and evaluation. 7/31 TS486-TS487 Index of Graphs Description Common Curves Open Loop Gain and Phase vs Frequency Current Consumption vs Power Supply Voltage Current Consumption vs Standby Voltage Output Power vs Power Supply Voltage Output Power vs Load Resistor Power Dissipation vs Output Power Power Derating vs Ambiant Temperature Output Voltage Swing vs Supply Voltage Low Frequency Cut Off vs Input Capacitor for fixed gain versions Curves With 0dB Gain Setting (Av=-1) THD + N vs Output Power THD + N vs Frequency Crosstalk vs Frequency Signal to Noise Ratio vs Power Supply Voltage PSRR vs Frequency Curves With 6dB Gain Setting (Av=-2) THD + N vs Output Power THD + N vs Frequency Crosstalk vs Frequency Signal to Noise Ratio vs Power Supply Voltage PSRR vs Frequency Curves With 12dB Gain Setting (Av=-4) THD + N vs Output Power THD + N vs Frequency Crosstalk vs Frequency Signal to Noise Ratio vs Power Supply Voltage PSRR vs Frequency 80 to 88 89 to 91 92 to 95 96 to 97 98 to 102 22 to 24 24 24 25 26 57 to 65 66 to 68 69 to 72 73 to 74 75 to 79 19 to 20 20 21 21 22 31 to 39 40 to 42 43 to 48 49 to 50 51 to 56 14 to 15 15 16 17 17 to 18 1 to 10 11 12 to 17 18 to19 20 to 23 24 to 27 28 29 30 9 to 10 10 10 to 11 11 to 12 12 12 to 13 13 13 13 Figure Page 8/31 TS486-TS487 Fig. 1: Open Loop Gain and Phase vs Frequency 180 80 Gain 60 Gain (dB) Fig. 2: Open Loop Gain and Phase vs Frequency 180 80 Gain 60 Phase (Deg) Gain (dB) Vcc = 5V ZL = 16Ω Tamb = 25°C 160 140 120 Vcc = 5V ZL = 16Ω+400pF Tamb = 25°C 160 140 120 100 100 Phase 80 60 Phase 20 0 -20 -40 0.1 20 0 -20 -40 0.1 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 Fig. 3: Open Loop Gain and Phase vs Frequency 180 80 Gain 60 Gain (dB) Fig. 4: Open Loop Gain and Phase vs Frequency 180 80 Gain 60 Phase (Deg) Gain (dB) Vcc = 2V ZL = 16Ω Tamb = 25°C 160 140 120 Vcc = 2V ZL = 16Ω+400pF Tamb = 25°C 160 140 120 100 100 Phase 80 60 Phase 20 0 -20 -40 0.1 20 0 -20 -40 0.1 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 Fig. 5: Open Loop Gain and Phase vs Frequency 180 80 Gain 60 Gain (dB) Fig. 6: Open Loop Gain and Phase vs Frequency 180 80 Gain 60 Phase (Deg) Gain (dB) Vcc = 5V ZL = 32Ω Tamb = 25°C 160 140 120 Vcc = 5V ZL = 32Ω+400pF Tamb = 25°C 160 140 120 100 Phase (Deg) 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 40 20 0 -20 -40 0.1 Phase 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 9/31 Phase (Deg) 40 40 Phase (Deg) 40 40 TS486-TS487 Fig. 7: Open Loop Gain and Phase vs Frequency 180 80 Gain 60 Gain (dB) Fig. 8: Open Loop Gain and Phase vs Frequency 180 80 Gain 60 Phase (Deg) Gain (dB) Vcc = 2V ZL = 32Ω Tamb = 25°C 160 140 120 Vcc = 2V ZL = 32Ω+400pF Tamb = 25°C 160 140 120 100 Phase (Deg) Phase (Deg) 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 40 20 0 -20 -40 0.1 Phase 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 Fig. 9: Open Loop Gain and Phase vs Frequency 180 80 60 Gain (dB) Fig. 10: Open Loop Gain and Phase vs Frequency 180 80 60 Phase (Deg) Gain (dB) Gain Vcc = 5V RL = 600Ω Tamb = 25°C 160 140 120 Gain Vcc = 2V RL = 600Ω Tamb = 25°C 160 140 120 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 Fig. 11: Current Consumption vs Power Supply Voltage 2.0 No load Fig. 12: Current Consumption vs Standby Voltage 2.0 Current Consumption (mA) Current Consumption (mA) Ta=85°C 1.5 Ta=25°C Ta=-40°C 1.5 Ta=85°C Ta=25°C 1.0 1.0 Ta=-40°C 0.5 0.5 TS486 Vcc = 5V No load 0.0 0 1 2 3 4 5 0.0 0 1 2 3 4 5 Power Supply Voltage (V) Standby Voltage (V) 10/31 TS486-TS487 Fig. 13: Current Consumption vs Standby Voltage 2.0 Fig. 14: Current Consumption vs Standby Voltage 2.0 Ta=85°C Current Consumption (mA) 1.5 Ta=85°C Ta=25°C 1.0 Ta=-40°C 0.5 TS486 Vcc = 3.3V No load 0.0 0 1 2 Standby Voltage (V) 3 Current Consumption (mA) 1.5 Ta=25°C 1.0 0.5 Ta=-40°C TS486 Vcc = 2V No load 0.0 0 1 Standby Voltage (V) 2 Fig. 15: Current Consumption vs Standby Voltage 2.5 Ta=85°C Current Consumption (mA) 2.0 Ta=25°C Fig. 16: Current Consumption vs Standby Voltage 2.0 Ta=25°C Current Consumption (mA) 1.5 Ta=85°C 1.0 Ta=-40°C 1.5 1.0 Ta=-40°C 0.5 TS487 Vcc = 3.3V No load 0.0 0 1 2 Standby Voltage (V) 3 0.5 TS487 Vcc = 5V No load 0 1 2 3 4 5 0.0 Standby Voltage (V) Fig. 17: Current Consumption vs Standby Voltage 2.0 Ta=85°C Current Consumption (mA) 1.5 Fig. 18: Output Power vs Power Supply Voltage 200 175 150 Output power (mW) RL = 16Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% THD+N=1% Ta=25°C 1.0 125 100 75 50 0.5 Ta=-40°C TS487 Vcc = 2V No load THD+N=0.1% 25 2 0.0 0 1 Standby Voltage (V) 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 11/31 TS486-TS487 Fig. 19: Output Power vs Power Supply Voltage Fig. 20: Output Power vs Load Resistor 100 Output power (mW) Output power (mW) RL = 32Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% 200 180 THD+N=1% 160 140 120 100 80 60 40 20 THD+N=0.1% THD+N=10% THD+N=1% Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C 75 50 25 THD+N=0.1% 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 0 8 16 24 32 40 48 Load Resistance ( ) 56 64 Fig. 21: Output Power vs Load Resistor Fig. 22: Output Power vs Load Resistor 50 70 60 THD+N=1% Output power (mW) Output power (mW) Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C 45 40 35 30 25 20 15 10 5 THD+N=0.1% 8 16 24 32 40 48 Load Resistance ( ) THD+N=1% 50 40 THD+N=10% 30 20 10 0 THD+N=0.1% Vcc = 2.5V F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% 8 16 24 32 40 48 Load Resistance ( ) 56 64 0 56 64 Fig. 23: Output Power vs Load Resistor Fig. 24: Power Dissipation vs Output Power 25 Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25°C 20 Output power (mW) THD+N=1% 15 Power Dissipation (mW) Vcc=5V 80 F=1kHz THD+N= 16Ω Tamb = 25°C 17/31 TS486-TS487 Fig. 55: PSRR vs Output Capacitor Fig. 56: PSRR vs Power Supply Voltage 0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 -80 100 1000 10000 Frequency (Hz) 100000 Cout = 100µF Cout = 470µF Vripple = 200mVpp Av = -1, Vcc = 5V Input = grounded Cb = 1µF, RL = 32Ω RL >= 16Ω Tamb = 25°C 0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 -80 Vcc = 5V, 3.3V & 2.5V Vripple = 200mVpp Av = -1 Input = floating Cb = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V 100 1000 10000 Frequency (Hz) 100000 18/31 TS486-TS487 Fig. 57: THD + N vs Output Power Fig. 58: THD + N vs Output Power 10 RL = 16Ω F = 20Hz Av = -2 1 Cb = 1µF BW < 22kHz Tamb = 25°C 10 RL = 32Ω F = 20Hz Av = -2 1 Cb = 1µF BW < 22kHz Tamb = 25°C Vcc=2V THD + N (%) Vcc=2V 0.1 THD + N (%) Vcc=2.5V 0.1 Vcc=2.5V 0.01 1 Vcc=3.3V Vcc=5V 0.01 100 1 Vcc=3.3V Vcc=5V 10 Output Power (mW) 10 Output Power (mW) 100 Fig. 59: THD + N vs Output Power Fig. 60: THD + N vs Output Power 10 10 RL = 600Ω, F = 20Hz Av = -2, Cb = 1µF BW < 22kHz Tamb = 25°C Vcc=2V Vcc=2.5V Vcc=3.3V 1 THD + N (%) THD + N (%) RL = 16Ω F = 1kHz Av = -2 1 Cb = 1µF BW < 125kHz Tamb = 25°C Vcc=2V 0.1 Vcc=5V 0.1 Vcc=2.5V 0.01 0.01 1E-3 0.01 0.1 Output Voltage (Vrms) 1 1 Vcc=3.3V Vcc=5V 10 Output Power (mW) 100 Fig. 61: THD + N vs Output Power 10 RL = 32Ω F = 1kHz Av = -2 1 Cb = 1µF BW < 125kHz Tamb = 25°C Vcc=2V Vcc=2.5V Fig. 62: THD + N vs Output Power 10 Vcc=2V 1 Vcc=2.5V THD + N (%) THD + N (%) Vcc=3.3V 0.1 Vcc=5V 0.1 0.01 0.01 1 Vcc=3.3V Vcc=5V RL = 600Ω, F = 1kHz Av = -2, Cb = 1µF BW < 125kHz, Tamb = 25°C 0.1 Output Voltage (Vrms) 1 10 Output Power (mW) 100 1E-3 0.01 19/31 TS486-TS487 Fig. 63: THD + N vs Output Power Fig. 64: THD + N vs Output Power 10 RL = 16Ω F = 20kHz Av = -2 Cb = 1µF BW < 125kHz 1 Tamb = 25°C 10 RL = 32Ω F = 20kHz Av = -2 Cb = 1µF BW < 125kHz 1 Tamb = 25°C Vcc=2V THD + N (%) Vcc=2V Vcc=2.5V 0.1 Vcc=3.3V Vcc=5V Vcc=2.5V Vcc=3.3V Vcc=5V 1 10 Output Power (mW) 100 THD + N (%) 0.1 1 10 Output Power (mW) 100 Fig. 65: THD + N vs Output Power Fig. 66: THD + N vs Frequency 10 Vcc=2V 1 Vcc=2.5V RL=16Ω Av=-2 Cb = 1µF Bw < 125kHz Tamb = 25°C THD + N (%) 0.1 0.01 RL = 600Ω, F = 20kHz Av = -2, Cb = 1µF BW < 125kHz, Tamb = 25°C 1E-3 0.01 Vcc=3.3V Vcc=5V Vcc=5V, Po=85mW THD + N (%) 0.1 Vcc=2V, Po=7.5mW 0.01 0.1 Output Voltage (Vrms) 1 20 100 1000 Frequency (Hz) 10000 20k Fig. 67: THD + N vs Frequency Fig. 68: THD + N vs Frequency THD + N (%) THD + N (%) RL=32Ω Av=-2 Cb = 1µF Bw < 125kHz 0.1 Tamb=25°C RL=600Ω Av=-2 Cb = 1µF 0.1 Bw < 125kHz Tamb = 25°C Vcc=5V, Vo=1.3Vrms Vcc=2V, Vo=0.5Vrms Vcc=2V, Po=6mW 0.01 0.01 Vcc=5V, Po=55mW 20 100 1000 Frequency (Hz) 10000 20k 1E-3 20 100 1000 Frequency (Hz) 10000 20k 20/31 TS486-TS487 Fig. 69: Crosstalk vs Frequency Fig. 70: Crosstalk vs Frequency 80 ChB to ChA 80 ChB to ChA Crosstalk (dB) ChA to ChB 40 RL=16Ω Vcc=5V Pout=85mW Av=-2 Cb = 1µF Bw < 125kHz Tamb=25°C 20 100 1000 Frequency (Hz) 10000 20k Crosstalk (dB) 60 60 ChA to ChB RL=16Ω Vcc=2V Pout=7.5mW Av=-2 Cb = 1µF Bw < 125kHz Tamb=25°C 20 100 1000 Frequency (Hz) 10000 20k 40 20 20 0 0 Fig. 71: Crosstalk vs Frequency Fig. 72: Crosstalk vs Frequency 80 80 60 Crosstalk (dB) 60 ChA to ChB ChB to ChA 40 RL=32Ω Vcc=5V Pout=55mW Av=-2 Cb = 1µF Bw < 125kHz Tamb=25°C 20 100 1000 Frequency (Hz) 10000 20k ChA to ChB ChB to ChA Crosstalk (dB) 40 20 20 RL=32Ω Vcc=2V Pout=6mW Av=-2 Cb = 1µF Bw < 125kHz Tamb=25°C 20 100 1000 Frequency (Hz) 10000 20k 0 0 Fig. 73: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) 100 98 Signal to Noise Ratio (dB) Fig. 74: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A 104 102 Signal to Noise Ratio (dB) 96 94 92 90 88 86 84 Av = -2 Cb = 1µF THD+N < 0.4% Tamb = 25°C RL=600Ω 100 98 96 94 92 90 88 86 84 Av = -2 Cb = 1µF THD+N < 0.4% Tamb = 25°C RL=600Ω RL=32Ω RL=32Ω RL=16Ω RL=16Ω 82 2.0 2.5 3.0 3.5 4.0 4.5 5.0 82 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Power Supply Voltage (V) Power Supply Voltage (V) 21/31 TS486-TS487 Fig. 75: PSRR vs Power Supply Voltage Fig. 76: PSRR vs Bypass Capacitor 0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V -70 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = -2 Input = grounded Cb = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V 0 -10 -20 PSRR (dB) -30 -40 Cb = 1µF -50 -60 Cb = 4.7µF -70 100 Cb = 2.2µF 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = -2 Input = grounded Vcc = 5V RL >= 16Ω Tamb = 25°C Fig. 77: PSRR vs Input Capacitor Fig. 78: PSRR vs Output Capacitor 0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 Cin = 100nF Cin = 1µF, 220nF Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20kΩ RL >= 16Ω Tamb = 25°C 0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 Cout = 220µF Cout = 470µF Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1µF, RL = 16Ω RL >= 16Ω Tamb = 25°C 100 1000 10000 Frequency (Hz) 100000 100 1000 10000 Frequency (Hz) 100000 Fig. 79: PSRR vs Output Capacitor Fig. 80: THD + N vs Output Power 10 0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 Cout = 100µF Cout = 470µF Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1µF, RL = 32Ω RL >= 16Ω Tamb = 25°C THD + N (%) RL = 16Ω F = 20Hz Av = -4 Cb = 1µF 1 BW < 22kHz Tamb = 25°C Vcc=2V Vcc=2.5V 0.1 Vcc=3.3V Vcc=5V 0.01 100 1000 10000 Frequency (Hz) 100000 1 10 Output Power (mW) 100 22/31 TS486-TS487 Fig. 81: THD + N vs Output Power 10 RL = 32Ω F = 20Hz Av = -4 Cb = 1µF 1 BW < 22kHz Tamb = 25°C Vcc=2V Fig. 82: THD + N vs Output Power 10 RL = 600Ω, F = 20Hz Av = -4, Cb = 1µF BW < 22kHz Tamb = 25°C Vcc=2V Vcc=2.5V Vcc=3.3V 1 THD + N (%) THD + N (%) 0.1 Vcc=5V 0.1 Vcc=2.5V 0.01 0.01 Vcc=3.3V Vcc=5V 1 10 Output Power (mW) 100 1E-3 0.01 0.1 Output Voltage (Vrms) 1 Fig. 83: THD + N vs Output Power 10 RL = 16Ω F = 1kHz Av = -4 Cb = 1µF 1 BW < 125kHz Tamb = 25°C Fig. 84: THD + N vs Output Power 10 RL = 32Ω F = 1kHz Av = -4 Cb = 1µF 1 BW < 125kHz Tamb = 25°C Vcc=2V THD + N (%) Vcc=2V Vcc=2.5V 0.1 THD + N (%) 0.1 Vcc=2.5V Vcc=3.3V Vcc=5V Vcc=3.3V Vcc=5V 0.01 1 10 Output Power (mW) 100 0.01 1 10 Output Power (mW) 100 Fig. 85: THD + N vs Output Power 10 Vcc=2V Fig. 86: THD + N vs Output Power 10 RL = 16Ω F = 20kHz Av = -4 Cb = 1µF BW < 125kHz Tamb = 25°C 1 Vcc=2.5V 1 THD + N (%) THD + N (%) Vcc=2.5V Vcc=3.3V 0.1 Vcc=2V 0.01 RL = 600Ω, F = 1kHz Av = -4, Cb = 1µF BW < 125kHz, Tamb = 25°C 1E-3 0.01 Vcc=5V Vcc=3.3V Vcc=5V 0.1 Output Voltage (Vrms) 1 0.1 1 10 Output Power (mW) 100 23/31 TS486-TS487 Fig. 87: THD + N vs Output Power 10 RL = 32Ω F = 20kHz Av = -4 Cb = 1µF BW < 125kHz Tamb = 25°C 1 Vcc=2V Vcc=2.5V Fig. 88: THD + N vs Output Power 10 Vcc=2V 1 Vcc=2.5V THD + N (%) THD + N (%) 0.1 0.01 RL = 600Ω, F = 20kHz Av = -4, Cb = 1µF BW < 125kHz, Tamb = 25°C 100 1E-3 0.01 Vcc=3.3V Vcc=5V 0.1 Vcc=3.3V Vcc=5V 1 10 Output Power (mW) 0.1 Output Voltage (Vrms) 1 Fig. 89: THD + N vs Frequency Fig. 90: THD + N vs Frequency THD + N (%) THD + N (%) RL=16Ω Av=-4 Cb = 1µF Bw < 125kHz Tamb = 25°C Vcc=2V, Po=7.5mW RL=32Ω Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C 0.1 Vcc=2V, Po=6mW 0.1 Vcc=5V, Po=85mW Vcc=5V, Po=55mW 0.01 20 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k Fig. 91: THD + N vs Frequency Fig. 92: Crosstalk vs Frequency 80 ChB to ChA THD + N (%) RL=600Ω Av=-4 Cb = 1µF 0.1 Bw < 125kHz Tamb = 25°C Vcc=2V, Vo=0.5Vrms 60 Crosstalk (dB) ChA to ChB 40 RL=16Ω Vcc=5V Pout=85mW Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C 20 100 1000 Frequency (Hz) 10000 20k 0.01 20 Vcc=5V, Vo=1.3Vrms 1E-3 20 100 1000 Frequency (Hz) 10000 20k 0 24/31 TS486-TS487 Fig. 93: Crosstalk vs Frequency 80 ChB to ChA 80 Fig. 94: Crosstalk vs Frequency 60 Crosstalk (dB) Crosstalk (dB) ChA to ChB 40 RL=16Ω Vcc=2V Pout=7.5mW Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C 20 100 1000 Frequency (Hz) 10000 20k 60 ChA to ChB ChB to ChA 40 RL=32Ω Vcc=5V Pout=55mW Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C 20 100 1000 Frequency (Hz) 10000 20k 20 20 0 0 Fig. 95: Crosstalk vs Frequency Fig. 96: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) 100 Av = -4 Cb = 1µF 96 THD+N < 0.4% Tamb = 25°C 94 98 92 90 88 86 84 82 80 2.0 2.5 RL=16Ω RL=32Ω RL=600Ω 80 60 Crosstalk (dB) ChA to ChB ChB to ChA 40 20 RL=32Ω Vcc=2V Pout=6mW Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C 20 100 1000 Frequency (Hz) 10000 20k 0 Signal to Noise Ratio (dB) 3.0 3.5 4.0 4.5 5.0 Power Supply Voltage (V) Fig. 97: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A 100 Av = -4 Cb = 1µF 96 THD+N < 0.4% Tamb = 25°C 94 98 Signal to Noise Ratio (dB) Fig. 98: PSRR vs Power Supply Voltage 0 RL=600Ω -10 -20 -30 92 90 88 86 84 82 80 2.0 2.5 RL=16Ω RL=32Ω PSRR (dB) Vripple = 200mVpp Av = -4 Input = grounded Cb = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V -40 -50 Vcc = 5V, 3.3V & 2.5V -60 3.0 3.5 4.0 4.5 5.0 100 Power Supply Voltage (V) 1000 10000 Frequency (Hz) 100000 25/31 TS486-TS487 Fig. 99: PSRR vs Input Capacitor Fig. 100: PSRR vs Bypass Capacitor 0 -10 -20 -30 -40 Cin = 1µF, 220nF Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20kΩ RL >= 16Ω Tamb = 25°C 0 -10 -20 PSRR (dB) -30 -40 -50 Vripple = 200mVpp Av = -4 Input = grounded Vcc = 5V RL >= 16Ω Tamb = 25°C PSRR (dB) Cb = 1µF -50 Cin = 100nF -60 100 1000 10000 Frequency (Hz) 100000 -60 Cb = 4.7µF 100 Cb = 2.2µF 1000 10000 Frequency (Hz) 100000 Fig. 101: PSRR vs Output Capacitor Fig. 102: PSRR vs Output Capacitor 0 -10 -20 -30 -40 -50 -60 Cout = 470µF Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1µF, RL = 16Ω RL >= 16Ω Tamb = 25°C 0 -10 -20 -30 -40 -50 Cout = 220µF -60 100 1000 10000 Frequency (Hz) 100000 100 Cout = 100µF 1000 10000 Frequency (Hz) 100000 Cout = 470µF Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1µF, RL = 32Ω RL >= 16Ω Tamb = 25°C 26/31 PSRR (dB) PSRR (dB) TS486-TS487 APPLICATION NOTE: TS486/487 GENERAL DESCRIPTION TS486/487 is a family of dual audio amplifiers able to drive 16Ω or 32Ω headsets. Working in the 2V to 5.5V supply voltage range, they deliver 100mW at 5V and 12mW at 2V in a 16Ω load. An internal output current limitation, offers protection against short-circuits at the output over a limited time period. Fixed gain versions of the TS486 and TS487 including the feedback resistor and the input resistors are also proposed to reduce the number of external parts. The TS486 and TS487 exhibit a low quiescent current of typically 1.8mA, allowing usage in portable applications. The standby mode is selected using the SHUTDOWN input. For TS486 (respectively TS487), the device is in sleep mode when PIN 5 is connected at GND (resp. VCC). GAIN SETTING The gain of each inverter amplifier of the TS486 and TS487 is set by the resistors RIN and RFEED. GainLINEAR = -(R FEED/RIN) GaindB = 20 Log(RFEED/R IN) Fixed gain versions TS486-n and TS487-n including RIN and RFEED are proposed to reduce external parts. LOW FREQUENCY ROLL-OFF WITH INPUT CAPACITORS The low roll-off frequency of the headphone amplifiers depends on the input capacitors CIN1 and CIN2 and the input resistors RIN1 and RIN2. The CIN capacitor in series with the input resistor RIN of the amplifier is equivalent to a first order high pass filter. Assuming that Fmin is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of CIN is: CIN > 1 / (2*π*Fmin*RIN ) The following curve gives directly the low frequency roll-off versus the input capacitor CIN 27/31 TS486-TS487 and for various values of the input resistor RIN . 1000 1000 Low roll− frequency (Hz) off frequency versus the output capacitor COUT in µF and for the two typical 16Ω and 32Ω impedances: Rin = 10kΩ 100 Rin = 1kΩ Low roll-off frequency (Hz) 100 RL = 16Ω 10 RL = 32Ω 10 Rin = 100kΩ Rin = 20kΩ and fixed gain versions 1 0.01 0.1 Cin (µF) 1 10 1 10 100 COUT ( F) 1000 10000 The input resistance of the fixed gain version is typically 20kΩ. The following curve shows the limits of the roll off frequency depending on the min. and max. values of Rin: DECOUPLING CAPACITOR CB The internal bias voltage at Vcc/2 is decoupled with the external capacitor CB. The TS486 and TS487 have a specified Power Supply Rejection Ratio parameter with CB = 1µF. A higher value of CB improves the PSRR, for example, a 4.7µF improves the PSRR by 15dB at 200Hz (please, refer to fig. 76 "PSRR vs Bypass Capacitor"). POP PRECAUTIONS Ω Ω Ω LOW FREQUENCY ROLL OFF WITH OUTPUT CAPACITORS The DC voltage on the outputs of the TS486/487 is blocked by the output capacitors COUT1 and COUT2 . Each output capacitor COUT in series with the resistance of the load RL is equivalent to a first order high pass filter. Assuming that Fmin is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of COUT is: COUT > 1 / (2*π*Fmin*RL) The following curve gives directly the low roll-off 28/31 Generally headphones are connected using a connector as a jack. To prevent a pop in the headphones when plugged in the jack, a resistor should be connected in parallel with each headphone output. This allows the capacitors Cout to be charged even when no headphone is plugged. A resistor of 1 kΩ is high enough to be a negligible load, and low enough to charge the capacitors Cout in less than one second. TS486-TS487 PACKAGE MECHANICAL DATA SO-8 MECHANICAL DATA DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8˚ (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157 0016023/C 29/31 TS486-TS487 PACKAGE MECHANICAL DATA 30/31 TS486-TS487 PACKAGE MECHANICAL DATA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom http://www.st.com 31/31
TS487 价格&库存

很抱歉,暂时无法提供与“TS487”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TS4871IST
  •  国内价格
  • 1+1.8207
  • 30+1.75792
  • 100+1.63235
  • 500+1.50679
  • 1000+1.444

库存:0