0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS4871IDT

TS4871IDT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOICN8_150MIL

  • 描述:

    IC AMP AUDIO PWR 1W MONO 8SOIC

  • 数据手册
  • 价格&库存
TS4871IDT 数据手册
TS4871 Datasheet Output rail-to-rail 1 W audio power amplifier with standby mode Features TS4871IST - MiniS O8 Standby 1 8 Bypass 2 7 GND VIN+ 3 6 VCC VIN- 4 5 VOUT1 VOUT2 TS4871ID-TS4871IDT - SO8 Standby 1 8 VOUT2 Bypass 2 7 GND VIN+ 3 6 VCC VIN- 4 5 VOUT1 • Operating from VCC = 2.5 V to 5.5 V • 1 W rail-to-rail output power @ VCC = 5 V, THD = 1%, f = 1 kHz, with 8 Ω load • • • • • • Ultra low consumption in standby mode (10 nA) 75 dB PSRR @ 217 Hz from 5 V to 2.6 V Ultra low pop and click Ultra low distortion (0.1%) Unity gain stable Available in SO8 and MiniSO8 Applications • • • • Mobile phones (cellular / cordless) Laptop / notebook computers PDAs Portable audio devices Description The TS4871 is an audio power amplifier capable of delivering 1 W of continuous RMS output power into 8 Ω load @ 5 V. Product status link TS4871 This audio amplifier exhibits 0.1% distortion level (THD) from a 5 V supply for a Pout = 250 mW RMS. An external standby mode control reduces the supply current to less than 10 nA. An internal thermal shutdown protection is also provided. The TS4871 has been designed for high quality audio applications such as mobile phones and to minimize the number of external components. The unity-gain stable amplifier can be configured by external gain setting resistors. DS2547 - Rev 9 - May 2019 For further information contact your local STMicroelectronics sales office. www.st.com TS4871 Pin configuration 1 Pin configuration Figure 1. Pin connections (top view) TS4871ID-TS4871IDT - SO8 Standby DS2547 - Rev 9 1 8 VOUT2 Bypass 2 7 GND VIN+ 3 6 VCC VIN- 4 5 VOUT1 TS4871IST - MiniSO8 Standby 1 8 VOUT2 Bypass 2 7 GND VIN+ 3 6 VCC VIN- 4 5 VOUT1 page 2/46 TS4871 Maximum ratings 2 Maximum ratings Table 1. Absolute maximum ratings Symbol Parameter VCC Supply voltage (1) Value Unit 6 V Vi Input voltage (2) GND to VCC V Toper Operating free air temperature range -40 to + 85 °C Tstg Storage temperature -65 to +150 °C Tj Maximum junction temperature 150 °C Thermal resistance junction-to-ambient (3) SO8 Rthja 175 °C/W Thermal resistance junction-to-ambient (3) MiniSO8 215 Pd Power dissipation Internally limited (4) ESD Human body model 2 kV ESD Machine model 200 V Latch-up Latch-up immunity Class A Lead temperature (soldering, 10 s) 260 °C 1. All voltages values are measured with respect to the ground pin. 2. The magnitude of input signal must never exceed VCC + 0.3 V / GND - 0.3 V 3. The device is protected in case of overtemperature by a thermal shutdown active @ 150 °C. 4. Exceeding the power derating curves during a long period, involves abnormal operating conditions. Table 2. Operating conditions Symbol Parameter VCC Supply voltage VICM Common mode Input voltage range Value Unit 2.5 to 5.5 V GND to VCC - 1.2 V V GND ≤ VSTB≤ 0.5 V V Standby voltage input: VSTB device ON Standby voltage input: device OFF RL Load resistor Thermal resistance junction-to-ambient (1) Rthja SO8 Thermal resistance junction-to-ambient (1) MiniSO8 VCC - 0.5 V ≤ VSTB ≤ VCC 4 - 32 Ω 150 °C/W 190 1. This thermal resistance can be reduced with a suitable PCB layout (see power derating curves). DS2547 - Rev 9 page 3/46 TS4871 Electrical characteristics 3 Electrical characteristics Table 3. Electrical characteristics VCC = +5 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified). Symbol ICC ISTANDBY (1) VOO PO THD + N PSRR (2) ϕM GM GBP Parameter Supply current No input signal, no load Standby current No input signal, VSTDBY = VCC, RL = 8 Ω Output offset voltage No input signal, RL = 8 Ω Output power THD = 1% max., f = 1 kHz, RL = 8 Ω Total harmonic distortion + noise PO = 250 mWrms, Gv = 2, 20 Hz < f < 20 kHz, RL = 8 Ω Power supply rejection ratio f = 217 Hz, RL = 8 Ω, RFeed = 22 K Vripple = 200 mVrms Phase margin at unity gain RL = 8 Ω, CL = 500 pF Gain margin RL = 8 Ω, CL = 500 pF Gain bandwidth product RL = 8 Ω Min. Typ. Max. Unit 6 8 mA 10 1000 nA 5 20 mV 1 W 0.15 % 75 dB 70 Degrees 20 dB 2 MHz 1. Standby mode is actived when Vstdby is tied to VCC. 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to VCC @ f = 217 Hz. DS2547 - Rev 9 page 4/46 TS4871 Electrical characteristics Table 4. Electrical characteristics VCC = +3.3 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified) Symbol ICC ISTANDBY (1) VOO PO THD + N PSRR (2) ϕM GM GBP Parameter Min. Supply current No input signal, no load Standby current No input signal, VSTDBY = VCC, RL = 8 Ω Output offset voltage No input signal, RL = 8 Ω Output power THD = 1% max., f = 1 kHz, RL = 8 Ω Total harmonic distortion + noise PO = 250 mWrms, Gv = 2, 20 Hz < f < 20 kHz, RL = 8 Power supply rejection ratio f = 217 Hz, RL = 8 Ω, RFeed = 22 kΩ Vripple = 200 mVrms Phase margin at unity gain RL = 8 Ω, CL = 500 pF Gain margin RL = 8 Ω, CL = 500 pF Gain bandwidth product RL = 8 Ω Typ. Max. Unit 5.5 8 mA 10 1000 nA 5 20 mV 450 mW 0.15 % 75 dB 70 Degrees 20 dB 2 MHz 1. Standby mode is actived when Vstdby is tied to VCC 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to VCC @ f = 217 Hz Note: All electrical values are made by correlation between 2.6 V and 5 V measurements. Table 5. Electrical characteristics VCC = +2.6 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified). Symbol ICC ISTANDBY (1) VOO PO Parameter Supply current No input signal, no load Standby current No input signal, VSTDBY = VCC, RL = 8 Ω Output offset voltage No input signal, RL = 8 Ω Output power THD = 1% max.., f = 1 kHz, RL = 8 Ω Min. Typ. Max. Unit 5.5 8 mA 10 1000 nA 5 20 mV 260 mW 0.15 % 75 dB Total harmonic distortion + noise THD + N PO = 250 mWrms, Gv = 2, 20 Hz < f < 20 kHz, RL =8Ω Power supply rejection ratio PSRR (2) DS2547 - Rev 9 f = 217 Hz, RL = 8 Ω, RFeed = 22 kΩ, Vripple = 200 mVrms page 5/46 TS4871 Electrical characteristics Symbol Parameter Min. Phase margin at unity gain ϕM RL = 8 Ω, CL = 500 pF Gain margin GM RL = 8 Ω, CL = 500 pF Typ. Unit 70 Degrees 20 dB 2 MHz Gain bandwidth product GBP Max. RL = 8 Ω 1. Standby mode is actived when Vstdby is tied to VCC 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to VCC @ f = 217 Hz Table 6. Bill of material Components Functional description Rin Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin [fc = 1 / (2 x Pi x Rin x Cin)] Cin Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Rfeed Feed back resistor which sets the closed loop gain in conjunction with Rin Cs Supply bypass capacitor which provides power supply filtering Cb Bypass pin capacitor which provides half supply filtering Cfeed Rstb Gv Low pass filter capacitor allowing to cut the high frequency [low pass filter cut-off frequency 1 / (2 x Pi x Rfeed x Cfeed)] Pull-up resistor which fixes the right supply level on the standby pin Closed loop gain in BTL configuration = 2 x (Rfeed / Rin) Remarks 1. All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs = 100 μF. 2. 3. DS2547 - Rev 9 External resistors are not needed for having better stability when supply @ VCC down to 3 V. By the way, the quiescent current remains the same. The standby response time is about 1 μs. page 6/46 TS4871 Electrical characteristics curves Electrical characteristics curves Figure 2. Open loop frequency response Vcc=5 V Figure 3. Open loop frequency response ZL=8 Ω 0 -60 -80 Phase -100 20 -120 -140 0 40 Vcc = 5V ZL = 8Ω + 560pF Tamb = 25°C -140 -160 -180 1 10 100 1000 10000 -180 -20 -200 -220 -40 0.3 1 10 Frequency (kHz) Figure 4. Open loop frequency response Vcc=3.3 V Gain 60 Vcc = 3.3V RL = 8Ω Tamb = 25°C -40 -60 -120 -140 -160 0 -180 -200 -20 -220 -40 0.3 DS2547 - Rev 9 1 10 100 1000 Frequency (kHz) 10000 -240 Gain (dB) -100 20 -220 0 Gain 60 Phase (Deg) Gain (dB) Phase 10000 80 -20 -80 40 100 1000 Frequency (kHz) Figure 5. Open loop frequency response Vcc=3.3 V, ZL=8 Ω 0 80 -60 -120 0 -200 -40 0.3 -40 -100 20 -160 -20 -20 -80 Phase Gain (dB) Gain (dB) 40 Gain -40 Phase (Deg) Vcc = 5V RL = 8Ω Tamb = 25°C Gain 60 -20 Phase (Deg) 0 60 Vcc = 3.3V ZL = 8Ω + 560pF Tamb = 25°C -20 -40 -60 -80 40 Phase -100 -120 20 -140 -160 0 Phase (Deg) 4 -180 -200 -20 -220 -40 0.3 1 10 100 1000 Frequency (kHz) 10000 -240 page 7/46 TS4871 Electrical characteristics curves Figure 6. Open loop frequency response Vcc=2.6 V Figure 7. Open loop frequency response Vcc=2.6 V, ZL=8 Ω Gain 60 -60 -100 -120 20 -140 -160 0 1 10 100 1000 Frequency (kHz) 10000 80 -100 Phase -160 20 -20 -40 0.3 -180 Vcc = 5V CL = 560pF Tamb = 25°C 1 10 20 -180 0 -40 0.3 DS2547 - Rev 9 10 -180 -200 Vcc = 3.3V CL = 560pF Tamb = 25°C 1 10 -220 100 1000 Frequency (kHz) 10000 -240 -50 -60 Vripple = 200mVrms Rfeed = 22Ω Input = floating RL = 8Ω Tamb = 25°C Vcc = 5V, 3.3V & 2.6V Cb = 1µF & 0.1µF -200 Vcc = 2.6V CL = 560pF Tamb = 25°C 1 Phase (Deg) Gain (dB) -140 -160 -20 -40 -120 Gain -140 -30 -100 40 -120 Figure 11. Power supply rejection ratio (PSRR) vs power supply -80 60 -100 Phase -160 -40 0.3 10000 Phase -240 -80 20 -20 Figure 10. Open loop frequency response Vcc=2.6 V, CL=560 pF 80 10000 40 0 -220 100 100 1000 Frequency (kHz) Gain -200 100 1000 Frequency (kHz) 10 60 PSRR (dB) 0 1 80 Gain (dB) -140 40 -200 100 Phase (Deg) Gain (dB) Gain -160 Figure 9. Open loop frequency response Vcc=3.3 V, CL=560 pF -120 60 -140 -40 0.3 Figure 8. Open loop frequency response Vcc=5 V, CL=560 pF -80 -120 -220 -240 100 -60 -100 20 -20 -220 -40 0.3 -40 -180 -200 -20 Phase 0 -180 -20 -80 40 Gain (dB) Phase Vcc = 2.6V ZL = 8Ω + 560pF Tamb = 25°C Gain 60 Phase (Deg) Gain (dB) -40 -80 40 0 80 -20 Phase (Deg) Vcc = 2.6V RL = 8Ω Tamb = 25°C Phase (Deg) 0 80 -220 100 1000 Frequency (kHz) 10000 -240 -70 -80 10 100 1000 10000 Frequency (Hz) 100000 page 8/46 TS4871 Electrical characteristics curves Figure 12. Power supply rejection ratio (PSRR) vs feedback capacitor Figure 13. Power supply rejection ratio (PSRR) vs bypass capacitor -10 PSRR (dB) -30 -40 Cb=1µF Cfeed=0 -20 Cfeed=150pF Cfeed=330pF -50 -70 100 1000 10000 Frequency (Hz) Cb=100µF -80 10 100000 100 1000 10000 100000 Frequency (Hz) Figure 15. Power supply rejection ratio (PSRR) vs feedback resistor Vcc = 5, 3.3 & 2.6V Rfeed = 22kΩ, Rin = 22k Cb = 1µF Rg = 100Ω, RL = 8Ω Tamb = 25°C -40 -20 -30 PSRR (dB) PSRR (dB) Cin=220nF -30 -40 Vcc = 5, 3.3 & 2.6V Cb = 1µF & 0.1µF Vripple = 200mVrms Input = floating RL = 8Ω Tamb = 25°C Rfeed=110kΩ Rfeed=47kΩ -50 -60 Cin=100nF -50 Cb=47µF -50 -10 Cin=1µF Cin=330nF -20 -40 -70 Cfeed=680pF Figure 14. Power supply rejection ratio (PSRR) vs input capacitor -10 Vcc = 5, 3.3 & 2.6V Rfeed = 22k Rin = 22k, Cin = 1µF Rg = 100Ω, RL = 8Ω Tamb = 25°C -60 -60 -80 10 Cb=10µF -30 PSRR (dB) -20 -10 Vcc = 5, 3.3 & 2.6V Cb = 1µF & 0.1µF Rfeed = 22kΩ Vripple = 200mVrms Input = floating RL = 8Ω Tamb = 25°C Rfeed=22kΩ Cin=22nF -70 Rfeed=10kΩ -60 10 100 1000 Frequency (Hz) DS2547 - Rev 9 10000 100000 -80 10 100 1000 10000 Frequency (Hz) 100000 page 9/46 TS4871 Electrical characteristics curves Figure 16. Pout @ THD + N = 1% vs supply voltage Figure 17. Pout @ THD + N = 10% vs supply voltage vs RL vs RL 1.2 1.0 2.0 8Ω Gv = 2 & 10 Cb = 1µF F = 1kHz BW < 125kHz Tamb = 25°C Output power @ 10% THD + N (W) Output power @ 1% THD + N (W) 1.4 6Ω 4Ω 0.8 16Ω 0.6 0.4 0.2 32Ω 0.0 2.5 3.0 3.5 4.0 4.5 1.8 1.6 1.4 8Ω 6Ω 4Ω 1.2 1.0 16Ω 0.8 0.6 0.4 0.2 0.0 2.5 5.0 Gv = 2 & 10 Cb = 1µF F = 1kHz BW < 125kHz Tamb = 25°C 32Ω 3.0 3.5 Vcc (V) Figure 18. Power dissipation vs Pout Vcc=5 V RL=4Ω Power Dissipation (W) Power Dissipation (W) Vcc=3.3V F=1kHz 0.5 THD+N 4.4 ms). Increasing Cin value increases the pop and click phenomena to an unpleasant sound at power supply ON and standby function ON/OFF. Why Cs is not important in pop and click consideration ? Hypothesis : Cs = 100 μF Supply voltage = 5 V Supply voltage internal resistor = 0.1 Ω Supply current of the amplifier Icc = 6 mA At power ON of the supply, the supply capacitor is charged through the internal power supply resistor. So, to reach 5 V you need about five to ten times the charging time constant of Cs (τs = 0.1 x Cs (s)). Then, this time equal 50 μs to 100 μs > τdischCs. 5.7 Power amplifier design examples Given : Load impedance : 8 Ω Output power @ 1% THD+N : 0.5 W Input impedance : 10 kΩ min. Input voltage peak to peak : 1 Vpp Bandwidth frequency : 20 Hz to 20 kHz (0, -3 dB) Ambient temperature max = 50 °C SO8 package First of all, we must calculate the minimum power supply voltage to obtain 0.5 W into 8 Ω. With curves in fig. 15, we can read 3.5 V. Thus, the power supply voltage value min. is 3.5 V. Following the maximum power dissipation equation Pdissmax = 2VCC2 = W π2RL with 3.5 V we have Pdissmax = 0.31 W Refer to power derating curves (fig. 20), with 0.31 W the maximum ambient temperature is 100 °C. This last value could be higher if you follow the example layout shown on the demoboard (better dissipation). The gain of the amplifier in flat region is: VOUTPP 2 2RLPOUT GV = = = 5.65 VINPP VINPP We have Rin > 10 kΩ. Let's take Rin = 10 kΩ, then Rfeed = 28.25 kΩ. We could use for Rfeed = 30 kΩ in normalized value and the gain is Gv = 6. In lower frequency we want 20 Hz (- 3dB cut-off frequency). Then: So, we could use for Cin a 1 μF capacitor value 1 CIN = = 795 nF 2πRinFCL which gives 16 Hz. In higher frequency we want 20 kHz (- 3dB cut off frequency). The gain bandwidth product of the TS4871 is 2 MHz typical and does not change when the amplifier delivers power into the load. The first amplifier has a gain of: Rfeed = 3 Rin and the theoretical value of the - 3 dB cut-off higher frequency is 2 MHz/3 = 660 kHz. We can keep this value or limit the bandwidth by adding a capacitor Cfeed, in parallel on Rfeed. Then: 1 CFEED = = 265pF 2πRFEEDFCH So, we could use for Cfeed a 220 pF capacitor value that gives 24 kHz. Now, we can calculate the value of Cb with the formula τb = 50 kΩ x Cb >> τin = (Rin+Rfeed) x Cin which permits to reduce the pop and click effects. Then Cb >> 0.8 μF. We can choose for Cb a normalized value of 2.2 μF that gives good results in THD+N and PSRR. In the following tables, you could find three another examples with values required for the demoboard. DS2547 - Rev 9 page 30/46 TS4871 Application n°1 : 20 Hz to 20 kHz bandwidth and 6 dB gain BTL power amplifier Remark : components with (*) marking are optional. 5.8 Application n°1 : 20 Hz to 20 kHz bandwidth and 6 dB gain BTL power amplifier Table 7. Components DS2547 - Rev 9 Designator Part type R1 22 k / 0.125 W R4 22 k / 0.125 W R6 Short-circuit R7 330 k / 0.125 W R8* (Vcc-Vf_led) / If_led C5 470 nF C6 100 µF C7 100 nF C9 Short-circuit C10 Short-circuit C12 1 µF S1, S2, S6, S7 2 mm insulated plug 10.16 mm pitch S8 3 pt connector 2.54 mm pitch P1 PCB phono Jack D1* Led 3 mm U1 TS4871ID or TS4871IS page 31/46 TS4871 Application n°2 : 20 Hz to 20 kHz bandwidth and 20 dB gain BTL power amplifier 5.9 Application n°2 : 20 Hz to 20 kHz bandwidth and 20 dB gain BTL power amplifier Table 8. Components DS2547 - Rev 9 Designator Part type R1 110 k / 0.125 W R4 22 k / 0.125 W R6 Short-circuit R7 330 k / 0.125 W R8* (Vcc-Vf_led) / If_led C5 470 nF C6 100 µF C7 100 nF C9 Short-circuit C10 Short-circuit C12 1 µF S1, S2, S6, S7 2 mm insulated plug 10.16 mm pitch S8 3 pt connector 2.54 mm pitch P1 PCB phono Jack D1* Led 3 mm U1 TS4871ID or TS4871IS page 32/46 TS4871 Application n° 3: 50 Hz to 10 kHz bandwidth and 10 dB gain BTL power amplifier 5.10 Application n° 3: 50 Hz to 10 kHz bandwidth and 10 dB gain BTL power amplifier Table 9. Components DS2547 - Rev 9 Designator Part type R1 33 k / 0.125 W R2 Short-circuit R4 22 k / 0.125 W R6 Short-circuit R7 330 k / 0.125 W R8* (Vcc-Vf_led) / If_led C2 470 pF C5 150 nF C6 100 µF C7 100 nF C9 Short-circuit C10 Short-circuit C12 1 µF S1, S2, S6, S7 2 mm insulated plug 10.16 mm pitch S8 3 pts connector 2.54 mm pitch P1 PCB phono Jack D1* Led 3 mm U1 TS4871ID or TS4871IS page 33/46 TS4871 Application n°4 : Differential inputs BTL power amplifier 5.11 Application n°4 : Differential inputs BTL power amplifier In this configuration, we need to place these components : R1, R4, R5, R6, R7, C4, C5, C12. We have also : R4 = R5, R1 = R6, C4 = C5. The gain of the amplifier is: R1 GVDIFF = 2 R4 For Vcc = 5 V, a 20 Hz to 20 kHz bandwidth and 20 dB gain BTL power amplifier you could follow the bill of material below. Table 10. Components 5.12 Designator Part type R1 110 k / 0.125 W R4 22 k / 0.125 W R5 22 k / 0.125 W R6 110 k / 0.125 W R7 330 k / 0.125 W R8* (Vcc-Vf_led) / If_led C4 470 nF C5 470 nF C6 100 µF C7 100 nF C9 Short-circuit C10 Short-circuit C12 1 µF D1* Led 3 mm S1, S2, S6, S7 2 mm insulated plug 10.16 mm pitch S8 3 pts connector 2.54 mm pitch P1, P2 PCB phono Jack U1 TS4871ID or TS4871IS Note on how to use the PSRR curves We have finished a design and we have chosen the components values • Rin=Rfeed=22 kΩ • Cin=100 nF • Cb=1 μF Now, on fig. 13, we can see the PSRR (input grounded) vs. frequency curves. At 217 Hz we have a PSRR value of -36 dB. In reality we want a value about -70 dB. So, we need a gain of 34 dB. Now, on fig. 12 we can see the effect of Cb on the PSRR (input grounded) vs. frequency. With Cb=100 μF, we can reach the -70 dB value. The process to obtain the final curve (Cb=100 μF, Cin=100 nF, Rin=Rfeed=22 kΩ) is a simple transfer point by point on each frequency of the curve on fig. 13 to the curve on fig. 12. The measurement result is shown on the next figure. DS2547 - Rev 9 page 34/46 TS4871 Principle of operation Figure 86. PSRR changes with Cb Vcc = 5, 3.3 & 2.6V Rfeed = 22k, Rin = 22k Rg = 100Ω, RL = 8Ω Tamb = 25°C -30 Cin=100nF Cb=1µF PSRR (dB) -40 -50 Cin=100nF Cb=100µF -60 -70 10 100 1000 10000 100000 Frequency (Hz) What is the PSRR? The PSRR is the power supply rejection ratio. It is a kind of SVR in a determined frequency range. The PSRR of a device, is the ratio between a power supply disturbance and the result on the output. We can say that the PSRR is the ability of a device to minimize the impact of power supply disturbances to the output. How do we measure the PSRR? Figure 87. PSRR measurement schematic Rfeed 6 Vcc Vripple Vcc 4 Rin 3 VinVin+ - Vout1 5 + Cin RL 2 Bypass 1 Standby Av=-1 + Cb Vout2 8 Vs+ Bias GND Rg 100 Ohms 5.13 Vs- TS4871 7 Principle of operation We fixed the DC voltage supply (Vcc), the AC sinusoidal ripple voltage (Vripple) and no supply capacitor Cs is used. The PSRR value for each frequency is: Rms Vripple PSRR(dB) = 20xLog10 Rms(Vs+ − Vs− DS2547 - Rev 9 page 35/46 TS4871 High/low cut-off frequencies Remark : The measure of the Rms voltage is not a Rms selective measure but a full range (2 Hz to 125 kHz) Rms measure. It means that we measure the effective Rms signal + the noise. 5.14 High/low cut-off frequencies For their calculation, please check the figure below: Figure 88. Frequency response gain vs Cin and Cfeed 10 5 Gain (dB) 0 Cfeed = 680pF -5 -10 -15 -20 -25 10 DS2547 - Rev 9 Cfeed = 330pF Cin = 470nF Cfeed = 2.2nF Cin = 22nF Cin = 82nF Rin = Rfeed = 22kΩ Tamb = 25°C 100 1000 Frequency (Hz) 10000 page 36/46 TS4871 Package information 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DS2547 - Rev 9 page 37/46 TS4871 MiniSO8 package information 6.1 MiniSO8 package information Figure 89. MiniSO8 package outline Table 11. MiniSO8 mechanical data Dim. Millimeters Min. Inches Typ. A Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.03 0.22 0.4 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.8 3 3.2 0.11 0.118 0.126 E 4.65 4.9 5.15 0.183 0.193 0.203 E1 2.8 3 3.1 0.11 0.118 0.122 e L 0.85 0.65 0.4 0.6 0.006 0.033 0.8 0.016 0.024 0.95 0.037 L2 0.25 0.01 ccc 0° 0.037 0.026 L1 k DS2547 - Rev 9 Max. 8° 0.1 0° 0.031 8° 0.004 page 38/46 TS4871 SO8 package information 6.2 SO8 package information Figure 90. SO-8 package outline Table 12. SO-8 package mechanical data Dimensions Millimeters Ref. Min. Typ. A 0.10 A2 1.25 b 0.28 c 0.17 D 4.80 E E1 Typ. 0.25 Max. 0.069 0.04 0.010 0.049 0.011 0.23 0.007 4.90 5.00 0.189 0.193 0.197 5.80 6.00 6.20 0.228 0.236 0.244 3.80 3.90 4.00 0.150 0.154 0.157 0.40 1.27 h 0.25 L 0.40 L1 DS2547 - Rev 9 Min. 0.48 e ccc Max. 1.75 A1 k Inches 0.635 0.019 0.010 0.050 0.50 0.010 0.020 1.27 0.016 0.050 1.04 1° 0.016 0.040 8° 0.10 1° 8° 0.004 page 39/46 TS4871 Ordering information 7 Ordering information Table 13. Ordering information Order code Temperature range TS4871IST TS4871IDT TS4871ID DS2547 - Rev 9 Package MiniSO8 -40, +85°C SO8 SO8 Packing Tape and reel Tube Marking 4871l 4871 4871 page 40/46 TS4871 Revision history Table 14. Document revision history DS2547 - Rev 9 Date Revision 08-May-2019 9 Changes No history because of migration. Removed the part number TS4871IQT and all its reference throughout the document. page 41/46 TS4871 Contents Contents 1 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 3 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 6 7 5.1 BTL configuration principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 Gain In typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3 Low and high frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.4 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.6 Pop and Click performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.7 Power amplifier design examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.8 Application n°1 : 20 Hz to 20 kHz bandwidth and 6 dB gain BTL power amplifier . . . . . . . . 31 5.9 Application n°2 : 20 Hz to 20 kHz bandwidth and 20 dB gain BTL power amplifier . . . . . . . 32 5.10 Application n° 3: 50 Hz to 10 kHz bandwidth and 10 dB gain BTL power amplifier . . . . . . . 33 5.11 Application n°4 : Differential inputs BTL power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.12 Note on how to use the PSRR curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.13 Principle of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.14 High/low cut-off frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 6.1 MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2 SO8 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 DS2547 - Rev 9 page 42/46 TS4871 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical characteristics VCC = +5 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified).. . Electrical characteristics VCC = +3.3 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified) Electrical characteristics VCC = +2.6 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified). Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MiniSO8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SO-8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DS2547 - Rev 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 3 . 4 . 5 . 5 . 6 31 32 33 34 38 39 40 41 page 43/46 TS4871 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. DS2547 - Rev 9 Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . Open loop frequency response Vcc=5 V . . . . . . . . . . . . . Open loop frequency response ZL=8 Ω . . . . . . . . . . . . . . Open loop frequency response Vcc=3.3 V . . . . . . . . . . . . Open loop frequency response Vcc=3.3 V, ZL=8 Ω . . . . . . Open loop frequency response Vcc=2.6 V . . . . . . . . . . . . Open loop frequency response Vcc=2.6 V, ZL=8 Ω . . . . . . Open loop frequency response Vcc=5 V, CL=560 pF . . . . . Open loop frequency response Vcc=3.3 V, CL=560 pF . . . Open loop frequency response Vcc=2.6 V, CL=560 pF . . . Power supply rejection ratio (PSRR) vs power supply . . . . Power supply rejection ratio (PSRR) vs feedback capacitor Power supply rejection ratio (PSRR) vs bypass capacitor . . Power supply rejection ratio (PSRR) vs input capacitor . . . Power supply rejection ratio (PSRR) vs feedback resistor. . Pout @ THD + N = 1% vs supply voltage vs RL . . . . . . . . Pout @ THD + N = 10% vs supply voltage vs RL . . . . . . . Power dissipation vs Pout Vcc=5 V . . . . . . . . . . . . . . . . . Power dissipation vs Pout Vcc=3.3 V. . . . . . . . . . . . . . . . Power dissipation vs Pout Vcc=2.6 V. . . . . . . . . . . . . . . . Power derating curves . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs output power Gv=2, Vcc= 5 V . . . . . . . . . . . . THD + N vs output power Gv=10, Vcc =5 V . . . . . . . . . . . THD + N vs output power Gv=2, Vcc = 3.3 V . . . . . . . . . . THD + N vs output power Gv=10, Vcc = 3.3 V . . . . . . . . . THD + N vs output power Gv=2, Vcc = 2.6 V . . . . . . . . . . THD + N vs output power Gv=10, Vcc = 2.6 V . . . . . . . . . THD + N vs output power Gv=2, Vcc= 5 V, RL=8 Ω . . . . . THD + N vs output power Gv=10, Vcc = 5 V . . . . . . . . . . . THD + N vs output power RL= 8 Ω . . . . . . . . . . . . . . . . . THD + N vs output power RL= 8 Ω, Vcc=3.3 V . . . . . . . . . THD + N vs output power RL= 8 Ω, Vcc=2.6 V . . . . . . . . . THD + N vs output power RL= 8 Ω, Gv=10 . . . . . . . . . . . . THD + N vs output power Gv=2, Vcc=5 V, Cb=0.1 µF . . . . THD + N vs output power Gv=10, Vcc = 5 V, Cb=0.1 µF. . . THD + N vs output power Gv=2, Vcc = 3.3 V, Cb=0.1 µF . . THD + N vs output power Gv=10, Vcc=3.3 V, Cb=0.1 µF . . THD + N vs output power Gv=2, Vcc = 2.6 V, Cb=0.1 µF . . THD + N vs output power Gv=10, Vcc=2.6 V, Cb=0.1 µF . . THD + N vs output power RL=16 Ω Vcc=0 5 V . . . . . . . . . THD + N vs output power RL=16 Ω Gv=10 . . . . . . . . . . . . THD + N vs output power RL=16 Ω, Gv=2 . . . . . . . . . . . . THD + N vs output power RL=16 Ω, Gv=10, VCC=3.3 V . . . THD + N vs output power RL=16 Ω Vcc=2.6 V . . . . . . . . . THD + N vs output power RL=16 Ω, Vcc=2.6 V , Gv=10. . . THD + N vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, Vcc=5 V . . . . . . . . . . . . . . . . . . . THD + N vs frequency, Vcc=3.3 V . . . . . . . . . . . . . . . . . . THD + N vs frequency, Gv=10 . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, Vcc=2.6 V . . . . . . . . . . . . . . . . . . THD + N vs frequency, Vcc=2.6 V, RL = 4 Ω . . . . . . . . . . . THD + N vs frequency, Vcc=5 V, RL=8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 7 . 7 . 7 . 7 . 8 . 8 . 8 . 8 . 8 . 8 . 9 . 9 . 9 . 9 10 10 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 page 44/46 TS4871 List of figures Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. Figure 88. Figure 89. Figure 90. DS2547 - Rev 9 THD + N vs frequency, Pout=450 mW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, Pout=900 mW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, Pout=450 mW, RL=8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, Pout=400 mW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, Pout=200 mW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, Pout=400 mW, Gv=010. . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, Pout=200 mW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, Pout=220 mW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, Pout=110 mW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, Pout=220 mW, Vcc= 2.6 V . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, Pout=110 mW, Vcc= 2.6 V. . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, RL=16 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, RL=16 Ω , Gv=10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, RL=16 Ω , Gv=2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, RL=16 Ω , Gv=10, Vcc=3.3 V. . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, RL=16 Ω , Gv=2, Vcc=2.6 V . . . . . . . . . . . . . . . . . . . . . . . THD + N vs frequency, RL=16 Ω , Gv=10, Pout= 160 mW . . . . . . . . . . . . . . . . . . . Signal-to-noise ratio vs power supply with unweighted filter (20 Hz to 20 kHz). . . . . . Signal-to-noise ratio vs power supply with weighted filter type A . . . . . . . . . . . . . . . Signal-to-noise ratio vs power supply with weighted filter type A Gv=2 . . . . . . . . . . . Current consumption vs power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal-to-noise ratio vs power supply with unweighted filter (20 Hz to 20 kHz) Gv=10 Current consumption vs standby voltage @ Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . Current consumption vs standby voltage @ Vcc = 2.6 V. . . . . . . . . . . . . . . . . . . . . Current consumption vs standby voltage @ Vcc = 3.3 V. . . . . . . . . . . . . . . . . . . . . Clipping voltage vs power supply voltage and load resistor. . . . . . . . . . . . . . . . . . . Clipping voltage low-side vs power supply voltage and load resistor . . . . . . . . . . . . Vout1+Vout2 unweighted noise floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vout1+Vout2 A-weighted noise floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Demoboard schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SO8 & MiniSO8 demoboard components side . . . . . . . . . . . . . . . . . . . . . . . . . . . SO8 and MiniSO8 demoboard top solder layer . . . . . . . . . . . . . . . . . . . . . . . . . . . SO8 and MiniSO8 demoboard bottom solder layer . . . . . . . . . . . . . . . . . . . . . . . . PSRR changes with Cb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR measurement schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency response gain vs Cin and Cfeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MiniSO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SO-8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 19 19 19 19 20 20 20 20 21 21 21 21 22 22 22 22 23 23 23 23 24 24 24 24 25 25 25 25 26 26 27 27 35 35 36 38 39 page 45/46 TS4871 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2019 STMicroelectronics – All rights reserved DS2547 - Rev 9 page 46/46
TS4871IDT 价格&库存

很抱歉,暂时无法提供与“TS4871IDT”相匹配的价格&库存,您可以联系我们找货

免费人工找货