TS488-TS489
Pop-free 120mW stereo headphone amplifier
Features
■ ■ ■ ■
TS488IST - MiniSO-8
OUT (1) VIN (1) BYPASS GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN (2) SHUTDOWN
Pop and click noise protection circuitry Operating range from VCC = 2.2V to 5.5V Standby mode active low (TS488) or high (TS489) Output power: – 120mW @5V, into 16Ω with 0.1% THD+N max (1kHz) – 55mW @3.3V, into 16Ω with 0.1% THD+N max (1kHz) Low current consumption: 2.7mA max @5V Ultra low standby current consumption: 10nA typical High signal-to-noise ratio High crosstalk immunity: 102dB (F = 1kHz) PSRR: 70dB typ. (F = 1kHz), inputs grounded @5V Unity-gain stable Short-circuit protection circuitry Available in lead-free MiniSO-8 & DFN8 2mm x 2mm
TS488IQT - DFN8
Vcc OUT (1) VIN (1) Bypass
1 2 3 4
8 7 6
OUT (2) VIN (2) Shutdown
■ ■ ■ ■ ■ ■ ■ ■
5 GND
TS489IST - MiniSO-8
OUT (1) VIN (1) BYPASS GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN (2) SHUTDOWN
TS489IQT - DFN8
Vcc
1 2 3 4
8 7 6
OUT (2) VIN (2) Shutdown
Description
The TS488/9 is an enhancement of TS486/7 that eliminates pop and click noise and reduces the number of external passive components. The TS488/9 is a dual audio power amplifier capable of driving, in single-ended mode, either a 16Ω or a 32Ω stereo headset. Capable of descending to low voltages, it delivers up to 31mW per channel (into 16Ω loads) of continuous average power with 0.1% THD+N in the audio bandwidth from a 2.5V power supply. An externally-controlled standby mode reduces the supply current to 10nA (typ.). The unity gain stable TS488/9 is configured by external gainsetting resistors.
OUT (1) VIN (1) Bypass
5 GND
Applications
■
Headphone amplifier ■ Mobile phone, PDA, computer motherboard ■ High-end TV, portable audio player
September 2006
Rev 4
1/32
www.st.com 32
Contents
TS488-TS489
Contents
1 2 3 4 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Lower cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Higher cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 POP performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Connecting the headphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1 5.2 MiniSO-8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DFN8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2/32
TS488-TS489
Typical application schematic
1
Typical application schematic
Figure 1. Typical application for the TS488-TS489
TS488=stdby TS489=stdby
Table 1.
Application component information
Functional description Inverting input resistor that sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (Fc = 1 / (2 x Pi x Rin x Cin)). Input coupling capacitor that blocks the DC voltage at the amplifier’s input terminal. Feedback resistor that sets the closed loop gain in conjunction with Rin. AV= Closed Loop Gain= -Rfeed/Rin. Supply output capacitor that provides power supply filtering. Bypass capacitor that provides half supply filtering. Output coupling capacitor that blocks the DC voltage at the load input terminal. This capacitor also forms a high pass with RL (Fc = 1 / (2 x Pi x RL x Cout)).
Component Rin1,2 Cin1,2 Rfeed1,2 Cs Cb Cout1,2
3/32
Absolute maximum ratings and operating conditions
TS488-TS489
2
Absolute maximum ratings and operating conditions
Table 2.
Symbol VCC Vi Tstg Tj Rthja Supply voltage (1) Input voltage Storage temperature Maximum junction temperature Thermal resistance junction to ambient MiniSO-8 DFN8 Power dissipation(2): MiniSO-8 DFN8 Human body model (pin to pin) Machine model 220pF - 240pF (pin to pin) Latch-up immunity (all pins) Lead temperature (soldering, 10sec) Output short-circuit to VCC or GND
1. All voltage values are measured with respect to the ground pin. 2. Pdiss is calculated with Tamb = 25°C, Tj = 150°C. 3. Attention must be paid to continuous power dissipation (VDD x 250mA). Short-circuits can cause excessive heating and destructive dissipation. Exposing the IC to a short-circuit for an extended period of time will dramatically reduce the product’s life expectancy.
Absolute maximum ratings
Parameter Value 6 -0.3V to VCC +0.3V -65 to +150 150 215 70 0.58 1.79 2 200 200 250 continuous
(3)
Unit V V °C °C °C/W
Pdiss ESD ESD Latch-up
W kV V mA °C
Table 3.
Symbol VCC RL Toper CL
Operating conditions
Parameter Supply voltage Load resistor Operating free air temperature range Load capacitor: RL = 16 to 100Ω RL > 100Ω Standby voltage input: TS488 active, TS489 in standby TS488 in standby, TS489 active Thermal resistance junction to ambient MiniSO-8 DFN8(2) Value 2.2 to 5.5 ≥ 16 -40 to + 85 400 100 1.5 ≤ V ≤ VCC GND ≤ VSTBY ≤ 0.4 (1) 190 40 Unit V Ω °C pF
VSTBY
V
Rthja
°C/W
1. The minimum current consumption (ISTBY) is guaranteed at GND (TS488) or VCC (TS489) for the whole temperature range. 2. When mounted on a 4-layer PCB.
4/32
TS488-TS489
Electrical characteristics
3
Table 4.
Symbol ICC
Electrical characteristics
Electrical characteristics at VCC = +5V with GND = 0V, Tamb = 25°C (unless otherwise specified)
Parameter Supply current Conditions No input signal, no load No input signal, VSTBY = GND for TS488, RL=32Ω No input signal, VSTBY = VCC for TS489, RL=32Ω THD+N = 0.1% max, F = 1kHz, RL = 32Ω Pout Output power THD+N = 1% max, F = 1kHz, RL = 32Ω THD+N = 0.1% max, F = 1kHz, RL = 16Ω THD+N = 1% max, F = 1kHz, RL = 16Ω Total harmonic distortion + noise AV=-1, RL = 32Ω, Pout = 60mW, 20Hz ≤ F ≤ 20kHz AV=-1, RL = 16Ω, Pout = 90mW, 20Hz ≤ F ≤ 20kHz AV=-1, RL ≥ 16Ω Cb=1µF, F = 1kHz, , Vripple = 200mVpp , AV=-1, RL ≥ 16Ω Cb=1µF, F = 217Hz, Vripple = 200mVpp VOL: RL = 32Ω VO Output swing VOH: RL = 32Ω VOL: RL = 16Ω VOH: RL = 16Ω SNR Signal-to-noise ratio A weighted, AV=-1, RL = 32Ω, THD+N < 0.4%, 20Hz ≤ F ≤ 20kHz RL = 32Ω, AV = -1 F = 1kHz F = 20Hz to 20kHz 4.18 4.53 64 62 100 70 Min. Typ. 2 10 10 75 80 mW 120 130 0.3 % 0.3 70 dB 68 0.23 4.72 V 0.44 4.48 105 dB 0.57 0.31 Max. 2.7 1000 nA 1000 Unit mA
ISTBY
Standby current
THD+N
PSRR
Power supply rejection ratio, inputs grounded(1)
Crosstalk Channel separation Ci GBP SR VIO twu Input capacitance Gain bandwidth product Slew rate, unity gain inverting Input offset voltage Wake-up time
-102 -84 1
dB pF MHz V/μs 20 mV ms
RL = 32Ω RL = 16Ω Vicm=VCC/2
1.1 0.65 1 100
1. Guaranteed by design and evaluation.
5/32
Electrical characteristics Table 5.
Symbol ICC
TS488-TS489
Electrical characteristics at VCC = +3.3V with GND = 0V, Tamb = 25°C (unless otherwise specified) (1)
Parameter Supply current Conditions No input signal, no load No input signal, VSTBY = GND for TS488, RL=32Ω No input signal, VSTBY = VCC for TS489, RL=32Ω THD+N = 0.1% max, F = 1kHz, RL = 32Ω THD+N = 1% max, F = 1kHz, RL = 32Ω THD+N = 0.1% max, F = 1kHz, RL = 16Ω THD+N = 1% max, F = 1kHz, RL = 16Ω Total harmonic distortion + noise AV = -1, RL = 32Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz AV = -1, RL = 16Ω, Pout = 35mW, 20Hz ≤ F ≤ 20kHz AV = -1, RL ≥ 16Ω Cb=1µF, F = 1kHz, , Vripple = 200mVpp , AV = -1, RL ≥ 16Ω Cb=1µF, F = 217Hz, Vripple = 200mVpp VOL: RL = 32Ω VOH: RL = 32Ω VOL: RL = 16Ω VOH: RL = 16Ω 2.82 A weighted, AV = -1, RL = 32Ω, THD+N < 0.4%, 20Hz ≤ ≤20kHz F RL = 32Ω, AV = -1 F = 1kHz F = 20Hz to 20kHz 63 61 47 Min. Typ. 1.8 10 10 34 30 35 mW 55 57 0.3 % 0.3 69 dB 67 0.15 3.03 3.12 V 0.28 2.97 102 dB 0.36 0.2 Max. 2.5 1000 nA 1000 Unit mA
ISTBY
Standby current
Pout
Output power
THD+N
PSRR
Power supply rejection ratio, inputs grounded(2)
VO
Output swing
SNR
Signal-to-noise ratio
Crosstalk Channel separation Ci GBP SR VIO twu Input capacitance Gain bandwidth product Slew rate, unity gain inverting Input offset voltage Wake-up time
-102 -84 1
dB pF MHz V/μs 20 mV ms
RL = 32Ω RL = 16Ω Vicm=VCC/2
1.1 0.6 1 100
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V. 2. Guaranteed by design and evaluation.
6/32
TS488-TS489 Table 6.
Symbol ICC
Electrical characteristics
Electrical characteristics at VCC = +2.5V with GND = 0V, Tamb = 25°C (unless otherwise specified)
Parameter Supply current Conditions No input signal, no load No input signal, VSTBY = GND for TS488, RL=32Ω No input signal, VSTBY = VCC for TS489, RL=32Ω THD+N = 0.1% max, F = 1kHz, RL = 32Ω THD+N = 1% max, F = 1kHz, RL = 32Ω THD+N = 0.1% max, F = 1kHz, RL = 16Ω THD+N = 1% max, F = 1kHz, RL = 16Ω Total harmonic distortion + noise AV=-1, RL = 32Ω, Pout = 10mW, 20Hz ≤ F ≤ 20kHz AV=-1, RL = 16Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz AV=-1, RL ≥ 16Ω Cb=1µF, F = 1kHz, , Vripple = 200mVpp AV=-1, RL ≥ 16Ω Cb=1µF, F = 217Hz, , Vripple = 200mVpp VOL: RL = 32Ω VOH: RL = 32Ω VOL: RL = 16Ω VOH: RL = 16Ω 2.15 A weighted, AV=-1, RL = 32Ω, THD+N < 0.4%, 20Hz ≤ F ≤ 20kHz RL = 32Ω, AV=-1 F = 1kHz F = 20Hz to 20kHz 27 Min. Typ. 1.8 10 10 19 18 20 mW 31 32 0.3 % 0.3 68 dB 66 0.12 2.3 2.36 V 0.22 2.25 100 dB 0.28 0.16 Max. 2.5 1000 nA 1000 Unit mA
ISTBY
Standby current
Pout
Output power
THD+N
PSRR
Power supply rejection ratio, inputs grounded (1)
VO
Output swing
SNR
Signal-to-noise ratio
Crosstalk Channel separation Ci GBP SR VIO twu Input capacitance Gain bandwidth product Slew rate, unity gain inverting Input offset voltage Wake-up time
-102 -84 1
dB pF MHz V/μs 20 mV ms
RL = 32Ω RL = 16Ω Vicm=VCC/2
1.1 0.6 1 100
1. Guaranteed by design and evaluation.
7/32
Electrical characteristics Table 7. Index of graphics
Description Open-loop frequency response Power derating curves Signal to noise ratio vs. power supply voltage Power dissipation vs. output power per channel Power supply rejection ratio vs. frequency Total harmonic distortion plus noise vs. output power Total harmonic distortion plus noise vs. frequency Output power vs. load resistance Output power vs. power supply voltage Output voltage swing vs. power supply voltage Current consumption vs. power supply voltage Current consumption vs. standby voltage Crosstalk vs. frequency
TS488-TS489
Figure Figure 2 to Figure 11 Figure 12 to Figure 13 Figure 14 to Figure 19 Figure 20 to Figure 22 Figure 23 to Figure 25 Figure 26 to Figure 43 Figure 44 to Figure 52 Figure 53 to Figure 55 Figure 56, Figure 57 Figure 58 Figure 59 Figure 60 to Figure 65 Figure 66 to Figure 77
8/32
TS488-TS489
Electrical characteristics
Figure 2.
125 100 75
Gain (dB)
Open-loop frequency response
225
gain Vcc=2.5V RL=16Ω T AMB =25°C
Figure 3.
125 100 75
Phase (°) Gain (dB)
Open-loop frequency response
225
gain Vcc=5V RL=16 Ω TAMB=25°C
180 135 90 45 0
180 135
Phase (°)
50 25 0 phase -25 -50 -75 0 10
2 4 6
50 25 0 phase -25 -50 -75 0 10
2 4 6
90 45 0 -45 -90
10 10 10 10
8
-45 -90
10 10 10 10
8
-135
-135
Frequency (Hz)
Frequency (Hz)
Figure 4.
125
Open-loop frequency response
225
gain Vcc=2.5V RL=16Ω CL=400pF T AMB =25°C
Figure 5.
125
Open-loop frequency response
225
gain Vcc=5V RL=16 Ω CL=400pF TAMB=25°C
100 75
Gain (dB)
180 135
Phase (°) Gain (dB)
100 75 50 25 0 phase -25 -50 -75 0 10
2 4 6
180 135
Phase (°)
50 25 0 phase -25 -50 -75 0 10
2 4 6
90 45 0 -45 -90
10 10 10 10
8
90 45 0 -45 -90
10 10 10 10
8
-135
-135
Frequency (Hz)
Frequency (Hz)
Figure 6.
125 100 75
Gain (dB)
Open-loop frequency response
225
gain Vcc=2.5V RL=32Ω T AMB =25°C
Figure 7.
125 100 75
Phase (°) Gain (dB)
Open-loop frequency response
225
gain Vcc=5V RL=32 Ω TAMB=25°C
180 135 90 45 0
180 135
Phase (°)
50 25 0 phase -25 -50 -75 0 10
2 4 6
50 25 0 phase -25 -50 -75 0 10
2 4 6
90 45 0 -45 -90
10 10 10 10
8
-45 -90
10 10 10 10
8
-135
-135
Frequency (Hz)
Frequency (Hz)
9/32
Electrical characteristics
TS488-TS489
Figure 8.
125
Open-loop frequency response
225
gain Vcc=2.5V RL=32Ω CL=400pF T AMB =25°C
Figure 9.
125
Open-loop frequency response
225
gain Vcc=5V RL=32 Ω CL=400pF TAMB=25°C
100 75
Gain (dB)
180 135
Phase (°) Gain (dB)
100 75 50 25 0 phase -25 -50 -75 0 10
2 4 6
180 135
Phase (°)
50 25 0 phase -25 -50 -75 0 10
2 4 6
90 45 0 -45 -90
10 10 10 10
8
90 45 0 -45 -90
10 10 10 10
8
-135
-135
Frequency (Hz)
Frequency (Hz)
Figure 10. Open-loop frequency response
125 100 75
Gain (dB)
Figure 11. Open-loop frequency response
125 100 75
Phase (°) Gain (dB)
225
gain Vcc=2.5V RL=600 Ω T AMB =25°C
225
gain Vcc=5V RL=600 Ω TAMB=25°C
180 135 90 45 0
180 135
Phase (°)
50 25 0 phase -25 -50 -75 0 10
2 4 6
50 25 0 phase -25 -50 -75 0 10
2 4 6
90 45 0 -45 -90
10 10 10 10
8
-45 -90
10 10 10 10
8
-135
-135
Frequency (Hz)
Frequency (Hz)
Figure 12. Power derating curves
0.8 Package Power Dissipation (W)
MiniSO8
Figure 13. Power derating curves
DFN8
Package Power Dissipation (W)
3
0.6
4-layer PCB
4-layer PCB
2
No heatsink
0.4
1
0.2
No Heat sink
0.0
0
0 25 50 75 100 Ambiant Temperature (° C) 125 150
0
25
50 75 100 Ambiant Temperature (° C)
125
150
10/32
TS488-TS489
Electrical characteristics
Figure 14. Signal to noise ratio vs. power supply voltage
110 108 106 104 102 RL=16Ω 100 98 RL=32Ω A-weighted Filter Av=-1, T AMB =25°C Cb=1μ F THD+N