0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS4890

TS4890

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    TS4890 - RAIL TO RAIL OUTPUT 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE ACTIVE LOW - STMicroelectron...

  • 详情介绍
  • 数据手册
  • 价格&库存
TS4890 数据手册
TS4890 RAIL TO RAIL OUTPUT 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE ACTIVE LOW s OPERATING FROM VCC = 2.2V to 5.5V s 1W RAI L TO RAIL OUTPUT POWER @ Vcc=5V, THD=1%, f=1kHz, with 8Ω Load MODE (10nA) PIN CONNECTIONS (Top View) TS4890ID, TS4890IDT - SO8 Standby Bypass VIN+ VIN1 2 3 4 8 7 6 5 VOUT2 GND VCC VOUT1 s ULTRA LOW CONSUMPTION IN STANDBY s 75dB PSRR @ 217Hz from 5 to 2.2V s POP & CLICK REDUCTION CIRCUITRY s ULTRA LOW DISTORTION (0.1%) s UNITY GAIN STABLE s AVAILABLE IN SO8, MiniSO8 & DFN8 DESCRIPTION The TS4890 (MiniSO8 & SO8) is an Audio Power Amplifier capable of delivering 1W of continuous RMS. ouput power into 8Ω load @ 5V. This Audio Amplifier is exhibiting 0.1% distortion level (THD) from a 5V supply for a Pout = 250mW RMS. An external standby mode control reduces the supply current to less than 10nA. An internal thermal shutdown protection is also provided. The TS4890 have been designed for high quality audio applications such as mobile phones and to minimize the number of external components. The unity-gain stable amplifier can be configured by external gain setting resistors. APPLICATIONS TYPICAL APPLICATION SCHEMATIC TS4890IST - MiniSO8 Standby Bypass VIN+ VIN- 1 2 3 4 8 7 6 5 VOUT2 GND VCC VOUT1 TS4890IQT - DFN8 STANDBY BYPASS VIN+ VIN- 1 2 3 4 8 7 6 5 VOUT 2 GND Vcc VOUT 1 s Mobile Phones (Cellular / Cordless) s Laptop / Notebook Computers s PDAs s Portable Audio Devices ORDER CODE Part Temperature Number Range Package Marking S • TS4890 -40, +85°C • • D Q 4890I 4890 4890 Cfeed Rfeed Vcc 6 Audio Input Cin Vcc Cs Rin 4 3 VinVin+ + Vout1 5 RL 8 Ohms Vcc 2 1 Rstb Cb Bypass Standby Bias GND TS4890 Av=-1 + Vout2 8 7 MiniSO & DFN only available in Tape & Reel: with T suffix. SO is available in Tube (D) and of Tape & Reel (DT) June 2003 1/32 TS4890 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vi Toper Tstg Tj Rthja Supply voltage Input Voltage 2) 1) Parameter Value 6 GND to VCC -40 to + 85 -65 to +150 150 175 215 70 See Power Derating Curves Fig. 24 2 200 Class A 260 Unit V V °C °C °C °C/W Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient3) SO8 MiniSO8 DFN8 Power Dissipation4) Human Body Model Machine Model Latch-up Immunity Lead Temperature (soldering, 10sec) Pd ESD ESD W kV V °C 1. 2. 3. 4. All voltages values are measured with respect to the ground pin. The magnitude of input signal must never exceed VCC + 0.3V / G ND - 0.3V Device is protected in case of over temperature by a thermal shutdown active @ 150°C. Exceeding the power derating curves during a long period may involve abnormal working of the device. OPERATING CONDITIONS Symbol VCC VICM VSTB RL Rthja Supply Voltage Common Mode Input Voltage Range Standby Voltage Input : Device ON Device OFF Load Resistor Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 2) 1) Parameter Value 2.2 to 5.5 GND + 1V to VCC 1.5 ≤ VSTB ≤ VCC GND ≤ VSTB ≤ 0.5 4 - 32 150 190 41 Unit V V V Ω °C/W 1. This thermal resistance can be reduced with a suitable PCB layout (see Power Derating Curves Fig. 24) 2. When mounted on a 4 layers PCB 2/32 TS4890 ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC ISTANDBY Voo Po THD + N PSRR ΦM GM GBP Parameter Supply Current No input signal, no load Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω Output Power THD = 1% Max, f = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8Ω Min. Typ. 6 10 5 1 0.15 77 70 20 2 Max. 8 1000 20 Unit mA nA mV W % dB Degrees dB MHz 1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC ISTANDBY Voo Po THD + N PSRR ΦM GM GBP Parameter Supply Current No input signal, no load Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω Output Power THD = 1% Max, f = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8Ω Min. Typ. 5.5 10 5 450 0.15 77 70 20 2 Max. 8 1000 20 Unit mA nA mV mW % dB Degrees dB MHz 1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz 3/32 TS4890 VCC = 2.6V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC ISTANDBY Voo Po THD + N PSRR ΦM GM GBP Parameter Supply Current No input signal, no load Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω Output Power THD = 1% Max, f = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8Ω Min. Typ. 5 10 5 260 0.15 77 70 20 2 Max. 8 1000 20 Unit mA nA mV mW % dB Degrees dB MHz 1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz VCC = 2.2V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC ISTANDBY Voo Po THD + N PSRR ΦM GM GBP Parameter Supply Current No input signal, no load Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω Output Power THD = 1% Max, f = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 100mV rms Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8Ω Min. Typ. 5 10 5 180 0.15 77 70 20 2 Max. 8 1000 20 Unit mA nA mV mW % dB Degrees dB MHz 1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz 4/32 TS4890 Components Rin Cin Rfeed Cs Cb Cfeed Rstb Gv Functional Description Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Feed back resistor which sets the closed loop gain in conjunction with Rin Supply Bypass capacitor which provides power supply filtering Bypass pin capacitor which provides half supply filtering Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency 1 / (2 x Pi x Rfeed x Cfeed)) Pull-down resistor which fixes the right supply level on the standby pin Closed loop gain in BTL configuration = 2 x (Rfeed / Rin) REMARKS 1. All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs = 100µF. 1. External resistors are not needed for having better stability when supply @ Vcc down to 3V. The quiescent current still remains the same. 2. The standby response time is about 1µs. 5/32 TS4890 Fig. 1 : Open Loop Frequency Response Fig. 2 : Open Loop Frequency Response 0 60 Gain Vcc = 5V RL = 8Ω Tamb = 25°C -20 -40 -60 Phase (Deg) 0 60 Gain Vcc = 5V ZL = 8Ω + 560pF Tamb = 25°C -20 -40 -60 Phase (Deg) 40 Gain (dB) 40 Phase Gain (dB) Phase 20 -80 -100 -120 -80 -100 -120 20 0 -140 -160 0 -140 -160 -20 -180 -200 -20 -180 -200 -40 0.3 1 10 100 Frequency (kHz) 1000 10000 -220 -40 0.3 1 10 100 1000 Frequency (kHz) 10000 -220 Fig. 3 : Open Loop Frequency Response Fig. 4 : Open Loop Frequency Response 80 60 40 Gain Vcc = 3.3V RL = 8Ω Tamb = 25°C 0 -20 -40 -60 -80 80 60 40 Phase 20 0 -20 -40 0.3 Gain Vcc = 3.3V ZL = 8Ω + 560pF Tamb = 25°C 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 1 10 100 1000 Frequency (kHz) 10000 -240 Phase (Deg) Phase (Deg) Phase 20 0 -100 -120 -140 -160 -180 -200 -220 -240 -20 -40 0.3 1 10 100 1000 Frequency (kHz) 10000 Fig. 5 : Open Loop Frequency Response Phase (Deg) Gain (dB) Fig. 6 : Open Loop Frequency Response Gain (dB) 80 60 40 Gain (dB) 0 Gain Vcc = 2.6V RL = 8Ω Tamb = 25°C -20 -40 -60 -80 Phase Phase (Deg) Gain (dB) 80 Gain 60 40 Phase 20 0 -20 -40 0.3 Vcc = 2.6V ZL = 8Ω + 560pF Tamb = 25°C 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 1 10 100 1000 Frequency (kHz) 10000 -240 -100 -120 -140 -160 -180 -200 -220 -240 20 0 -20 -40 0.3 1 10 100 1000 Frequency (kHz) 10000 6/32 TS4890 Fig. 7 : Open Loop Frequency Response Fig. 8 : Open Loop Frequency Response 80 60 40 Gain (dB) 0 Gain Vcc = 2.2V RL = 8Ω Tamb = 25°C -20 -40 -60 -80 Phase Phase (Deg) Gain (dB) 80 Gain 60 40 Phase 20 0 -20 -40 0.3 Vcc = 2.2V RL = 8Ω, + 560pF Tamb = 25°C 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 1 10 100 1000 Frequency (kHz) 10000 -240 Phase (Deg) -100 -120 -140 -160 -180 -200 -220 -240 20 0 -20 -40 0.3 1 10 100 1000 Frequency (kHz) 10000 Fig. 9 : Open Loop Frequency Response Fig. 10 : Open Loop Frequency Response 100 80 60 Gain Gain (dB) -80 Phase -100 -120 Phase (Deg) 100 80 60 Gain Gain (dB) -80 Phase -100 -120 -140 -160 Phase (Deg) 40 20 0 -20 -40 0.3 -140 -160 -180 Vcc = 5V CL = 560pF Tamb = 25°C 1 10 100 1000 Frequency (kHz) 10000 -200 40 20 -180 0 -20 Vcc = 3.3V CL = 560pF Tamb = 25°C 1 10 100 1000 Frequency (kHz) 10000 -200 -220 -240 -220 -40 0.3 Fig. 11 : Open Loop Frequency Response Fig. 12 : Open Loop Frequency Response 100 80 60 Gain Gain (dB) -80 Phase -100 -120 Phase (Deg) 100 80 60 Gain Gain (dB) -80 Phase -100 -120 -140 -160 Phase (Deg) -140 -160 40 20 -180 0 -20 -40 0.3 Vcc = 2.6V CL = 560pF Tamb = 25°C 1 10 100 1000 Frequency (kHz) 10000 -200 -220 -240 40 20 -180 0 -20 -40 0.3 Vcc = 2.2V CL = 560pF Tamb = 25°C 1 10 100 1000 Frequency (kHz) 10000 -200 -220 -240 7/32 TS4890 Fig. 13 : Power Supply Rejection Ratio (PSRR) vs Power supply Fig. 14 : Power Supply Rejection Ratio (PSRR) vs Feedback Capacitor -30 Vripple = 200mVrms Rfeed = 22kΩ Input = floating RL = 8Ω Tamb = 25°C Vcc = 5V to 2.2V Cb = 1µF & 0.1µF -10 -20 -30 PSRR (dB) -40 PSRR (dB) -50 -40 -50 -60 Vcc = 5 to 2.2V Cb = 1µF & 0.1µF Rfeed = 22kΩ Vripple = 200mVrms Input = floating RL = 8Ω Tamb = 25°C Cfeed=0 Cfeed=150pF Cfeed=330pF -60 -70 -70 Cfeed=680pF -80 10 100 1000 10000 Frequency (Hz) 100000 -80 10 100 1000 10000 Frequency (Hz) 100000 Fig. 15 : Power Supply Rejection Ratio (PSRR) vs Bypass Capacitor Fig. 16 : Power Supply Rejection Ratio (PSRR) vs Input Capacitor -10 -20 -30 PSRR (dB) -10 Cb=1µF Cb=10µF Vcc = 5 to 2.2V Rfeed = 22k Rin = 22k, Cin = 1µF Rg = 100Ω, RL = 8Ω Tamb = 25°C Cb=47µF Cin=1µF Cin=330nF Cin=220nF -20 -40 -50 -60 PSRR (dB) -30 Vcc = 5 to 2.2V Rfeed = 22k, Rin = 22k Cb = 1µF Rg = 100Ω, RL = 8Ω Tamb = 25°C -40 Cin=100nF -50 Cin=22nF -70 Cb=100µF -80 10 100 1000 Frequency (Hz) 10000 100000 -60 10 100 1000 Frequency (Hz) 10000 100000 Fig. 17 : Power Supply Rejection Ratio (PSRR) vs Feedback Resistor Fig. 18 : Pout @ THD + N = 1% vs Supply Voltage vs RL -10 -20 -30 PSRR (dB) 1.4 Rfeed=110kΩ Rfeed=47kΩ Output power @ 1% THD + N (W) -40 -50 -60 -70 -80 10 Vcc = 5 to 2.2V Cb = 1µF & 0.1µF Vripple = 200mVrms Input = floating RL = 8Ω Tamb = 25°C 1.2 1.0 0.8 0.6 0.4 0.2 Gv = 2 & 10 Cb = 1µF F = 1kHz BW < 125kHz Tamb = 25°C 8Ω 6Ω 4Ω 16Ω Rfeed=22kΩ Rfeed=10kΩ 100 1000 10000 Frequency (Hz) 100000 32Ω 0.0 2.5 3.0 3.5 Vcc (V) 4.0 4.5 5.0 8/32 TS4890 Fig. 19 : Pout @ THD + N = 10% vs Supply Voltage vs RL Fig. 20 : Power Dissipation vs Pout 2.0 Output power @ 10% THD + N (W) 1.4 Gv = 2 & 10 Cb = 1µF F = 1kHz BW < 125kHz Tamb = 25°C 8Ω 4Ω 6Ω Power Dissipation (W) 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 2.5 Vcc=5V 1.2 F=1kHz THD+N
TS4890
1. 物料型号: - TS4890ID, TS4890IDT - SO8封装 - TS4890IST - MiniSO8封装 - TS4890IQT - DFN8封装

2. 器件简介: - TS4890是一款音频功率放大器,能够在5V供电下为8欧姆负载提供1W的连续RMS输出功率。该放大器展示了0.1%的失真度(THD),并且在待机模式下消耗的供电电流小于10nA。此外,还提供了内部热关机保护功能。

3. 引脚分配: - 文档提供了TS4890的引脚连接图,展示了从电源电压(Vcc)到地(GND)的各个引脚配置。

4. 参数特性: - 供电电压范围:2.2V至5.5V - 待机电流:小于10nA(无输入信号,Vstdby=GND, RL=8欧姆) - 输出功率:在1kHz频率下,THD=1%时,8欧姆负载下为1W - 总谐波失真加噪声(THD+N):在250mW RMS输出功率下,20Hz至20kHz频率范围内为0.15%

5. 功能详解: - TS4890设计用于高质量音频应用,如移动电话,并尽量减少外部组件数量。该放大器可以通过外部增益设置电阻进行配置。 - 该放大器支持桥接平衡负载(BTL)配置,可以在相同的电源电压下提供比单端配置高四倍的输出功率。

6. 应用信息: - 典型应用包括移动电话、笔记本电脑、PDA和便携式音频设备。

7. 封装信息: - 提供了SO8、MiniSO8和DFN8三种封装方式的详细机械数据,包括尺寸、公差等。
TS4890 价格&库存

很抱歉,暂时无法提供与“TS4890”相匹配的价格&库存,您可以联系我们找货

免费人工找货