TS4890
RAIL TO RAIL OUTPUT 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE ACTIVE LOW
s OPERATING FROM VCC = 2.2V to 5.5V s 1W RAI L TO RAIL OUTPUT POWER @
Vcc=5V, THD=1%, f=1kHz, with 8Ω Load MODE (10nA) PIN CONNECTIONS (Top View)
TS4890ID, TS4890IDT - SO8
Standby Bypass VIN+ VIN1 2 3 4 8 7 6 5 VOUT2 GND VCC VOUT1
s ULTRA LOW CONSUMPTION IN STANDBY s 75dB PSRR @ 217Hz from 5 to 2.2V s POP & CLICK REDUCTION CIRCUITRY s ULTRA LOW DISTORTION (0.1%) s UNITY GAIN STABLE s AVAILABLE IN SO8, MiniSO8 & DFN8
DESCRIPTION The TS4890 (MiniSO8 & SO8) is an Audio Power Amplifier capable of delivering 1W of continuous RMS. ouput power into 8Ω load @ 5V. This Audio Amplifier is exhibiting 0.1% distortion level (THD) from a 5V supply for a Pout = 250mW RMS. An external standby mode control reduces the supply current to less than 10nA. An internal thermal shutdown protection is also provided. The TS4890 have been designed for high quality audio applications such as mobile phones and to minimize the number of external components. The unity-gain stable amplifier can be configured by external gain setting resistors. APPLICATIONS
TYPICAL APPLICATION SCHEMATIC
TS4890IST - MiniSO8
Standby Bypass VIN+ VIN-
1 2 3 4
8 7 6 5
VOUT2 GND VCC VOUT1
TS4890IQT - DFN8
STANDBY BYPASS VIN+ VIN-
1 2 3 4
8 7 6 5
VOUT 2 GND Vcc VOUT 1
s Mobile Phones (Cellular / Cordless) s Laptop / Notebook Computers s PDAs s Portable Audio Devices
ORDER CODE
Part Temperature Number Range Package Marking S • TS4890 -40, +85°C • • D Q 4890I 4890 4890
Cfeed Rfeed Vcc 6 Audio Input Cin Vcc Cs
Rin
4 3
VinVin+
+
Vout1 5
RL 8 Ohms Vcc 2 1 Rstb Cb Bypass Standby Bias GND TS4890 Av=-1 + Vout2 8
7
MiniSO & DFN only available in Tape & Reel: with T suffix. SO is available in Tube (D) and of Tape & Reel (DT)
June 2003
1/32
TS4890
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vi Toper Tstg Tj Rthja Supply voltage Input Voltage
2) 1)
Parameter
Value 6 GND to VCC -40 to + 85 -65 to +150 150 175 215 70 See Power Derating Curves Fig. 24 2 200 Class A 260
Unit V V °C °C °C °C/W
Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient3) SO8 MiniSO8 DFN8 Power Dissipation4) Human Body Model Machine Model Latch-up Immunity Lead Temperature (soldering, 10sec)
Pd ESD ESD
W kV V °C
1. 2. 3. 4.
All voltages values are measured with respect to the ground pin. The magnitude of input signal must never exceed VCC + 0.3V / G ND - 0.3V Device is protected in case of over temperature by a thermal shutdown active @ 150°C. Exceeding the power derating curves during a long period may involve abnormal working of the device.
OPERATING CONDITIONS
Symbol VCC VICM VSTB RL Rthja Supply Voltage Common Mode Input Voltage Range Standby Voltage Input : Device ON Device OFF Load Resistor Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 2)
1)
Parameter
Value 2.2 to 5.5 GND + 1V to VCC 1.5 ≤ VSTB ≤ VCC GND ≤ VSTB ≤ 0.5 4 - 32 150 190 41
Unit V V V Ω °C/W
1. This thermal resistance can be reduced with a suitable PCB layout (see Power Derating Curves Fig. 24)
2. When mounted on a 4 layers PCB
2/32
TS4890
ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol ICC ISTANDBY Voo Po THD + N PSRR ΦM GM GBP Parameter Supply Current No input signal, no load Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω Output Power THD = 1% Max, f = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8Ω Min. Typ. 6 10 5 1 0.15 77 70 20 2 Max. 8 1000 20 Unit mA nA mV W % dB Degrees dB MHz
1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz
VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol ICC ISTANDBY Voo Po THD + N PSRR ΦM GM GBP Parameter Supply Current No input signal, no load Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω Output Power THD = 1% Max, f = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8Ω Min. Typ. 5.5 10 5 450 0.15 77 70 20 2 Max. 8 1000 20 Unit mA nA mV mW % dB Degrees dB MHz
1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz
3/32
TS4890
VCC = 2.6V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol ICC ISTANDBY Voo Po THD + N PSRR ΦM GM GBP Parameter Supply Current No input signal, no load Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω Output Power THD = 1% Max, f = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8Ω Min. Typ. 5 10 5 260 0.15 77 70 20 2 Max. 8 1000 20 Unit mA nA mV mW % dB Degrees dB MHz
1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz
VCC = 2.2V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol ICC ISTANDBY Voo Po THD + N PSRR ΦM GM GBP Parameter Supply Current No input signal, no load Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω Output Power THD = 1% Max, f = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 100mV rms Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8Ω Min. Typ. 5 10 5 180 0.15 77 70 20 2 Max. 8 1000 20 Unit mA nA mV mW % dB Degrees dB MHz
1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz
4/32
TS4890
Components Rin Cin Rfeed Cs Cb Cfeed Rstb Gv
Functional Description Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Feed back resistor which sets the closed loop gain in conjunction with Rin Supply Bypass capacitor which provides power supply filtering Bypass pin capacitor which provides half supply filtering Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency 1 / (2 x Pi x Rfeed x Cfeed)) Pull-down resistor which fixes the right supply level on the standby pin Closed loop gain in BTL configuration = 2 x (Rfeed / Rin)
REMARKS 1. All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs = 100µF. 1. External resistors are not needed for having better stability when supply @ Vcc down to 3V. The quiescent current still remains the same. 2. The standby response time is about 1µs.
5/32
TS4890
Fig. 1 : Open Loop Frequency Response Fig. 2 : Open Loop Frequency Response
0 60 Gain Vcc = 5V RL = 8Ω Tamb = 25°C -20 -40 -60
Phase (Deg)
0 60 Gain Vcc = 5V ZL = 8Ω + 560pF Tamb = 25°C -20 -40 -60
Phase (Deg)
40
Gain (dB)
40 Phase
Gain (dB)
Phase 20
-80 -100 -120
-80 -100 -120
20
0
-140 -160
0
-140 -160
-20
-180 -200
-20
-180 -200
-40 0.3
1
10
100
Frequency (kHz)
1000
10000
-220
-40 0.3
1
10
100 1000 Frequency (kHz)
10000
-220
Fig. 3 : Open Loop Frequency Response
Fig. 4 : Open Loop Frequency Response
80 60 40 Gain Vcc = 3.3V RL = 8Ω Tamb = 25°C
0 -20 -40 -60 -80
80 60 40 Phase 20 0 -20 -40 0.3 Gain Vcc = 3.3V ZL = 8Ω + 560pF Tamb = 25°C
0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 1 10 100 1000 Frequency (kHz) 10000 -240
Phase (Deg)
Phase (Deg)
Phase 20 0
-100 -120 -140 -160 -180 -200 -220 -240
-20 -40 0.3
1
10
100 1000 Frequency (kHz)
10000
Fig. 5 : Open Loop Frequency Response
Phase (Deg)
Gain (dB)
Fig. 6 : Open Loop Frequency Response
Gain (dB)
80 60 40
Gain (dB)
0 Gain Vcc = 2.6V RL = 8Ω Tamb = 25°C -20 -40 -60 -80 Phase
Phase (Deg)
Gain (dB)
80 Gain 60 40 Phase 20 0 -20 -40 0.3 Vcc = 2.6V ZL = 8Ω + 560pF Tamb = 25°C
0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 1 10 100 1000 Frequency (kHz) 10000 -240
-100 -120 -140 -160 -180 -200 -220 -240
20 0 -20 -40 0.3
1
10
100 1000 Frequency (kHz)
10000
6/32
TS4890
Fig. 7 : Open Loop Frequency Response Fig. 8 : Open Loop Frequency Response
80 60 40
Gain (dB)
0 Gain Vcc = 2.2V RL = 8Ω Tamb = 25°C -20 -40 -60 -80 Phase
Phase (Deg)
Gain (dB)
80 Gain 60 40 Phase 20 0 -20 -40 0.3 Vcc = 2.2V RL = 8Ω, + 560pF Tamb = 25°C
0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 1 10 100 1000 Frequency (kHz) 10000 -240
Phase (Deg)
-100 -120 -140 -160 -180 -200 -220 -240
20 0 -20 -40 0.3
1
10
100 1000 Frequency (kHz)
10000
Fig. 9 : Open Loop Frequency Response
Fig. 10 : Open Loop Frequency Response
100 80 60 Gain
Gain (dB)
-80 Phase -100 -120
Phase (Deg)
100 80 60 Gain
Gain (dB)
-80 Phase -100 -120 -140 -160
Phase (Deg)
40 20 0 -20 -40 0.3
-140 -160 -180 Vcc = 5V CL = 560pF Tamb = 25°C 1 10 100 1000 Frequency (kHz) 10000 -200
40 20 -180 0 -20 Vcc = 3.3V CL = 560pF Tamb = 25°C 1 10 100 1000 Frequency (kHz) 10000 -200 -220 -240
-220
-40 0.3
Fig. 11 : Open Loop Frequency Response
Fig. 12 : Open Loop Frequency Response
100 80 60 Gain
Gain (dB)
-80 Phase -100 -120
Phase (Deg)
100 80 60 Gain
Gain (dB)
-80 Phase -100 -120 -140 -160
Phase (Deg)
-140 -160
40 20 -180 0 -20 -40 0.3 Vcc = 2.6V CL = 560pF Tamb = 25°C 1 10 100 1000 Frequency (kHz) 10000 -200 -220 -240
40 20 -180 0 -20 -40 0.3 Vcc = 2.2V CL = 560pF Tamb = 25°C 1 10 100 1000 Frequency (kHz) 10000 -200 -220 -240
7/32
TS4890
Fig. 13 : Power Supply Rejection Ratio (PSRR) vs Power supply Fig. 14 : Power Supply Rejection Ratio (PSRR) vs Feedback Capacitor
-30 Vripple = 200mVrms Rfeed = 22kΩ Input = floating RL = 8Ω Tamb = 25°C Vcc = 5V to 2.2V Cb = 1µF & 0.1µF
-10 -20 -30
PSRR (dB)
-40
PSRR (dB)
-50
-40 -50 -60
Vcc = 5 to 2.2V Cb = 1µF & 0.1µF Rfeed = 22kΩ Vripple = 200mVrms Input = floating RL = 8Ω Tamb = 25°C
Cfeed=0 Cfeed=150pF Cfeed=330pF
-60
-70 -70 Cfeed=680pF -80 10 100 1000 10000 Frequency (Hz) 100000 -80 10 100 1000 10000 Frequency (Hz) 100000
Fig. 15 : Power Supply Rejection Ratio (PSRR) vs Bypass Capacitor
Fig. 16 : Power Supply Rejection Ratio (PSRR) vs Input Capacitor
-10 -20 -30
PSRR (dB)
-10 Cb=1µF Cb=10µF Vcc = 5 to 2.2V Rfeed = 22k Rin = 22k, Cin = 1µF Rg = 100Ω, RL = 8Ω Tamb = 25°C Cb=47µF
Cin=1µF Cin=330nF Cin=220nF
-20
-40 -50 -60
PSRR (dB)
-30
Vcc = 5 to 2.2V Rfeed = 22k, Rin = 22k Cb = 1µF Rg = 100Ω, RL = 8Ω Tamb = 25°C
-40 Cin=100nF -50 Cin=22nF
-70 Cb=100µF -80 10 100 1000
Frequency (Hz)
10000
100000
-60 10
100
1000
Frequency (Hz)
10000
100000
Fig. 17 : Power Supply Rejection Ratio (PSRR) vs Feedback Resistor
Fig. 18 : Pout @ THD + N = 1% vs Supply Voltage vs RL
-10 -20 -30
PSRR (dB)
1.4 Rfeed=110kΩ Rfeed=47kΩ
Output power @ 1% THD + N (W)
-40 -50 -60 -70 -80 10
Vcc = 5 to 2.2V Cb = 1µF & 0.1µF Vripple = 200mVrms Input = floating RL = 8Ω Tamb = 25°C
1.2 1.0 0.8 0.6 0.4 0.2
Gv = 2 & 10 Cb = 1µF F = 1kHz BW < 125kHz Tamb = 25°C
8Ω 6Ω 4Ω 16Ω
Rfeed=22kΩ Rfeed=10kΩ 100 1000 10000 Frequency (Hz) 100000
32Ω 0.0 2.5 3.0 3.5
Vcc (V)
4.0
4.5
5.0
8/32
TS4890
Fig. 19 : Pout @ THD + N = 10% vs Supply Voltage vs RL Fig. 20 : Power Dissipation vs Pout
2.0
Output power @ 10% THD + N (W)
1.4
Gv = 2 & 10 Cb = 1µF F = 1kHz BW < 125kHz Tamb = 25°C 8Ω 4Ω 6Ω
Power Dissipation (W)
1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 2.5
Vcc=5V 1.2 F=1kHz THD+N