0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS4909

TS4909

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    TS4909 - Dual mode low power 150mW stereo headphone amplifier with capacitor-less and single-ended o...

  • 数据手册
  • 价格&库存
TS4909 数据手册
TS4909 Dual mode low power 150mW stereo headphone amplifier with capacitor-less and single-ended outputs Features ■ ■ ■ ■ DFN10 (3x3) No output coupling capacitors necessary Pop-and-click noise reduction circuitry ■ Operating from VCC = 2.2V to 5.5V Standby mode active low Output power: – 158mW @5V, into 16Ω with 1% THD+N max (1kHz) – 52mW @3.0V into 16Ω with 1% THD+N max (1kHz) Ultra low current consumption: 2.0mA typ.@3V Ultra low standby consumption: 10nA typ. High signal-to-noise ratio: 105 dB typ.@5V High crosstalk immunity: 110dB (F=1kHz) for single-ended outputs PSRR: 72dB (F=1kHz), inputs grounded, for phantom ground outputs Low tWU: 50ms in PHG mode, 100ms in SE mode Available in lead-free DFN10 3x3mm Stdby Bypass BIAS Vout3 Pin connections (top view) Vin1 Stdby SE/PHG Bypass Vin2 1 2 3 4 5 10 9 8 7 6 Vdd Vout1 Vout3 Vout2 Gnd ■ ■ ■ ■ ■ ■ ■ Functional block diagram Vdd SE/PHG Vin1 Vout1 Applications ■ ■ Headphone amplifier Mobile phone ■ PDA, portable audio player Vin2 Vout2 Gnd Description The TS4909 is a stereo audio amplifier designed to drive headphones in portable applications. The integrated phantom ground is a circuit topology that eliminates the heavy output coupling capacitors. This is of primary importance in portable applications where space constraints are very high. A single-ended configuration is also available, offering even lower power consumption because the phantom ground can be switched off. Pop-and-click noise during switch-on and switchoff phases is eliminated by integrated circuitry. Specially designed for applications requiring low power supplies, the TS4909 is capable of delivering 31mW of continuous average power into a 32Ω load with less than 1% THD+N from a 3V power supply. Featuring an active low standby mode, the TS4909 reduces the supply current to only 10nA (typ.). The TS4909 is unity gain stable and can be configured by external gain-setting resistors. September 2007 Rev 8 1/32 www.st.com 32 Contents TS4909 Contents 1 2 3 4 Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 4.2 4.3 4.4 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Gain using the typical application schematics . . . . . . . . . . . . . . . . . . . . . 23 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4.1 4.4.2 4.4.3 Single-ended configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Phantom ground configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.5 4.6 4.7 4.8 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 6 7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2/32 TS4909 Typical application schematics 1 Typical application schematics Figure 1. Typical applications for the TS4909 Rfeed1 20k Vcc Cs 1µF SE/PHG Phantom ground configuration Vin1 Cin1 330nF 20k Rin1 Vout1 Standby Vout3 Cb 1µF Vin2 330nF Cin2 20k Rin2 Gnd Vout2 BIAS 20k Rfeed2 Rfeed1 20k Vcc Cs 1µF SE/PHG Single-ended configuration Vin1 Cin1 330nF 20k Rin1 Vout1 Cout1 Standby Vout3 Cb 1µF BIAS Vin2 330nF Cin2 Cout2 20k Rin2 Gnd Vout2 20k Rfeed2 Table 1. Component Rin1,2 Cin1,2 Rfeed1,2 Cb Cs Application component information Functional description Inverting input resistor that sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)). Input coupling capacitor that blocks the DC voltage at the amplifier’s input terminal. Feedback resistor that sets the closed loop gain in conjunction with Rin. AV= closed loop gain = -Rfeed/Rin. Half supply bypass capacitor. Supply bypass capacitor that provides power supply filtering. 3/32 Absolute maximum ratings and operating conditions TS4909 2 Absolute maximum ratings and operating conditions Table 2. Symbol VCC Vi Tstg Tj Rthja Pdiss ESD ESD Latch-up Supply voltage (1) Input voltage Storage temperature Maximum junction temperature Thermal resistance junction to ambient DFN10 Power dissipation (2) Absolute maximum ratings Parameter Value 6 -0.3V to VCC +0.3V -65 to +150 150 120 1.79 2 200 200 260 170 (3) Unit V V °C °C °C/W W kV V mA °C mA DFN10 Human body model (pin to pin) Machine model 220pF - 240pF (pin to pin) Latch-up immunity (all pins) Lead temperature (soldering, 10 sec) Output current 1. All voltage values are measured with respect to the ground pin. 2. Pd is calculated with Tamb = 25°C, Tjunction = 150°C. 3. Caution: this device is not protected in the event of abnormal operating conditions, such as for example, short-circuiting between any one output pin and ground, between any one output pin and VCC, and between individual output pins. Table 3. Symbol VCC RL Toper CL Operating conditions Parameter Supply voltage Load resistor Operating free air temperature range Load capacitor RL = 16 to 100Ω RL > 100Ω Standby voltage input TS4909 in STANDBY TS4909 in active state Single-ended or phantom ground configuration voltage Input TS4909 outputs in single-ended configuration TS4909 outputs in phantom ground configuration Thermal resistance junction to ambient DFN10(2) Value 2.2 to 5.5 ≥ 16 -40 to + 85 400 100 GND ≤ VSTBY ≤ 0.4 (1) 1.35V ≤ VSTBY ≤ VCC Unit V Ω °C pF VSTBY V VSE/PHG VSE/PHG=VCC VSE/PHG=0 41 V Rthja °C/W 1. The minimum current consumption (ISTBY) is guaranteed at ground for the whole temperature range. 2. When mounted on a 4-layer PCB. 4/32 TS4909 Electrical characteristics 3 Table 4. Symbol ICC ISTBY Electrical characteristics Electrical characteristics at VCC = +5V with GND = 0V and Tamb = 25°C (unless otherwise specified) Parameter Supply current Standby current Test conditions No input signal, no load, single-ended No input signal, no load, phantom ground No input signal, RL=32Ω single-ended single-ended phantom ground phantom ground 60 95 60 95 Min. Typ. Max. Unit 2.1 3.1 10 88 158 85 150 0.3 0.3 0.3 0.3 3.2 4.8 1000 mA nA Pout THD+N = 1% max, F = 1kHz, RL = 32Ω, THD+N = 1% max, F = 1kHz, RL = 16Ω, Output power THD+N = 1% max, F = 1kHz, RL = 32Ω, THD+N = 1% max, F = 1kHz, RL = 16Ω, Total harmonic distortion + noise (Av=-1) RL = 32Ω, RL = 16Ω, RL = 32Ω, RL = 16Ω, mW THD+N Pout = 60mW, 20Hz ≤ F ≤ 20kHz, single-ended Pout = 90mW, 20Hz ≤ F ≤ 20kHz, single-ended Pout = 60mW, 20Hz ≤ F ≤ 20kHz, phantom ground Pout = 90mW, 20Hz ≤ F ≤ 20kHz, phantom ground % PSRR , Inputs grounded(1), Av = -1, RL>=16Ω Cb=1μF, F = 217Hz, Vripple = 200mVpp Power supply rejection ratio Single-ended output referenced to phantom ground Single-ended output referenced to ground Max output current THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2 66 61 72 67 140 0.14 4.75 0.25 4.55 0.47 0.69 dB Iout mA VO VOL: RL = 32Ω VOH: RL = 32Ω Output swing VOL: RL = 16Ω VOH: RL = 16Ω Signal-tonoise ratio A-weighted, Av=-1, RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤20kHz Single-ended Phantom ground RL = 32Ω, Av=-1, phantom ground F = 1kHz F = 20Hz to 20kHz RL = 32Ω, Av=-1, single-ended F = 1kHz F = 20Hz to 20kHz Phantom ground configuration, floating inputs, Rfeed=22KΩ Phantom ground configuration Single-ended configuration 4.39 4.17 V SNR 104 105 -73 -68 -110 -90 5 50 100 20 80 160 dB Crosstalk Channel separation dB VOO tWU Output offset voltage Wake-up time mV ms 1. Guaranteed by design and evaluation. 5/32 Electrical characteristics Table 5. Symbol ICC ISTBY TS4909 Electrical characteristics at VCC = +3.0V with GND = 0V, Tamb = 25°C (unless otherwise specified) (1) Parameter Supply current Standby current Test conditions No input signal, no load, single-ended No input signal, no load, phantom ground No input signal, RL=32Ω single-ended single-ended phantom ground phantom ground 20 30 20 30 Min. Typ. Max. Unit 2 2.8 10 31 52 31 54 0.3 0.3 0.3 0.3 2.8 4.2 1000 mA nA Pout THD+N = 1% max, F = 1kHz, RL = 32Ω, THD+N = 1% max, F = 1kHz, RL = 16Ω, Output power THD+N = 1% max, F = 1kHz, RL = 32Ω, THD+N = 1% max, F = 1kHz, RL = 16Ω, RL = 32Ω, RL = 16Ω, RL = 32Ω, RL = 16Ω, mW Total harmonic distortion + THD+N noise (Av=-1) Pout = 25mW, 20Hz ≤ F ≤ 20kHz, single-ended Pout = 40mW, 20Hz ≤ F ≤ 20kHz, single-ended Pout = 25mW, 20Hz ≤ F ≤ 20kHz, phantom ground Pout = 40mW, 20Hz ≤ F ≤ 20kHz, phantom ground % PSRR , Inputs grounded (2), Av=-1, RL>=16Ω Cb=1μF, F = 217Hz, Power supply Vripple = 200mVpp rejection ratio Single-ended output referenced to phantom ground Single-ended output referenced to ground Max output current THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2 VOL: RL = 32Ω VOH: RL = 32Ω VOL: RL = 16Ω VOH: RL = 16Ω A-weighted, Av=-1, RL = 32Ω, THD +N < 0.4%, 20Hz ≤F ≤ 20kHz Single-ended Phantom ground RL = 32Ω, Av=-1, phantom ground F = 1kHz F = 20Hz to 20kHz RL = 32Ω, Av=-1, single-ended F = 1kHz F = 20Hz to 20kHz Phantom ground configuration, floating inputs, Rfeed=22KΩ Phantom ground configuration Single-ended configuration 64 59 70 65 82 0.12 2.83 0.19 2.70 0.34 0.49 dB Iout mA VO Output swing 2.6 2.45 V SNR Signal-tonoise ratio 100 101 dB Crosstalk Channel separation -73 -68 -110 -90 5 50 100 20 80 160 dB VOO tWU Output offset voltage Wake-up time mV ms 1. All electrical values are guaranteed with correlation measurements at 2.6V and 5V. 2. Guaranteed by design and evaluation. 6/32 TS4909 Table 6. Symbol ICC ISTBY Electrical characteristics Electrical characteristics at VCC = +2.6V with GND = 0V, Tamb = 25°C (unless otherwise specified) Parameter Supply current Standby current Test conditions No input signal, no load, single-ended No input signal, no load, phantom ground No input signal, RL=32Ω single-ended single-ended phantom ground phantom ground 15 22 15 22 Min. Typ. Max. Unit 1.9 2.8 10 23 38 23 39 0.3 0.3 0.3 0.3 2.7 4 1000 mA nA Pout THD+N = 1% max, F = 1kHz, RL = 32Ω, THD+N = 1% max, F = 1kHz, RL = 16Ω, Output power THD+N = 1% max, F = 1kHz, RL = 32Ω, THD+N = 1% max, F = 1kHz, RL = 16Ω, Total harmonic distortion + noise (Av=-1) RL = 32Ω, RL = 16Ω, RL = 32Ω, RL = 16Ω, mW THD+N Pout = 20mW, 20Hz ≤ F ≤ 20kHz, single-ended Pout = 30mW, 20Hz ≤ F ≤ 20kHz, single-ended Pout = 20mW, 20Hz ≤ F ≤ 20kHz, phantom ground Pout = 30mW, 20Hz ≤ F ≤ 20kHz, phantom ground % PSRR , Inputs grounded (1), Av=-1, RL>=16Ω Cb=1μF, F = 217Hz, Power supply Vripple = 200mVpp rejection ratio Single-ended output referenced to phantom ground Single-ended output referenced to ground Max output current THD +N ≤1%, RL = 16Ω connected between out and VCC/2 64 59 70 65 70 0.11 0.3 2.45 0.18 0.44 2.32 dB Iout mA VO VOL: RL = 32Ω V : R = 32Ω Output swing OH L VOL: RL = 16Ω VOH: RL = 16Ω Signal-tonoise ratio A weighted, Av=-1, RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz Single-ended Phantom ground RL = 32Ω, Av=-1, phantom ground F = 1kHz F = 20Hz to 20kHz RL = 32Ω, Av=-1, single-ended F = 1kHz F = 20Hz to 20kHz 2.25 2.11 V SNR 99 100 dB Crosstalk Channel separation -73 -68 -110 -90 5 50 100 20 80 160 dB VOO tWU Output offset Phantom ground configuration, floating inputs, Rfeed=22KΩ voltage Wake-up time Phantom ground configuration Single-ended configuration mV ms 1. Guaranteed by design and evaluation. 7/32 Electrical characteristics Table 7. Index of graphics Description Open-loop frequency response Output swing vs. power supply voltage THD+N vs. output power THD+N vs. frequency Output power vs. power supply voltage Output power vs. load resistance Power dissipation vs. output power Crosstalk vs. frequency Signal to noise ratio vs. power supply voltage Power supply rejection ratio vs. frequency Current consumption vs. power supply voltage Current consumption vs. standby voltage Power derating curves Figure Figure 2 to 6 Figure 7 Figure 8 to 23 Figure 24 to 31 Figure 32 to 35 Figure 36 to 41 Figure 42 to 47 Figure 48 to 53 Figure 54 to 61 Figure 62 to 67 Figure 68 and 69 Figure 70 to 75 Figure 76 TS4909 8/32 TS4909 Electrical characteristics Figure 2. 150 Open-loop frequency response 90 gain 45 phase 0 Phase (°) Figure 3. 100 75 Open-loop frequency response 90 45 gain 0 Phase (°) 125 100 Gain (dB) 50 Gain (dB) 75 50 25 0 -25 -50 -1 10 RL=1M Ω , T AMB=25°C 10 10 3 -45 -90 -135 -180 -225 5 7 25 0 -25 -50 -75 -100 -1 10 RL=100 Ω , CL=400pF, T AMB =25°C 10 10 3 -45 -90 phase -135 -180 -225 5 7 -270 -270 10 10 10 10 Frequency (Hz) Frequency (Hz) Figure 4. 150 Open-loop frequency response 90 gain 45 phase 0 Phase (°) Figure 5. 100 75 Open-loop frequency response 90 45 gain 0 Phase (°) 125 100 Gain (dB) 50 Gain (dB) 75 50 25 0 -25 -50 -1 10 RL=1M Ω , CL=100pF, T AMB=25°C 10 10 3 -45 -90 -135 -180 -225 5 7 25 0 phase -25 -50 -75 -100 -1 10 RL=16 Ω , T AMB =25°C 10 10 3 -45 -90 -135 -180 -225 5 7 -270 -270 10 10 10 10 Frequency (Hz) Frequency (Hz) Figure 6. Open-loop frequency response Figure 7. Output swing vs. power supply voltage 6 100 75 gain 50 Gain (dB) 90 45 0 Phase (°) T AMB =25°C 5 4 3 RL=32Ω 2 1 0 RL=16Ω 25 0 phase -25 -50 -75 -100 -1 10 RL=16 Ω , CL=400pF, TAMB=25°C 10 10 3 -45 -90 -135 -180 -225 5 7 -270 10 10 VOH & VOL (V) Frequency (Hz) 2 3 4 Power Supply Voltage (V) 5 6 9/32 Electrical characteristics TS4909 Figure 8. 10 THD+N vs. output power Figure 9. 10 THD+N vs. output power 1 THD+N (%) Phantom Ground F=1kHz, RL=16Ω Av=-1, Tamb=25°C BW=20Hz-120kHz Vcc=5V THD+N (%) Phantom Ground F=20kHz, RL=16 Ω Av=-1, Tamb=25°C BW=20Hz-120kHz 1 Vcc=5V Vcc=3V Vcc=3V 0.1 Vcc=2.6V 0.01 Vcc=2.6V 0.1 1E-3 1E-3 0.01 Output Power (mW) 0.1 0.2 0.01 1E-3 0.01 Output Power (mW) 0.1 0.2 Figure 10. THD+N vs. output power 10 Phantom Ground F=1kHz, RL=32Ω Av=-1, Tamb=25°C BW=20Hz-120kHz Figure 11. THD+N vs. output power 10 Phantom Ground F=20kHz, RL=32 Ω Av=-1, Tamb=25°C BW=20Hz-120kHz THD+N (%) 1 THD+N (%) 1 Vcc=5V Vcc=3V Vcc=2.6V 0.1 Vcc=5V 0.1 Vcc=3V Vcc=2.6V 0.01 1E-3 1E-3 0.01 Output Power (mW) 0.1 0.2 0.01 1E-3 0.01 Output Power (mW) 0.1 0.2 Figure 12. THD+N vs. output power 10 Single Ended F=1kHz, RL=16 Ω Av=-1, Tamb=25°C BW=20Hz-120kHz Figure 13. THD+N vs. output power 10 Single Ended F=20kHz, RL=16 Ω Av=-1, Tamb=25°C BW=20Hz-120kHz THD+N (%) 1 THD+N (%) Vcc=5V 1 Vcc=3V Vcc=5V Vcc=3V 0.1 Vcc=2.6V 0.01 Vcc=2.6V 0.1 1E-3 1E-3 0.01 Output Power (mW) 0.1 0.2 0.01 1E-3 0.01 Output Power (mW) 0.1 0.2 10/32 TS4909 Electrical characteristics Figure 14. THD+N vs. output power 10 Single Ended F=1kHz, RL=32 Ω Av=-1, Tamb=25°C BW=20Hz-120kHz Figure 15. THD+N vs. output power 10 Single Ended F=20kHz, RL=32 Ω Av=-1, Tamb=25°C BW=20Hz-120kHz THD+N (%) 1 THD+N (%) 1 Vcc=5V Vcc=3V 0.1 Vcc=2.6V Vcc=5V 0.1 Vcc=3V Vcc=2.6V 0.01 1E-3 1E-3 0.01 Output Power (mW) 0.1 0.2 0.01 1E-3 0.01 Output Power (mW) 0.1 0.2 Figure 16. THD+N vs. output power 10 Phantom Ground F=1kHz, RL=16 Ω Av=-4, Tamb=25°C BW=20Hz-120kHz Figure 17. THD+N vs. output power 10 Phantom Ground F=20kHz, RL=16 Ω Av=-4, Tamb=25°C BW=20Hz-120kHz THD+N (%) Vcc=5V Vcc=3V 1 THD+N (%) Vcc=5V 1 Vcc=3V 0.1 Vcc=2.6V Vcc=2.6V 0.1 0.01 1E-3 1E-3 0.01 Output Power (mW) 0.1 0.2 0.01 1E-3 0.01 Output Power (mW) 0.1 0.2 Figure 18. THD+N vs. output power 10 Phantom Ground F=1kHz, RL=32 Ω Av=-4, Tamb=25°C BW=20Hz-120kHz Vcc=3V 0.1 Vcc=2.6V Vcc=5V Figure 19. THD+N vs. output power 10 Phantom Ground F=20kHz, RL=32 Ω Av=-4, Tamb=25°C BW=20Hz-120kHz THD+N (%) Vcc=5V 1 THD+N (%) 1 Vcc=3V Vcc=2.6V 0.1 0.01 1E-3 1E-3 0.01 Output Power (mW) 0.1 0.2 0.01 1E-3 0.01 Output Power (mW) 0.1 0.2 11/32 Electrical characteristics TS4909 Figure 20. THD+N vs. output power 10 Single Ended F=1kHz, RL=16 Ω Av=-4, Tamb=25°C BW=20Hz-120kHz Figure 21. THD+N vs. output power 10 Single Ended F=20kHz, RL=16 Ω Av=-4, Tamb=25°C BW=20Hz-120kHz THD+N (%) Vcc=5V 1 THD+N (%) Vcc=5V 1 Vcc=3V Vcc=3V Vcc=2.6V 0.1 Vcc=2.6V 0.1 0.01 1E-3 1E-3 0.01 Output Power (mW) 0.1 0.2 0.01 1E-3 0.01 Output Power (mW) 0.1 0.2 Figure 22. THD+N vs. output power 10 Single Ended F=1kHz, RL=32 Ω Av=-4, Tamb=25°C BW=20Hz-120kHz Vcc=3V 0.1 Vcc=2.6V Vcc=5V Figure 23. THD+N vs. output power 10 Single Ended F=20kHz, RL=32 Ω Av=-4, Tamb=25°C BW=20Hz-120kHz THD+N (%) Vcc=5V 1 THD+N (%) 1 Vcc=3V Vcc=2.6V 0.1 0.01 1E-3 1E-3 0.01 Output Power (mW) 0.1 0.2 0.01 1E-3 0.01 Output Power (mW) 0.1 0.2 Figure 24. THD+N vs. frequency 1 Phantom Ground RL=16Ω , A v=-1 BW=20Hz-120kHz TAMB =25°C THD+N (%) Figure 25. THD+N vs. frequency 1 Phantom Ground RL=32Ω , A v=-1 BW=20Hz-120kHz T AMB =25°C THD+N (%) 0.1 Vcc=3V Po=40mW 0.1 Vcc=5V Po=60mW Vcc=3V Po=25mW Vcc=2.6V Po=30mW 0.01 Vcc=5V Po=90mW 0.01 Vcc=2.6V Po=20mW 0.002 20 100 1k Frequency (Hz) 0.002 10k 20k 20 100 1k Frequency (Hz) 10k 20k 12/32 TS4909 Electrical characteristics Figure 26. THD+N vs. frequency 1 Single Ended RL=16Ω , Av=-1 BW=20Hz-120kHz TAMB =25°C THD+N (%) Figure 27. THD+N vs. frequency 1 Single Ended RL=32Ω , A v=-1 BW=20Hz-120kHz T AMB =25°C THD+N (%) Vcc=5V Po=90mW 0.1 Vcc=5V Po=60mW 0.1 Vcc=3V Po=40mW 0.01 Vcc=2.6V Po=30mW 0.01 Vcc=2.6V Po=20mW Vcc=3V Po=25mW 0.002 20 100 1k Frequency (Hz) 0.002 10k 20k 20 100 1k Frequency (Hz) 10k 20k Figure 28. THD+N vs. frequency 1 Phantom Ground RL=16Ω , A v=-4 BW=20Hz-120kHz TAMB =25°C THD+N (%) Figure 29. THD+N vs. frequency 1 Phantom Ground RL=32Ω , A v=-4 BW=20Hz-120kHz T AMB =25°C THD+N (%) Vcc=5V Po=90mW Vcc=3V Po=40mW Vcc=5V Po=60mW Vcc=3V Po=25mW 0.1 Vcc=2.6V Po=20mW 0.1 Vcc=2.6V Po=30mW 0.01 0.01 0.005 20 100 1k Frequency (Hz) 0.002 10k 20k 20 100 1k Frequency (Hz) 10k 20k Figure 30. THD+N vs. frequency 1 Single Ended RL=16Ω , A v=-4 BW=20Hz-120kHz TAMB =25°C THD+N (%) Figure 31. THD+N vs. frequency 1 Vcc=5V Po=90mW Single Ended RL=32Ω , A v=-4 BW=20Hz-120kHz T AMB =25°C THD+N (%) Vcc=5V Po=60mW 0.1 Vcc=2.6V Po=20mW 0.1 Vcc=2.6V Po=30mW Vcc=3V Po=40mW Vcc=3V Po=25mW 0.01 0.01 0.005 20 100 1k Frequency (Hz) 0.002 10k 20k 20 100 1k Frequency (Hz) 10k 20k 13/32 Electrical characteristics TS4909 Figure 32. Output power vs. power supply voltage 240 200 Output Power (mW) Figure 33. Output power vs. power supply voltage 140 Phantom Ground RL=32 Ω , F=1kHz Av=-1, T AMB =25°C BW=20Hz-120kHz Phantom Ground RL=16 Ω , F=1kHz Av=-1, T AMB =25°C Output Power (mW) 120 100 80 60 40 20 0 160 120 BW=20Hz-120kHz THD+N=10% 80 40 0 THD+N=1% THD+N=10% THD+N=1% 2 3 4 Power Supply Voltage (V) 5 6 2 3 4 Power Supply Voltage (V) 5 6 Figure 34. Output power vs. power supply voltage 240 200 Output Power (mW) Figure 35. Output power vs. power supply voltage 140 Single Ended RL=32 Ω , F=1kHz Av=-1, T AMB =25°C BW=20Hz-120kHz Single Ended RL=16 Ω , F=1kHz Av=-1, T AMB=25°C BW=20Hz-120kHz Output Power (mW) 120 100 80 60 40 20 0 160 120 THD+N=10% 80 40 0 THD+N=1% THD+N=10% THD+N=1% 2 3 4 Power Supply Voltage (V) 5 6 2 3 4 Power Supply Voltage (V) 5 6 Figure 36. Output power vs. load resistance 50 Phantom Ground Vcc=2.6V, F=1kHz Av=-1, T AMB =25°C BW=20Hz-120kHz 30 THD+N=1% 20 Figure 37. Output power vs. load resistance 50 Single Ended Vcc=2.6V, F=1kHz Av=-1, T AMB=25°C BW=20Hz-120kHz 30 THD+N=1% 20 40 Output Power (mW) THD+N=10% 40 Output Power (mW) THD+N=10% 10 10 0 16 32 48 64 80 96 0 16 32 48 64 80 96 Load Resistance (Ω ) Load Resistance (Ω ) 14/32 TS4909 Electrical characteristics Figure 38. Output power vs. load resistance 80 Phantom Ground Vcc=3V, F=1kHz Av=-1, T AMB=25°C THD+N=10% BW=20Hz-120kHz Figure 39. Output power vs. load resistance 80 Single Ended Vcc=3V, F=1kHz Av=-1, T AMB=25°C BW=20Hz-120kHz Output Power (mW) 40 Output Power (mW) 60 60 THD+N=10% THD+N=1% 40 THD+N=1% 20 20 0 16 32 48 64 80 96 0 16 32 48 64 80 96 Load Resistance (Ω ) Load Resistance (Ω ) Figure 40. Output power vs. load resistance 200 Phantom Ground Vcc=5V, F=1kHz Av=-1, T AMB=25°C BW=20Hz-120kHz THD+N=1% Figure 41. Output power vs. load resistance 200 Single Ended Vcc=5V, F=1kHz Av=-1, T AMB=25°C BW=20Hz-120kHz THD+N=10% Output Power (mW) Output Power (mW) 150 150 THD+N=10% 100 100 THD+N=1% 50 50 0 16 32 48 64 80 96 0 16 32 48 64 80 96 Load Resistance (Ω ) Load Resistance (Ω ) Figure 42. Power dissipation vs. output power Figure 43. Power dissipation vs. output power 80 70 Power Dissipation (mW) 30 Phantom Ground Vcc=2.6V, F=1kHz THD+N
TS4909 价格&库存

很抱歉,暂时无法提供与“TS4909”相匹配的价格&库存,您可以联系我们找货

免费人工找货