0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS4984

TS4984

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    TS4984 - 2 x 1W Stereo audio power amplifier with active low standby mode - STMicroelectronics

  • 数据手册
  • 价格&库存
TS4984 数据手册
TS4984 2 x 1W Stereo audio power amplifier with active low standby mode ■ ■ ■ ■ ■ ■ ■ Operating from VCC=2.2V to 5.5V 1W output power per channel @ VCC=5V, THD+N=1%, RL=8Ω 10nA standby current 62dB PSRR @ 217Hz with grounded inputs High SNR: 100dB(A) typ. Near-zero pop & click Available in QFN16 4x4 mm, 0.5mm pitch, leadfree package Pin Connections (top view) TS4984IQ — TQFN16 4x4mm Description The TS4984 has been designed for top of the class stereo audio applications. Thanks to its compact and power dissipation efficient QFN package, it suits various applications. With a BTL configuration, this Audio Power Amplifier is capable of delivering 1W per channel of continuous RMS output power into an 8Ω load @ 5V. An externally controlled standby mode control reduces the supply current to less than 10nA per channel. The device also features an internal thermal shutdown protection. The gain of each channel can be configured by external gain setting resistors. IN- L IN+ L BYPASS L NC VO-L VO+L VCC1 VCC2 16 15 1 2 3 4 5 6 14 13 12 11 10 9 STBY BYPASS R IN+ R IN- R 7 8 GND1 GND2 VO+R VO-R Applications ■ ■ Cellular mobile phones Notebook computers & PDAs ■ ■ LCD monitors & TVs Portable audio devices Order Codes Part Number TS4984IQT Temperature Range -40, +85°C Package QFN Packaging Tape & Reel Marking K984 January 2005 Revision 1 1/29 TS4984 1 Typical Application Typical Application Figure 1 shows a schematic view of a typical audio amplification application using the TS4984. Table 1 describes the components used in this typical application. Figure 1: Typical application schematic Cfeed-L Rfeed-L 22k VCC + 14 13 Cs 1u U1 VCC1 1 Input L GND Cin-L 100n Rin-L 22k IN-L VO-L 16 2 IN+L + VCC 1 2 3 VCC2 - 12 Standby Bypass L Bias AV = -1 + Neg. Output L VO+L 15 Pos. Output L 3 + Cb 1u Wire optional Internal connection Cin-R Input R GND 100n 22k 10 IN+R + VO-R 8 Rin-R 9 IN-R - AV = -1 11 Neg. Output R VO+R 7 Pos. Output R Bypass R + GND1 GND2 TS4984 5 Cfeed-R Rfeed-R 22k Table 1: External component descriptions Components RIN L,R CIN L,R RFEED L,R CS CB AV L, R Functional Description Inverting input resistors which sets the closed loop gain in conjunction with Rfeed. These resistors also form a high pass filter with CIN (fc = 1 / (2 x Pi x RIN x CIN)). Input coupling capacitors which blocks the DC voltage at the amplifier input terminal. Feedback resistors which sets the closed loop gain in conjunction with RIN. Supply Bypass capacitor which provides power supply filtering. Bypass pin capacitor which provides half supply filtering. Closed loop gain in BTL configuration = 2 x (RFEED / RIN) on each channel. 2/29 6 Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions TS4984 Table 2: Key parameters and their absolute maximum ratings Symbol VCC Vi Toper Tstg Tj Rthja Pd ESD ESD Supply voltage 1 Input Voltage Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient QFN16 Power Dissipation Human Body Model Machine Model Latch-up Immunity 3 2 Parameter Value 6 GND to VCC -40 to + 85 -65 to +150 150 120 Internally Limited 2 200 200mA Unit V V °C °C °C °C/W kV V 1) All voltages values are measured with respect to the ground pin 2) The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V 3) The voltage value is measured with respect from pin to supply Table 3: Operating conditions Symbol VCC VICM VSTB RL TSD RTHJA Supply Voltage Common Mode Input Voltage Range Standby Voltage Input: Device ON Device OFF Load Resistor Thermal Shutdown Temperature Thermal Resistance Junction to Ambient QFN161 QFN162 Parameter Value 2.2 to 5.5 1.2V to VCC 1.35 ≤ VSTB ≤ VCC GND ≤ VSTB ≤ 0.4 Unit V V V ≥4 ≥1 150 45 85 Ω MΩ °C °C/W ROUTGND Resistor Output to GND (VSTB = GND) 1) When mounted on a 4-layer PCB with via 2) When mounted on a 2 layer PCB 3/29 TS4984 3 Electrical characteristics Electrical characteristics Table 4: Electrical characteristics for VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC ISTANDBY Voo Pout THD + N Supply Current No input signal, no load Standby Current 1 No input signal, Vstdby = GND, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω Output Power THD = 1% Max, F = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 1Wrms, Av = 2, 20Hz ≤ F ≤ 20kHz, RL = 8Ω Power Supply Rejection Ratio2 RL = 8Ω, Av = 2, Vripple = 200mVpp, Input Grounded F = 217Hz F = 1kHz Channel Separation, RL = 8Ω F = 1kHz F = 20Hz to 20kHz Wake-Up Time (Cb = 1µF) Standby Time (Cb = 1µF) Standby Voltage Level High Standby Voltage Level Low Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8Ω 65 15 1.5 0.8 Parameter Min. Typ. 7.4 10 Max. 12 1000 Unit mA nA mV W % 1 1 0.2 10 PSRR 55 55 62 64 -92 -70 90 10 1.3 0.4 130 dB Crosstalk TWU TSTDB VSTDBH VSTDBL dB ms µs V V Degrees dB MHz ΦM GM GBP 1) Standby mode is activated when Vstdby is tied to Gnd. 2) All PSRR data limits are guaranteed by production sampling tests Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon Vcc. 4/29 Electrical characteristics TS4984 Table 5: Electrical characteristics for VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC ISTANDBY Voo Pout THD + N Supply Current No input signal, no load Standby Current 1 No input signal, Vstdby = GND, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω Output Power THD = 1% Max, F = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 400mWrms, Av = 2, 20Hz ≤ F ≤ 20kHz, RL = 8Ω Power Supply Rejection Ratio2 RL = 8Ω, Av = 2, Vripple = 200mVpp, Input Grounded F = 217Hz F = 1kHz Channel Separation, RL = 8Ω F = 1kHz F = 20Hz to 20kHz Wake-Up Time (Cb = 1µF) Standby Time (Cb = 1µF) Standby Voltage Level High Standby Voltage Level Low Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8Ω 65 15 1.5 300 Parameter Min. Typ. 6.6 10 Max. 12 1000 Unit mA nA mV mW % 1 450 0.1 10 PSRR 55 55 61 63 -94 -68 110 10 1.2 0.4 140 dB Crosstalk TWU TSTDB VSTDBH VSTDBL dB ms µs V V Degrees dB MHz ΦM GM GBP 1) Standby mode is activated when Vstdby is tied to Gnd 2) All PSRR data limits are guaranteed by production sampling tests Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon Vcc. 5/29 TS4984 Electrical characteristics Table 6: Electrical characteristics for VCC = +2.6V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC ISTANDBY Voo Supply Current No input signal, no load Standby Current 1 No input signal, Vstdby = GND, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω Output Power THD = 1% Max, F = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 200mWrms, Av = 2, 20Hz ≤ F ≤ 20kHz, RL = 8Ω Power Supply Rejection Ratio2 RL = 8Ω, Av = 2, Vripple = 200mVpp, Input Grounded F = 217Hz F = 1kHz Channel Separation, RL = 8Ω F = 1kHz F = 20Hz to 20kHz Wake-Up Time (Cb = 1µF) Standby Time (Cb = 1µF) Standby Voltage Level High Standby Voltage Level Low Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8Ω 65 15 1.5 200 Parameter Min. Typ. 6.2 10 Max. 12 1000 Unit mA nA mV mW % 1 250 0.1 10 Pout THD + N PSRR 55 55 60 62 -95 -68 125 10 1.2 0.4 150 dB Crosstalk TWU TSTDB VSTDBH VSTDBL dB ms µs V V Degrees dB MHz ΦM GM GBP 1) Standby mode is activated when Vstdby is tied to Gnd 2) All PSRR data limits are guaranteed by production sampling tests Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon Vcc. 6/29 Electrical characteristics Figure 2: Open loop frequency response 60 40 20 Gain (dB) TS4984 Figure 5: Open loop frequency response 0 100 80 -40 Phase (°) 0 Gain Gain Phase -80 -40 Phase (°) Phase (°) Phase (°) 60 Gain (dB) 40 Phase 20 0 -80 0 -120 -20 -40 -60 0.1 Vcc = 5V RL = 8Ω Tamb = 25°C 1 10 100 1000 -160 -120 -20 -200 10000 -40 0.1 Vcc = 5V CL = 560pF Tamb = 25°C 1 10 100 1000 -160 -200 10000 Frequency (kHz) Frequency (kHz) Figure 3: Open loop frequency response 60 Gain 40 20 Gain (dB) Figure 6: Open loop frequency response 0 100 80 -40 60 Gain (dB) 0 Gain -40 Phase -80 Phase (°) 40 Phase 20 0 -80 0 -120 -20 -40 -60 0.1 Vcc = 3.3V RL = 8Ω Tamb = 25°C 1 10 100 1000 -160 -120 -20 -200 10000 -40 0.1 Vcc = 3.3V CL = 560pF Tamb = 25°C 1 10 100 1000 -160 -200 10000 Frequency (kHz) Frequency (kHz) Figure 4: Open loop frequency response 60 Gain 40 20 Gain (dB) Figure 7: Open loop frequency response 0 100 80 -40 60 Gain (dB) 0 Gain -40 Phase -80 Phase (°) 40 Phase 20 0 -80 0 -120 -20 -40 -60 0.1 Vcc = 2.6V RL = 8Ω Tamb = 25°C 1 10 100 1000 -160 -120 -20 -200 10000 -40 0.1 Vcc = 2.6V CL = 560pF Tamb = 25°C 1 10 100 1000 -160 -200 10000 Frequency (kHz) Frequency (kHz) 7/29 TS4984 Figure 8: Power supply rejection ratio (PSRR) vs. frequency 0 -10 -20 PSRR (dB) Electrical characteristics Figure 11: Power supply rejection ratio (PSRR) vs. frequency 0 -30 -40 -50 -60 -70 PSRR (dB) Vripple = 200mVpp Av = 2 Input = Grounded Cb = Cin = 1µF RL >= 4Ω Tamb = 25°C -10 Vcc : 2.2V 2.6V 3.3V 5V -20 -30 -40 -50 -60 Vripple = 200mVpp Av = 2 Input = Grounded Cb = 0.1µF, Cin = 1µF RL >= 4Ω Tamb = 25°C Vcc = 5, 3.3, 2.5 & 2.2V 100 1000 10000 Frequency (Hz) 100000 100 1000 10000 Frequency (Hz) 100000 Figure 9: Power supply rejection ratio (PSRR) vs. frequency 0 -10 -20 -30 -40 -50 -60 Vripple = 200mVpp Av = 5 Input = Grounded Cb = Cin = 1µF RL >= 4Ω Tamb = 25°C Vcc : 2.2V 2.6V 3.3V 5V Figure 12: Power supply rejection ratio (PSRR) vs. frequency 0 -10 -20 PSRR (dB) PSRR (dB) -30 -40 -50 -60 -70 Vripple = 200mVpp Rfeed = 22kΩ Input = Floating Cb = 1µF RL >= 4Ω Tamb = 25°C Vcc = 2.2, 2.6, 3.3, 5V 100 1000 10000 Frequency (Hz) 100000 -80 100 1000 10000 Frequency (Hz) 100000 Figure 10: Power supply rejection ratio (PSRR) vs. frequency 0 Vripple = 200mVpp Av = 10 Input = Grounded Cb = Cin = 1µF RL >= 4Ω Tamb = 25°C Vcc : 2.2V 2.6V 3.3V 5V Figure 13: Power supply rejection ratio (PSRR) vs. frequency 0 -10 -20 PSRR (dB) -10 PSRR (dB) -20 -30 -40 -50 -60 -70 Vripple = 200mVpp Rfeed = 22kΩ Input = Floating Cb = 0.1µF RL >= 4Ω Tamb = 25°C Vcc = 2.2, 2.6, 3.3, 5V -30 -40 -50 100 1000 10000 Frequency (Hz) 100000 -80 100 1000 10000 Frequency (Hz) 100000 8/29 Electrical characteristics Figure 14: Power supply rejection ratio (PSRR) vs. DC output voltage 0 -10 -20 PSRR (dB) TS4984 Figure 17: Power supply rejection ratio (PSRR) vs. DC output voltage 0 PSRR (dB) -30 -40 -50 -60 -70 -5 Vcc = 5V Vripple = 200mVpp RL = 8Ω Cb = 1µF AV = 2 Tamb = 25°C -10 -20 -30 -40 -50 -60 Vcc = 3.3V Vripple = 200mVpp RL = 8Ω Cb = 1µF AV = 2 Tamb = 25°C -4 -3 -2 -1 0 1 2 3 Differential DC Output Voltage (V) 4 5 -70 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Differential DC Output Voltage (V) Figure 15: Power supply rejection ratio (PSRR) vs. DC output voltage 0 -10 -20 -30 -40 -50 -60 -5 Vcc = 5V Vripple = 200mVpp RL = 8Ω Cb = 1µF AV = 5 Tamb = 25°C Figure 18: Power supply rejection ratio (PSRR) vs. DC output voltage 0 -10 -20 -30 -40 -50 -60 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Differential DC Output Voltage (V) Vcc = 3.3V Vripple = 200mVpp RL = 8Ω Cb = 1µF AV = 5 Tamb = 25°C PSRR (dB) -4 -3 -2 -1 0 1 2 3 Differential DC Output Voltage (V) 4 5 Figure 16: Power supply rejection ratio (PSRR) vs. DC output voltage 0 Vcc = 5V Vripple = 200mVpp RL = 8Ω Cb = 1µF AV = 10 Tamb = 25°C Figure 19: Power supply rejection ratio (PSRR) vs. DC output voltage 0 Vcc = 3.3V Vripple = 200mVpp RL = 8Ω Cb = 1µF AV = 10 Tamb = 25°C PSRR (dB) PSRR (dB) -10 -10 PSRR (dB) -20 -20 -30 -30 -40 -40 -50 -5 -4 -3 -2 -1 0 1 2 3 Differential DC Output Voltage (V) 4 5 -50 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Differential DC Output Voltage (V) 9/29 TS4984 Figure 20: Power supply rejection ratio (PSRR) vs. DC output voltage Electrical characteristics Figure 23: Power supply rejection ratio (PSRR) at f=217Hz vs. bypass capacitor 0 -10 -20 Vcc = 2.6V Vripple = 200mVpp RL = 8Ω Cb = 1µF AV = 2 Tamb = 25°C -30 PSRR at 217Hz (dB) -40 Av=10 Vcc: 2.6V 3.3V 5V PSRR (dB) -30 -40 -50 -60 -50 Av=2 Vcc: 2.6V 3.3V 5V -60 -70 Av=5 Vcc: 2.6V 3.3V 5V 1 Bypass Capacitor Cb ( F) Tamb=25°C -70 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 -80 0.1 Differential DC Output Voltage (V) Figure 21: Power supply rejection ratio (PSRR) vs. DC output voltage 0 -10 -20 -30 -40 -50 Vcc = 2.6V Vripple = 200mVpp RL = 8Ω Cb = 1µF AV = 5 Tamb = 25°C Figure 24: Output power vs. power supply voltage 2.00 RL = 4Ω 1.75 F = 1kHz BW < 125kHz 1.50 Tamb = 25°C 1.25 Pout (W) THD+N=10% PSRR (dB) 1.00 0.75 0.50 0.25 THD+N=1% -60 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 0.00 2.5 3.0 3.5 Differential DC Output Voltage (V) 4.0 Vcc (V) 4.5 5.0 5.5 Figure 22: Power supply rejection ratio (PSRR) vs. DC output voltage 0 Vcc = 2.6V Vripple = 200mVpp RL = 8Ω Cb = 1µF AV = 10 Tamb = 25°C Figure 25: Output power vs. power supply voltage 1.75 RL = 8Ω 1.50 F = 1kHz BW < 125kHz 1.25 Tamb = 25°C Pout (W) -10 THD+N=10% PSRR (dB) -20 1.00 0.75 0.50 -30 -40 0.25 -50 -2.5 -2.0 -1.5 -1.0 -0.5 THD+N=1% 0.0 0.5 1.0 1.5 2.0 2.5 0.00 2.5 3.0 3.5 Differential DC Output Voltage (V) 4.0 Vcc (V) 4.5 5.0 5.5 10/29 Electrical characteristics Figure 26: Output power vs. power supply voltage 1.0 RL = 16Ω F = 1kHz 0.8 BW < 125kHz Tamb = 25°C 0.7 0.9 Pout (W) TS4984 Figure 29: Output power vs. load resistor 0.7 0.6 THD+N=10% 0.5 Pout (W) THD+N=10% Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C 0.6 0.5 0.4 0.3 0.2 0.1 0.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 THD+N=1% 0.4 0.3 0.2 0.1 0.0 THD+N=1% 4 8 12 16 20 Load resistance 24 28 32 Figure 27: Output power vs. power supply voltage 0.60 0.55 RL = 32Ω F = 1kHz 0.50 BW < 125kHz 0.45 Tamb = 25°C 0.40 Pout (W) Figure 30: Output power vs. load resistor 0.40 THD+N=10% 0.35 0.30 0.25 Pout (W) THD+N=10% Vcc = 2.6V F = 1kHz BW < 125kHz Tamb = 25°C 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 THD+N=1% 0.20 0.15 0.10 0.05 0.00 4 THD+N=1% 8 12 16 20 Load resistance 24 28 32 Figure 28: Output power vs. load resistor 1.75 1.50 THD+N=10% 1.25 Pout (W) Figure 31: Power dissipation vs. output power Power Dissipation (W) Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C Vcc=5V 2.4 F=1kHz THD+N
TS4984 价格&库存

很抱歉,暂时无法提供与“TS4984”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TS4984IQT
  •  国内价格
  • 1+3.20771
  • 30+3.0971
  • 100+2.87588
  • 500+2.65465
  • 1000+2.54404

库存:0