0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS512AID-DT

TS512AID-DT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    TS512AID-DT - Precision dual operational amplifier - STMicroelectronics

  • 数据手册
  • 价格&库存
TS512AID-DT 数据手册
TS512 Precision dual operational amplifier Features ■ ■ ■ ■ ■ ■ ■ ■ Low input offset voltage: 500 µV max. Low power consumption Short-circuit protection Low distortion, low noise High gain-bandwidth product: 3 MHz High channel separation ESD protection 2 kV Macromodel included in this specification D SO-8 (Plastic micropackage) N DIP8 (Plastic package) Description The TS512 is a high performance dual operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation in voltage follower in spite of its high gain-bandwidth product. The circuit presents very stable electrical characteristics over the entire supply voltage range, and is particularly intended for professional and telecom applications (such as active filtering). Pin connections (Top view) VCC + Output Inverting Input 2 Non-inverting Input 2 Output 1 1 Inverting Input 1 2 Non-inverting Input 1 3 VCC - 4 + + 8 7 6 5 May 2008 Rev 3 1/16 www.st.com 16 Absolute maximum ratings and operating conditions TS512 1 Absolute maximum ratings and operating conditions Table 1. Symbol VCC Vin Vid Rthja Supply voltage Input voltage Differential input voltage Thermal resistance junction to ambient (1) DIP8 SO-8 Thermal resistance junction to case (1) DIP8 SO-8 Junction temperature Storage temperature range HBM: human body model(2) ESD MM: machine model (3) (4) Absolute maximum ratings Parameter Value ±18 ±VCC ±(VCC - 1) 85 125 41 40 + 150 -65 to +150 2 200 1.5 °C/W Unit V Rthjc Tj Tstg °C/W °C °C kV V kV CDM: charged device model 1. Short-circuits can cause excessive heating and destructive dissipation.Rth are typical values. 2. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 3. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. 4. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. Table 2. Symbol VCC Vicm Toper Operating conditions Parameter Supply voltage(1) Common mode input voltage range Operating free air temperature range Value 6 to 30V VDD+1.5 to VCC-1.5 -40 to +125 Unit V V °C 1. Value with respect to VDD pin. 2/16 TS512 Schematic diagram 2 Schematic diagram Figure 1. Schematic diagram (1/2 TS512) VCC R16 4kΩ Q25 Q11 Q2 Q12 R12 812Ω Q3 Q27 Q37 Inverting Input Q15 Q22 Q5 Q7 Q31 Q4 Q6 Q8 Q9 Q17 Q32 Q18 Q10 C1 43pF R3 60kΩ R4 1.2kΩ R7 15kΩ Q19 R8 150kΩ R9 15kΩ Q23 Q33 R10 45kΩ VCC Q34 Q20 C2 23pF Q28 Q36 Non-inverting Input R13 27Ω Output Q38 R17 4kΩ R14 27Ω Q29 Q21 R1 2kΩ R2 2kΩ R5 4kΩ R6 4kΩ Q13 R11 1kΩ Q14 R18 2kΩ Q35 Q30 R15 150kΩ 3/16 Electrical characteristics TS512 3 Electrical characteristics Table 3. Symbol ICC Iib Rin VCC = ±15V, Tamb = 25°C (unless otherwise specified) Parameter Supply current (per operator) Tmin ≤ Tamb ≤T max Input bias current Tmin ≤ Tamb ≤T max Input resistance, f = 1kHz Input offset voltage TS512 TS512A Tmin ≤ Tamb ≤ Tmax TS512 TS512A Input offset voltage drift Tmin ≤ Tamb ≤ Tmax Input offset current Tmin ≤ Tamb ≤ Tmax Input offset current drift Tmin ≤ Tamb ≤ Tmax Output short-circuit current Large signal voltage gain RL = 2kΩ, VCC = ±15V, Tmin ≤ Tamb ≤T max VCC = ± 4V Gain-bandwidth product, f = 100kHz Equivalent input noise voltage, f = 1kHz Rs = 50Ω Rs = 1kΩ Rs = 10kΩ Total harmonic distortion Av = 20dB, RL = 2kΩ Vo = 2Vpp, f = 1kHz Output voltage swing RL = 2kΩ, VCC = ±15V, Tmin ≤ Tamb ≤T max VCC = ± 4V Large signal voltage swing RL = 10kΩ, f = 10kHz Slew rate Unity gain, RL = 2kΩ Common mode rejection ratio Vic = ±10V 0.8 90 ±13 ±3 28 1.5 Vpp V/µs dB 90 1.8 Min. Typ. 0.5 50 1 Max. 0.6 0.75 150 300 Unit mA nA MΩ 2.5 0.5 3.5 1.5 2 5 20 40 µV/°C nA nA ------°C 0.5 Vio mV ΔVio Iio ΔIio Ios Avd GBP 0.08 23 mA dB MHz 100 95 3 8 10 18 0.03 en nV ----------Hz THD % ±Vopp V Vopp SR CMR 4/16 TS512 Table 3. Symbol SVR Electrical characteristics VCC = ±15V, Tamb = 25°C (unless otherwise specified) Parameter Supply voltage rejection ratio Min. 90 120 Typ. Max. Unit dB dB Vo1/Vo2 Channel separation, f = 1kHz 5/16 Electrical characteristics TS512 Figure 2. 30 Vio distribution at VCC= ±15V and T= 25°C Vio distribution at T = 25 °C Figure 3. 20 Vio distribution at VCC= ±15V and T= 125°C Vio distribution at T = 125 °C 25 15 20 15 Population % Population % 10 10 5 5 0 -400 -200 0 200 400 0 -400 -200 0 200 400 Input offset voltage (µV) Input offset voltage (µV) Figure 4. 0.4 Input offset voltage vs. input Figure 5. common mode voltage at VCC= 10V 0.4 Input offset voltage vs. input common mode voltage at VCC= 30V T=125°C Input Offset Voltage (mV) 0.0 T=25°C -0.2 T=-40°C -0.4 Input Offset Voltage (mV) 0.2 T=125°C 0.2 0.0 T=25°C T=-40°C -0.2 -0.6 Vcc = 10 V -0.8 1 2 3 4 5 6 7 Input Common Mode Voltage (V) 8 9 -0.4 Vcc = 30 V -0.6 0 5 10 15 20 25 Input Common Mode Voltage (V) 30 Figure 6. Supply current (per operator) vs. supply voltage at Vicm= VCC/2 Figure 7. Supply current (per operator) vs. input common mode voltage at VCC= 6V 0.6 0.50 0.45 Supply Current (mA) 0.5 Supply Current (mA) T=125°C T=125°C 0.4 T=25°C T=-40°C 0.3 0.40 T=25°C 0.35 T=-40°C 0.30 0.2 Vicm = Vcc/2 0.1 6 9 12 15 18 21 Supply voltage (V) 24 27 30 0.25 Follower configuration Vcc = 6 V 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Input Common Mode Voltage (V) 5.5 6.0 0.20 1.0 6/16 TS512 Electrical characteristics Figure 8. Supply current (per operator) vs. input common mode voltage at VCC= 10V Figure 9. Supply current (per operator) vs. input common mode voltage at VCC= 30V 0.50 0.55 0.50 Supply Current (mA) 0.45 Supply Current (mA) T=125°C T=125°C 0.45 T=25°C 0.40 T=-40°C 0.35 0.40 T=25°C 0.35 T=-40°C 0.30 Follower configuration Vcc = 10 V 0.25 1 2 3 4 5 6 7 8 Input Common Mode Voltage (V) 9 10 0.30 Follower configuration Vcc = 30 V 0 5 10 15 20 25 Input Common Mode Voltage (V) 30 0.25 Figure 10. Output current vs. supply voltage at Figure 11. Output current vs. output voltage at Vicm= VCC/2 VCC = 6V 40 30 20 Output Current (mA) 40 Source Vid = 1V T=25°C Output Current (mA) T=-40°C 30 20 T=-40°C T=25°C T=125°C Source Vid = 1V T=125°C 10 0 -10 T=125°C -20 -30 -40 10.0 15.0 20.0 Supply voltage (V) 25.0 30.0 Sink Vid = -1V T=25°C T=-40°C Vicm = Vcc/2 10 0 -10 T=125°C -20 Sink Vid = -1V -30 -40 0 1 2 3 4 Output Voltage (V) 5 6 T=25°C T=-40°C Vcc = 6 V Figure 12. Output current vs. output voltage at Figure 13. Output current vs. output voltage at VCC = 10V VCC = 30V 40 30 T=25°C 20 Output Current (mA) 40 T=-40°C Source Vid = 1V Output Current (mA) 30 20 10 0 -10 T=-40°C T=25°C T=125°C Source Vid = 1V T=125°C 10 0 -10 -20 -30 T=-40°C -40 0 2 4 6 Output Voltage (V) 8 10 Sink Vid = -1V Vcc = 10 V T=125°C Vcc = 30 V T=125°C -20 -30 -40 0 5 10 15 20 Output Voltage (V) 25 30 Sink Vid = -1V T=-40°C T=25°C T=25°C 7/16 Electrical characteristics TS512 Figure 14. Voltage gain and phase for different Figure 15. Voltage gain and phase for different capacitive loads at VCC= 6V, capacitive loads at VCC= 10V, Vicm= 3V and T= 25°C Vicm= 5V and T= 25°C 50 Gain 40 30 Gain (dB) 45 0 Phase -45 Phase (°) 50 40 30 Gain (dB) 45 Gain 0 -45 Phase (°) Phase CL=100pF CL=600pF CL=330pF Vcc = 10 V, Vicm = 5 V, G = -100 RL = 2 kΩ connected to the ground T amb = 25 °C 10 4 20 10 0 -10 -20 3 10 CL=600pF CL=330pF Vcc = 6 V, Vicm = 3 V, G = -100 RL = 2 kΩ connected to the ground T amb = 25 °C 10 4 CL=100pF -90 -135 -180 -225 -270 20 10 0 -10 -20 3 10 -90 -135 -180 -225 -270 10 5 10 6 10 5 10 6 Frequency (Hz) Frequency (Hz) Figure 16. Voltage gain and phase for different Figure 17. Frequency response for different capacitive loads at VCC= 30V, capacitive loads at VCC= 6V, Vicm= 15V and T= 25°C Vicm= 3V and T= 25°C 50 Gain 40 30 Phase Gain (dB) 45 0 -45 Gain (dB) 20 10 0 Phase (°) Gain with CL=600 pF 20 10 0 -10 -20 3 10 CL=600pF CL=330pF Vcc = 30 V, Vicm = 15 V, G = -100 RL = 2 kΩ connected to the ground Tamb = 25 °C 10 4 CL=100pF -90 -135 -180 -225 -270 Gain with CL=100 pF -10 -20 -30 -40 10k Gain with CL=330 pF Vcc = 6 V, Vicm = 3 V RL = 2 kΩ connected to the ground Tamb = 25 C 100k 1M 10M 10 5 10 6 Frequency (Hz) Frequency (Hz) Figure 18. Frequency response for different capacitive loads at VCC= 10V, Vicm= 5V and T= 25°C 20 10 0 Gain (dB) Figure 19. Frequency response for different capacitive loads at VCC= 30V, Vicm= 15V and T= 25°C 20 Gain with CL=600 pF 10 0 Gain (dB) Gain with CL=600 pF Gain with CL=100 pF -10 Gain with CL=330 pF -20 -30 -40 10k Vcc = 10 V, Vicm = 5 V RL = 2 kΩ connected to the ground Tamb = 25 C 100k 1M 10M -10 -20 -30 -40 10k Gain with CL=100 pF Gain with CL=330 pF Vcc = 30 V, Vicm = 15 V RL = 2 kΩ connected to the ground Tamb = 25 C 100k 1M 10M Frequency (Hz) Frequency (Hz) 8/16 TS512 Electrical characteristics Figure 20. Phase margin vs. output current, at Figure 21. Phase margin vs. output current, at VCC= 6V, Vicm= 3V and T= 25°C VCC= 10V, Vicm= 5V and T= 25°C 70 60 50 Phase Margin (°) 70 Recommended area CL=100 pF Phase Margin (°) 60 50 CL=100 pF Recommended area 40 30 20 10 0 -10 -20 -30 -40 -3 -2 CL=330 pF CL=600 pF 40 30 20 10 0 -10 -20 CL=330 pF CL=600 pF Vcc = 6 V Vicm = 3 V Tamb = 25 °C RL = 2 k Ω -1 0 1 2 3 Vcc = 10 V Vicm = 5 V Tamb = 25 °C RL = 2 kΩ -2 -1 0 1 2 3 -30 -3 Output Current (mA) Output Current (mA) Figure 22. Phase margin vs. output current, at VCC= 30V, Vicm= 15V and T= 25°C 70 Recommended area 60 50 Phase Margin (°) CL=100 pF CL=330 pF CL=600 pF 40 30 20 10 0 -10 -20 -3 -2 -1 0 1 Vcc = 30 V Vicm = 15 V Tamb = 25 °C RL = 2 k Ω 2 3 Output Current (mA) 9/16 Macromodels TS512 4 4.1 Macromodels Important note concerning this macromodel Please consider the following remarks before using this macromodel. ● ● ● All models are a trade-off between accuracy and complexity (i.e. simulation time). Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. A macromodel emulates the nominal performance of a typical device within specified operating conditions (temperature, supply voltage, for example). Thus the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product. Data derived from macromodels used outside of the specified conditions (VCC, temperature, for example) or even worse, outside of the device operating conditions (VCC, Vicm, for example), is not reliable in any way. 4.2 Macromodel code ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS512 1 3 2 4 5 ******************************************************** .MODEL MDTH D IS=1E-8 KF=6.565195E-17 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 1.061852E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 12.47E-10 DINN 17 13 MDTH 400E-12 VIN 17 5 1.500000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.500000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 10/16 TS512 FIBP 2 5 VOFN 1.000000E-02 FIBN 5 1 VOFP 1.000000E-02 * AMPLIFYING STAGE FIP 5 19 VOFP 9.000000E+02 FIN 5 19 VOFN 9.000000E+02 RG1 19 5 1.727221E+06 RG2 19 4 1.727221E+06 CC 19 5 6.000000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 6.521739E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 6.521739E+03 VINM 5 27 1.500000E+02 GCOMP 5 4 4 5 6.485084E-04 RPM1 5 80 1E+06 RPM2 4 80 1E+06 GAVPH 5 82 19 80 2.59E-03 RAVPHGH 82 4 771 RAVPHGB 82 5 771 RAVPHDH 82 83 1000 RAVPHDB 82 84 1000 CAVPHH 4 83 0.331E-09 CAVPHB 5 84 0.331E-09 EOUT 26 23 82 5 1 VOUT 23 5 0 ROUT 26 3 6.498455E+01 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 1.742230E+00 DON 24 19 MDTH 400E-12 VON 24 5 1.742230E+00 .ENDS Table 4. Symbol Vio Avd ICC Vicm VOH VOL Isink Isource GBP SR ∅m RL = 2kΩ RL = 2kΩ Vo = 0V Vo = 0V RL = 2kΩ, CL = 100pF RL = 2kΩ RL = 2kΩ, CL = 100pF RL = 2kΩ No load, per operator Macromodels VCC = ±15V, Tamb = 25°C (unless otherwise specified) Conditions Value 0 100 350 -13.4 to 14 +14 -14 27.5 27.5 2.5 1.4 55 Unit mV V/mV µA V V V mA mA MHz V/μs Degrees 11/16 Package information TS512 5 Package information In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 12/16 TS512 Figure 23. DIP8 package mechanical drawing Package information Table 5. DIP8 package mechanical data Dimensions Ref. Min. A A1 A2 b b2 c D E E1 e eA eB L 2.92 0.38 2.92 0.36 1.14 0.20 9.02 7.62 6.10 Millimeters Typ. Max. 5.33 0.015 3.30 0.46 1.52 0.25 9.27 7.87 6.35 2.54 7.62 10.92 3.30 3.81 0.115 4.95 0.56 1.78 0.36 10.16 8.26 7.11 0.115 0.014 0.045 0.008 0.355 0.300 0.240 Min. Inches Typ. Max. 0.210 0.130 0.018 0.060 0.010 0.365 0.310 0.250 0.100 0.300 0.195 0.022 0.070 0.014 0.400 0.325 0.280 0.430 0.130 0.150 13/16 Package information Figure 24. SO-8 package mechanical drawing TS512 Table 6. SO-8 package mechanical data Dimensions Ref. Min. A A1 A2 b c D E E1 e h L k ccc 0.25 0.40 1° 0.10 1.25 0.28 0.17 4.80 5.80 3.80 Millimeters Typ. Max. 1.75 0.25 0.004 0.049 0.48 0.23 4.90 6.00 3.90 1.27 0.50 1.27 8° 0.10 0.010 0.016 1° 5.00 6.20 4.00 0.011 0.007 0.189 0.228 0.150 Min. Inches Typ. Max. 0.069 0.010 0.019 0.010 0.193 0.236 0.154 0.050 0.020 0.050 8° 0.004 0.197 0.244 0.157 14/16 TS512 Ordering information 6 Ordering information Table 7. Order codes Temperature range Package Packaging Marking 512IN DIP8 TS512AIN TS512ID TS512IDT TS512AID-DT TS512IYD TS512IYDT(1) TS512AIYD(1) TS512AIYDT(1) (1) Order code TS512IN Tube 512AIN Tube or Tape & reel 512I 512AI 512IY SO-8 -40°C, + 125°C SO-8 (Automotive grade) Tube or Tape & reel 512AIY 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. 7 Revision history Table 8. Date 21-Nov-2001 23-Jun-2005 Document revision history Revision 1 2 Initial release. PPAP references inserted in the datasheet, see Table 7: Order codes. AC and DC performance characteristics curves added for VCC= 6V, VCC= 10V and VCC= 30V. Modified ICC typ, added parameters over temperature range in electrical characteristics table. Corrected macromodel information. Changes 5-May-2008 3 15/16 TS512 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 16/16
TS512AID-DT 价格&库存

很抱歉,暂时无法提供与“TS512AID-DT”相匹配的价格&库存,您可以联系我们找货

免费人工找货