TS912
Rail-to-rail CMOS dual operational amplifier
Features
■ ■ ■ ■ ■ ■ ■ ■ ■
Rail-to-rail input and output voltage ranges Single (or dual) supply operation from 2.7V to 16V Extremely low input bias current: 1pA typ. Low input offset voltage: 2mV max. Specified for 600Ω and 100Ω loads Low supply current: 200μA/ampli (VCC = 3V) Latch-up immunity ESD tolerance: 3kV Spice macromodel included in this specification D SO-8 (Plastic micropackage)
N DIP-8 (Plastic package)
Description
The TS912 is a rail-to-rail CMOS dual operational amplifier designed to operate with a single or dual supply voltage. The input voltage range Vicm includes the two supply rails VCC+ and VCC-. The output reaches:
■ ■
Pin connections (top view)
Output 1 Inverting Input 1 Non-inverting Input 1 V CC 1 2 3 4
+ + + 8V CC
7 Output 2 6 Inverting Input 2 5 Non-inverting Input 2
VCC- +30mV, VCC+ -40mV, with RL = 10kΩ VCC- +300mV, VCC+ -400mV, with RL = 600Ω
This product offers a broad supply voltage operating range from 2.7V to 16V and supply current of only 200μA/amp (VCC = 3V). Source and sink output current capability is typically 40mA (at VCC = 3V), fixed by an internal limitation circuit.
October 2007
Rev 5
1/18
www.st.com 18
Absolute maximum ratings and operating conditions
TS912
1
Table 1.
Symbol VCC Vid Vi Iin Io Tstg Tj Rthja
Absolute maximum ratings and operating conditions
Absolute maximum ratings
Parameter Supply voltage (1) Differential input voltage Input voltage
(3) (2)
Value 18 ±18 -0.3 to 18 ±50 ±130 -65 to +150 150 85 125 41 40 3 200 1500
Unit V V V mA mA °C °C °C/W
Current on inputs Current on outputs Storage temperature Maximum junction temperature Thermal resistance junction to ambient (4) DIP8 SO-8 Thermal resistance junction to case (4) DIP8 SO-8 HBM: human body model(5)
Rthjc
°C/W kV V V
ESD
MM: machine
model(6)
CDM: charged device model(7)
1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of input and output voltages must never exceed VCC+ +0.3V. 4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. These values are typical. 5. Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 6. Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating. 7. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.
Table 2.
Symbol VCC Vicm Toper
Operating conditions
Parameter Supply voltage Common mode input voltage range Operating free air temperature range
-
Value 2.7 to 16 VCC -0.2 to VCC +0.2 -40 to + 125
+
Unit V V °C
2/18
TS912
Schematic diagram
2
Figure 1.
Schematic diagram
Schematic diagram (1/2 TS912)
VCC
Non-inverting Input
Internal Vref Inverting Input Output
VCC
3/18
Electrical characteristics
TS912
3
Table 3.
Symbol
Electrical characteristics
VCC+ = 3V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Parameter Input offset voltage (Vic = Vo = VCC/2) TS912 TS912A TS912B Tmin ≤ Tamb ≤ Tmax TS912 TS912A TS912B Input offset voltage drift Input offset current Tmin ≤ Tamb ≤ Tmax
(1)
Min.
Typ.
Max.
Unit
Vio
10 5 2 12 7 3 5 1 1 200 100 200 150 300 300 400
mV
ΔVio Iio Iib ICC CMR SVR Avd
μV/°C pA pA μA dB dB V/mV
Input bias current (1) Tmin ≤ Tamb ≤ Tmax Supply current (per amplifier, AVCL = 1, no load) Tmin ≤ Tamb ≤ Tmax Common mode rejection ratio Vic = 0 to 3V, Vo = 1.5V Supply voltage rejection ratio (VCC+ = 2.7 to 3.3V, Vo = VCC/2) Large signal voltage gain (RL = 10kΩ Vo = 1.2V to 1.8V) , Tmin ≤ Tamb ≤ Tmax High level output voltage (Vid = 1V) RL = 100kΩ RL = 10kΩ RL = 600Ω RL = 100Ω Tmin ≤ Tamb ≤ Tmax RL = 10kΩ RL = 600Ω Low level output voltage (Vid = -1V) RL = 100kΩ RL = 10kΩ RL = 600Ω RL = 100Ω Tmin ≤ Tamb ≤ Tmax RL = 10kΩ RL = 600Ω Output short-circuit current (Vid = ±1V) Source (Vo = VCC-) Sink (Vo = VCC+) Gain bandwidth product , (AVCL = 100, RL = 10kΩ CL = 100pF, f = 100kHz) 20 20 50 3 2
70 80 10
VOH
2.95 2.9 2.3
2.96 2.6 2
V
2.8 2.1
VOL
30 300 900
50 70 400
mV
100 600 40 40 0.8 mA
Io
GBP
MHz
4/18
TS912 Table 3.
Symbol SR+ SRφm en
Electrical characteristics VCC+ = 3V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified) (continued)
Parameter Slew rate , (AVCL = 1, RL = 10kΩ CL = 100pF, Vi = 1.3V to 1.7V) Slew rate , (AVCL = 1, RL = 10kΩ CL = 100pF, Vi = 1.3V to 1.7V) Phase margin Equivalent input noise voltage (Rs = 100Ω f = 1kHz) , Min. Typ. 0.4 0.3 30 30 Max. Unit V/μs V/μs Degrees nV/√ Hz
1. Maximum values include unavoidable inaccuracies of the industrial tests.
5/18
Electrical characteristics Table 4.
Symbol
TS912
VCC+ = 5V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Parameter Input offset voltage (Vic = Vo = VCC/2) TS912 TS912A TS912B Tmin ≤ Tamb ≤ Tmax TS912 TS912A TS912B Input offset voltage drift Input offset current Tmin ≤ Tamb ≤ Tmax
(1)
Min.
Typ.
Max.
Unit
Vio
10 5 2 12 7 3 5 1 1 230 100 200 150 300 350 450
mV
ΔVio Iio Iib ICC CMR SVR Avd
μV/°C pA pA μA dB dB V/mV
Input bias current (1) Tmin ≤ Tamb ≤ Tmax Supply current (per amplifier, AVCL = 1, no load) Tmin ≤ Tamb ≤ Tmax Common mode rejection ratio Vic = 1.5 to 3.5V, Vo = 2.5V Supply voltage rejection ratio (VCC+ = 3 to 5V, Vo = VCC/2) Large signal voltage gain (RL = 10kΩ Vo = 1.5V to 3.5V) , Tmin ≤ Tamb ≤ Tmax High level output voltage (Vid = 1V) RL = 100kΩ RL = 10kΩ RL = 600Ω RL = 100Ω Tmin ≤ Tamb ≤ Tmax RL = 10kΩ RL = 600Ω Low level output voltage (Vid = -1V) RL = 100kΩ RL = 10kΩ RL = 600Ω RL = 100Ω Tmin ≤ Tamb ≤ Tmax RL = 10kΩ RL = 600Ω Output short-circuit current (Vid = ±1V) Source (Vo = VCC-) Sink (Vo = VCC+) Gain bandwidth product , (AVCL = 100, RL = 10kΩ CL = 100pF, f = 100kHz) Slew rate (AVCL = 1, RL = 10kΩ CL = 100pF, Vi = 1V to 4V) , Slew rate (AVCL = 1, RL = 10kΩ CL = 100pF, Vi = 1V to 4V) , 45 45 60 55 10 7 4.95 4.9 4.25
85 80 40
VOH
4.95 4.55 3.7
V
4.8 4.1 50 100 500
VOL
40 350 1400
mV
150 750 65 65 1 0.8 0.6 mA
Io
GBP SR+ SR
-
MHz V/μs V/μs
6/18
TS912 Table 4.
Symbol en VO1/VO2 φm
Electrical characteristics VCC+ = 5V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified) (continued)
Parameter Equivalent input noise voltage (Rs = 100Ω f = 1kHz) , Channel separation (f = 1kHz) Phase margin Min. Typ. 30 120 30 Max. Unit nV/√ Hz dB Degrees
1. Maximum values include unavoidable inaccuracies of the industrial tests.
7/18
Electrical characteristics Table 5.
Symbol
TS912
VCC+ = 10V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Parameter Input offset voltage (Vic = Vo = VCC/2) TS912 TS912A TS912B Tmin ≤ Tamb ≤ Tmax TS912 TS912A TS912B Input offset voltage drift Input offset current Tmin ≤ Tamb ≤ Tmax
(1)
Min.
Typ.
Max.
Unit
Vio
10 5 2 12 7 3 5 1 1 400 100 200 150 300 600 700
mV
ΔVio Iio Iib ICC
μV/°C pA pA μA
Input bias current (1) Tmin ≤ Tamb ≤ Tmax Supply current (per amplifier, AVCL = 1, no load) Tmin ≤ Tamb ≤ Tmax Common mode rejection ratio Vic = 3 to 7V, Vo = 5V Vic = 0 to 10V, Vo = 5V Supply voltage rejection ratio (VCC+ = 5 to 10V, Vo = VCC/2) Large signal voltage gain (RL = 10kΩ Vo = 2.5V to 7.5V) , Tmin ≤ Tamb ≤ Tmax High level output voltage (Vid = 1V) RL = 100kΩ RL = 10kΩ RL = 600Ω RL = 100Ω Tmin ≤ Tamb ≤ Tmax RL = 10kΩ RL = 600Ω Low level output voltage (Vid = -1V) RL = 100kΩ RL = 10kΩ RL = 600Ω RL = 100Ω Tmin ≤ Tamb ≤ Tmax RL = 10kΩ RL = 600Ω Output short circuit current (Vid = ±1V) Source (Vo = VCC-) Sink (Vo = VCC+) Gain bandwidth product , (AVCL = 100, RL = 10kΩ CL = 100pF, f = 100kHz) 45 50 60 50 60 15 10 9.95 9.85 9
CMR SVR Avd
90 75 90 50
dB dB V/mV
VOH
9.95 9.35 7.8
V
9.8 8.8 50 150 800
VOL
50 650 2300
mV
150 900 65 75 1.4 mA
Io
GBP
MHz
8/18
TS912 Table 5.
Symbol SR+ SRφm en THD Cin
Electrical characteristics VCC+ = 10V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified) (continued)
Parameter Slew rate , (AVCL = 1, RL = 10kΩ CL = 100pF, Vi = 2.5V to 7.5V) Slew rate , (AVCL = 1, RL = 10kΩ CL = 100pF, Vi = 2.5V to 7.5V) Phase margin Equivalent input noise voltage (Rs = 100Ω f = 1kHz) , Total harmonic distortion , (AVCL = 1, RL = 10kΩ CL = 100pF, Vo = 4.75V to 5.25V, f = 1kHz) Input capacitance Min. Typ. 1.3 0.8 40 30 0.02 1.5 Max. Unit V/μs V/μs Degrees nV/√ Hz % pF
1. Maximum values include unavoidable inaccuracies of the industrial tests.
9/18
Electrical characteristics
TS912
Figure 2.
Supply current (each amplifier) vs. supply voltage
Figure 3.
High level output voltage vs. high level output current
SUPPLY CURRENT, I CC ( m A)
600 500 400 300 200 100
OUTPUT VOLTAGE, VOH (V)
Tamb = 25°C A VCL = 1 V O = VCC / 2
5 4 3 2 1 0
T amb = 25 °C V id = 100mV VCC = +5V
VCC = +3V
0
4
8
12
16
-70
-56
-42
-28
-14
0
SUPPLY VOLTAGE, V CC (V)
OUTPUT CURRENT, I OH (mA)
Figure 4.
Low level output voltage vs. low level output current
Figure 5.
100
INPUT BIAS CURRENT, I ib (pA)
Input bias current vs. temperature
5
OUTPUT VOLTAGE, V OL (V)
4 3 2 1
T amb = 25 ° C V id = -100mV
V CC = 10V V i = 5V No load
VCC = +3V VCC = +5V
10
0
14
28
42
56
70
1
25
50
75
100
125
OUTPUT CURRENT, I OL (mA)
TEMPERATURE, T amb ( °C)
Figure 6.
High level output voltage vs. high level output current
Figure 7.
Low level output voltage vs. low level output current
OUTPUT VOLTAGE, VOH (V)
16 12 8 4 0 -70
T amb = 25° C Vid = 100mV
VCC = +16V
OUTPUT VOLTAGE, VOL (V)
20
10 8 6 4 2
T amb = 25 ° C V id = -100mV V CC = 16V V CC = 10V
VCC = +10V
-56
-42
-28
-14
0
0
14
28
42
56
70
OUTPUT CURRENT, IOH (mA)
OUTPUT CURRENT, I OL (mA)
10/18
TS912
Electrical characteristics
Figure 8.
50 40 GAIN (dB) 30 20 10 0 -10
Gain and phase vs. frequency
Figure 9.
GAIN BANDW. PROD., GBP (kHz)
Gain bandwidth product vs. supply voltage
GAIN PHASE
Tamb = 25°C VCC = 10V R L = 10k W C L = 100pF A VCL = 100
Phase Margin
PHASE (Degrees)
0 45 90 135 180
1800 1400 1000 600 200
Tamb = 25°C R L = 10kW C L = 100pF
Gain Bandwidth Product
10
2
10
3
10 10 10 FREQUENCY, f (Hz)
4
5
6
10
7
0
4
8
12
16
SUPPLY VOLTAGE, VCC (V)
Figure 10. Phase margin vs. supply voltage
PHASE MARGIN, f m (Degrees)
60 50 40 30 20 0 4 8 12 16 Tamb = 25°C R L = 10kW C L = 100pF
Figure 11. Gain and phase vs. frequency
50 40 GAIN (dB) 30 20 10 0 10 PHASE
Tamb = 25°C V CC = 10V R L = 600W C L = 100pF A VCL = 100
GAIN
45
Phase Margin Gain Bandwidth Product
90 135 180
10
2
10
3
SUPPLY VOLTAGE, VCC (V)
10 10 10 FREQUENCY, f (Hz)
4
5
6
10
7
Figure 12. Gain bandwidth product vs. supply Figure 13. Phase margin vs. supply voltage voltage
GAIN BANDW. PROD., GBP (kHz)
1800 1400 1000 600 200 0 4 8 12 16
SUPPLY VOLTAGE, VCC (V)
PHASE MARGIN, fm (Degrees)
60 50 40 30 20 0 4 8 12 16 Tamb = 25°C R L = 600W C L = 100pF
Tamb = 25°C R L = 600W C L = 100pF
SUPPLY VOLTAGE, VCC (V)
11/18
PHASE (Degrees)
0
Macromodel
TS912
Figure 14. Input voltage noise vs. frequency
150
EQUIVALENT INPUT VOLTAGE NOISE (nV/VHz)
100
VCC = 10V Tamb = 25°C RS = 100W
50
0 10
100
1000
10000
FREQUENCY (Hz)
4
4.1
Macromodel
Important note concerning this macromodel
Please consider the following remarks before using this macromodel.
● ● ●
All models are a trade-off between accuracy and complexity (i.e. simulation time). Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. A macromodel emulates the nominal performance of a typical device within specified operating conditions (temperature, supply voltage, for example). Thus the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product.
Data derived from macromodels used outside of the specified conditions (VCC, temperature, for example) or even worse, outside of the device operating conditions (VCC, Vicm, for example), is not reliable in any way.
12/18
TS912
Macromodel
4.2
Macromodel code
** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS912 1 2 3 4 5 ********************************************************** .MODEL MDTH D IS=1E-8 KF=6.563355E-14 CJO=10F * INPUT STAGE CIP 2 5 1.500000E-12 CIN 1 5 1.500000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 6.500000E+00 RIN 15 16 6.500000E+00 RIS 11 15 7.655100E+00 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 13 14 DC 0 IPOL 13 5 4.000000E-05 CPS 11 15 3.82E-08 DINN 17 13 MDTH 400E-12 VIN 17 5 -0.5000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 -0.5000000E+00 FCP 4 5 VOFP 7.750000E+00 FCN 5 4 VOFN 7.750000E+00 * AMPLIFYING STAGE FIP 5 19 VOFP 5.500000E+02 FIN 5 19 VOFN 5.500000E+02 RG1 19 5 5.087344E+05 RG2 19 4 5.087344E+05 CC 19 29 2.200000E-08 HZTP 30 29 VOFP 12.33E+02 HZTN 5 30 VOFN 12.33E+02 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3135 VIPM 28 4 150 HONM 21 27 VOUT 3135 VINM 5 27 150 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 65 COUT 3 5 1.000000E-12 DOP 19 68 MDTH 400E-12 VOP 4 25 1.924
13/18
Package information HSCP 68 25 VSCP1 1E8 DON 69 19 MDTH 400E-12 VON 24 5 2.4419107 HSCN 24 69 VSCN1 1.5E8 VSCTHP 60 61 0.1375 DSCP1 61 63 MDTH 400E-12 VSCP1 63 64 0 ISCP 64 0 1.000000E-8 DSCP2 0 64 MDTH 400E-12 DSCN2 0 74 MDTH 400E-12 ISCN 74 0 1.000000E-8 VSCN1 73 74 0 DSCN1 71 73 MDTH 400E-12 VSCTHN 71 70 -0.75 ESCP 60 0 2 1 500 ESCN 70 0 2 1 -2000 .ENDS
TS912
5
Package information
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
14/18
TS912
Package information
5.1
DIP-8 package mechanical data
Figure 15. DIP8 package mechanical data
Dimensions Ref. Min. A A1 A2 b b2 c D E E1 e eA eB L 2.92 3.30 0.38 2.92 0.36 1.14 0.20 9.02 7.62 6.10 3.30 0.46 1.52 0.25 9.27 7.87 6.35 2.54 7.62 10.92 3.81 0.115 0.130 4.95 0.56 1.78 0.36 10.16 8.26 7.11 Millimeters Typ. Max. 5.33 0.015 0.115 0.014 0.045 0.008 0.355 0.300 0.240 0.130 0.018 0.060 0.010 0.365 0.310 0.250 0.100 0.300 0.430 0.150 0.195 0.022 0.070 0.014 0.400 0.325 0.280 Min. Inches Typ. Max. 0.210
15/18
Package information
TS912
5.2
SO-8 package mechanical data
Figure 16. SO-8 package mechanical data
Dimensions Ref. Min. A A1 A2 b c D H E1 e h L k ccc 0.25 0.40 1° 0.10 1.25 0.28 0.17 4.80 5.80 3.80 4.90 6.00 3.90 1.27 0.50 1.27 8° 0.10 0.010 0.016 1° 0.48 0.23 5.00 6.20 4.00 Millimeters Typ. Max. 1.75 0.25 0.004 0.049 0.011 0.007 0.189 0.228 0.150 0.193 0.236 0.154 0.050 0.020 0.050 8° 0.004 0.019 0.010 0.197 0.244 0.157 Min. Inches Typ. Max. 0.069 0.010
16/18
TS912
Ordering information
6
Ordering information
Table 6. Order codes
Temperature range Package Packing Marking TS912IN DIP8 TS912AIN TS912ID TS912IDT TS912AID TS912AIDT TS912BID TS912BIDT TS912IYD TS912IYDT(1) TS912AIYD TS912AIYDT(1) TS912BIYD TS912BIYDT(1)
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.
Part number TS912IN
Tube TS912AIN 912I
SO-8 -40°C, +125°C Tube or Tape & reel
912AI 912BI 912IY
SO-8 (Automotive grade level)
912AIY 912BY
7
Revision history
Table 7.
Date 4-Dec.-2001 31-Jul-2005 3-Oct-2005 13-Feb- 2006
Document revision history
Revision 1 2 3 4 First release. PPAP references inserted in the datasheet, see order codes table. ESD protection inserted in AMR table. Some errors in the Order Codes table were corrected. Reorganization of Section 4: Macromodel. Parameters added in AMR table (Tj, ESD, Rthja, Rthjc). Corrected units and ESD footnotes in Table 1: Absolute maximum ratings. Corrected misalignments in electrical characteristics table. Updated Section 4: Macromodel. Added missing automotive grade order codes and footnote in Table 6: Order codes. Format update. Changes
16-Oct-2007
5
17/18
TS912
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
18/18