0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSA1002CFT

TSA1002CFT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    TSA1002CFT - 10-BIT, 50MSPS, 50mW A/D CONVERTER - STMicroelectronics

  • 数据手册
  • 价格&库存
TSA1002CFT 数据手册
TSA1002 10-BIT, 50MSPS, 50mW A/D CONVERTER s 10-bit A/D converter in deep submicron s s s s s s s s CMOS technology Single supply voltage: 2.5V Input range: 2Vpp differential 50Msps sampling frequency Ultra low power consumption: 50mW @ 50Msps ENOB=9.4 @ Fs=50Msps, Fin=15MHz SFDR typically up to 72dB @ Fs=50Msps, Fin=5MHz Built-in reference voltage with external bias capability STMicroelectronics 8, 10, 12 and 14-bits ADC pinout compatibility ORDER CODE Part Number TSA1002CF TSA1002CFT TSA1002IF TSA1002IFT EVAL1002/AA Temperature Range 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C Package TQFP48 TQFP48 TQFP48 TQFP48 Conditioning Tray Tape & Reel Tray Tape & Reel Marking SA1002C SA1002C SA1002I SA1002I Evaluation board PIN CONNECTIONS (top view) DESCRIPTION The TSA1002 is a 10-bit, 50Msps sampling frequency Analog to Digital converter using a CMOS technology combining high performances and very low power consumption. The TSA1002 is based on a pipeline structure and digital error correction to provide excellent static linearity and guarantee 9.4 effective bits at Fs=50Msps, and Fin=15MHz. A voltage reference is integrated in the circuit to simplify the design and minimize external components. It is nevertheless possible to use the circuit with an external reference. Especially designed for high speed, low power applications, the TSA1002 only dissipates 50mW at 50Msps. A tri-state capability, available on the output buffers, enables to address several slave ADCs by a unique master. The output data can be coded into two different formats. A Data Ready signal is raised as the data is valid on the output and can be used for synchronization purposes. The TSA1002 is available in commercial (0 to +70°C) and extended (-40 to +85°C) temperature range, in a small 48 pins TQFP package. APPLICATIONS index corner 48 1 2 3 4 5 6 7 8 9 10 11 12 13 AGND AVCC VCCB GNDB 47 46 AVCC VCCB 45 DFSB 44 43 OEB NC 42 NC NC 37 36 NC 35 NC 34 NC 33 D0 (LSB) 32 D1 31 D2 DR 41 40 39 38 IPOL VREFP VREFM AGND VIN AGND VINB AGND INCM AGND AVCC AVCC TSA1002 30 D3 29 D4 28 D5 27 D6 26 D7 25 D8 14 15 16 17 18 19 20 21 22 23 24 DGND DVCC DVCC DGND CLK DGND NC GNDB GNDB VCCB OR D9 (MSB) PACKAGE 7 × 7 mm TQFP48 s s s s s Medical imaging and ultrasound Portable instrumentation Cable Modem Receivers High resolution fax and scanners High speed DSP interface October 2000 1/19 TSA1002 ABSOLUTE MAXIMUM RATINGS Symbol AVCC DVCC VCCB IDout Tstg ESD Analog Supply voltage Digital Supply voltage 1) Parameter Values 0 to 3.3 0 to 3.3 Unit V V V mA °C KV 1) 1) Digital buffer Supply voltage Digital output current Storage temperature Electrical Static Discharge - HBM - CDM-JEDEC Standard 0 to 3.3 -100 to 100 +150 2 1.5 1) All voltages values, except differential voltage, are with respect to network ground terminal. The magnitude of input and output voltages must never exceed -0.3V or VCC+0V OPERATING CONDITIONS Symbol AVCC DVCC VCCB VREFP VREFM Parameter Analog Supply voltage Digital Supply voltage Digital buffer Supply voltage Forced top reference voltage Forced bottom reference voltage Test conditions Min 2.25 2.25 2.25 1.16 0 Typ 2.5 2.5 2.5 0 Max 2.7 2.7 2.7 AVCC 0.5 Unit V V V V BLOCK DIAGRAM +2.5V VREFP GNDA VIN INCM VINB stage 1 stage 2 stage n Reference circuit IPOL VREFM Sequencer-phase shifting CLK DFSB OEB Timing Digital data correction DR DO TO D9 OR GND Buffers 2/19 TSA1002 PIN CONNECTIONS (top view) AGND AVCC VCCB GNDB AVCC DFSB VCCB OEB NC NC NC DR index corner 48 1 2 3 4 5 6 7 8 9 10 11 12 13 47 46 45 44 43 42 41 40 39 38 37 36 NC 35 NC 34 NC 33 D0 (LSB) 32 D1 31 D2 IPOL VREFP VREFM AGND VIN AGND VINB AGND INCM AGND AVCC AVCC TSA1002 30 D3 29 D4 28 D5 27 D6 26 D7 25 D8 14 15 16 17 18 19 20 21 22 23 24 DGND DVCC DVCC DGND CLK DGND NC GNDB GNDB VCCB OR D9 (MSB) PIN DESCRIPTION Pin No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Name IPOL VREFP VREFM AGND VIN AGND VINB AGND INCM AGND AVCC AVCC DVCC DVCC DGND CLK DGND NC DGND GNDB GNDB VCCB OR Description Analog bias current input Top voltage reference Bottom voltage reference Analog ground Analog input Analog ground Inverted analog input Analog ground Input common mode Analog ground Analog power supply Analog power supply Digital power supply Digital power supply Digital ground Clock input Digital ground Non connected Digital ground Digital buffer ground Digital buffer ground Digital buffer power supply Out Of Range output 0V 0V 0V 2.5V CMOS output (2.5V) CMOS output (2.5V) 1V 0V 0V 1Vpp 0V 1Vpp 0V 0.5V 0V 2.5V 2.5V 2.5V 2.5V 0V 2.5V compatible CMOS input 0V Observation Pin No 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Name D8 D7 D6 D5 D4 D3 D2 D1 D0(LSB) NC NC NC NC DR VCCB GNDB VCCB NC NC OEB DFSB AVCC AVCC AGND Description Digital output Digital output Digital output Digital output Digital output Digital output Digital output Digital output Least Significant Bit output Non connected Non connected Non connected Non connected Data Ready output Digital Buffer power supply Digital Buffer ground Digital Buffer power supply Non connected Non connected Output Enable input Data Format Select input Analog power supply Analog power supply Analog ground 2.5V compatible CMOS input 2.5V compatible CMOS input 2.5V 2.5V 0V CMOS output (2.5V) 2.5V 0V 2.5V Observation CMOS output (2.5V) CMOS output (2.5V) CMOS output (2.5V) CMOS output (2.5V) CMOS output (2.5V) CMOS output (2.5V) CMOS output (2.5V) CMOS output (2.5V) CMOS output (2.5V) D9(MSB) Most Significant Bit output 3/19 TSA1002 ELECTRICAL CHARACTERISTICS AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps,Fin= 1MHz, Vin@ -1.0dBFS, VREFM= 0V Tamb = 25°C (unless otherwise specified) TIMING CHARACTERISTICS Symbol FS DC TC1 TC2 Tod Tpd Ton Toff Parameter Sampling Frequency Clock Duty Cycle Clock pulse width (high) Clock pulse width (low) Data Output Delay (Fall of Clock 10pF load capacitance to Data Valid) Data Pipeline delay Falling edge of OEB to digital output valid data Rising edge of OEB to digital output tri-state Test conditions Min 0.5 45 9 9 50 10 10 5 6.5 1 1 Typ Max 50 55 Unit Msps % ns ns ns cycles ns ns TIMING DIAGRAM N+4 N+3 N+5 N+6 N+2 N-1 N N+1 N+7 N+8 CLK 6.5 clk cycles OEB Tod Toff N-7 N-6 N-5 N-4 N-3 N-2 N Ton N+1 DATA OUT N-8 DR HZ state 4/19 TSA1002 CONDITIONS AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps,Fin= 1MHz, Vin@ -1.0dBFS, VREFM= 0V Tamb = 25°C (unless otherwise specified) ANALOG INPUTS Symbol Parameter Test conditions Min Typ 2.0 7.0 Vin@ Full scale, FS=50Msps 1) Max Unit Vpp pF MHz MHz VIN-VINB Full scale reference voltage Cin BW ERB Input capacitance Analog Input Bandwidth Effective Resolution Bandwidth 100 60 1) See parameters definition for more information REFERENCE VOLTAGE Symbol VREFP Parameter Top internal reference voltage Test conditions Min 0.91 Tmin= -40°C to Tmax= 85°C1) 0.88 1.20 Vpol Ipol Ipol VINCM Analog bias voltage Analog bias current Analog bias current Input common mode voltage Normal operating mode Shutdown mode 0.47 Tmin= -40°C to Tmax= 85°C1) 0.46 Tmin= -40°C to Tmax= 85°C 1) Typ 1.03 Max 1.14 1.16 Unit V V V V µA µA 1.27 1.35 1.36 1.18 50 70 0 0.57 100 0.68 0.66 V V 1) Not fully tested over the temperature range. Guaranted by sampling. 5/19 TSA1002 CONDITIONS AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps,Fin= 1MHz, Vin@ -1.0dBFS, VREFP=1V, VREFM= 0V Tamb = 25°C (unless otherwise specified) POWER CONSUMPTION Symbol ICCA Parameter 1) Test conditions Min Typ 15.6 Max 18 21 Unit mA mA mA mA mA mA µA mW mW mW °C/W Analog Supply current Tmin= -40°C to Tmax= 85°C2) 1) 1.3 2) 2 2 ICCD Digital Supply Current 1) Tmin= -40°C to Tmax= 85°C ICCB Digital Buffer Supply Current Digital Buffer Supply Current in High Impedance Mode Power consumption in normal operation mode Power consumption in High Impedance mode Junction-ambient thermal resistor (TQFP48) 2.5 5 5 Tmin= -40°C to Tmax= 85°C2) 1) ICCBZ 40 48 2) 100 60 62 1) Pd Tmin= -40°C to Tmax= 85°C 1) PdZ Rthja 43 80 48 1) Rpol= 18KΩ. Equivalent load: Rload= 470Ω and Cload= 6pF 2) Not fully tested over the temperature range. Guaranted by sampling. DIGITAL INPUTS AND OUTPUTS Symbol Digital inputs VIL VIH Logic "0" voltage Logic "1" voltage 2.0 0.8 V V Parameter Test conditions Min Typ Max Unit Digital Outputs VOL VOH IOZ CL Logic "0" voltage Logic "1" voltage Iol=10µA Ioh=-10µA 2.4 -1.5 1.5 15 0.4 V V µA pF High Impedance leakage current OEB set to VIH Output Load Capacitance ACCURACY Symbol OE DNL INL 6/19 Parameter Offset Error Differential Non Linearity Integral Non Linearity Monotonicity and no missing codes Test conditions Fin= 2MHz, VIN@+1dBFS Fin= 2MHz, VIN@+1dBFS Fin= 2MHz, VIN@+1dBFS Min -5 -0.7 -0.8 Typ ±0.2 ±0.2 ±0.3 Max +5 +0.7 +0.8 Unit % LSB LSB Guaranted TSA1002 CONDITIONS AVCC = DVCC = 2.5V, Fs= 40Msps Vin@ -1.0dBFS, VREFP=1V, VREFM= 0V Tamb = 25°C (unless otherwise specified) DYNAMIC CHARACTERISTICS Symbol Parameter Test conditions Fin= 5MHz Fin= 10MHz Fin= 24MHz SFDR Spurious Free Dynamic Range Fin= 5MHz Fin= 10MHz Fin= 24MHz Fin= 5MHz Fin= 10MHz Fin= 24MHz SNR Signal to Noise Ratio Fin= 5MHz Fin= 10MHz Fin= 24MHz Fin= 5MHz Fin= 10MHz Fin= 24MHz THD Total Harmonic Distortion Fin= 5MHz Fin= 10MHz Fin= 24MHz Fin= 5MHz Fin= 10MHz Fin= 24MHz Fin= 5MHz Fin= 10MHz Fin= 24MHz Fin= 5MHz Fin= 10MHz Fin= 24MHz ENOB Effective Number of Bits Fin= 5MHz Fin= 10MHz Fin= 24MHz 2) 1) 2) 1) 2) 1) 2) 1) 2) 1) Min 65.5 68.5 63.4 60 60 60 58.5 58.3 57.4 48 48 48 63.5 67.4 62.5 57 55 57 58.5 58.2 57.0 48 48 48 9.6 9.5 9.3 7.9 7.9 7.9 Typ 79.2 77 69 Max Unit dBc dBc 59.5 59.4 59.0 dB dB 77.8 76 68.1 dB dB 59.4 59.3 58.5 dB SINAD Signal to Noise and DistortionRatio dB 9.76 9.71 9.60 bits bits 1) Rpol= 18K Ω. Equivalent load: Rload= 470Ω and Cload= 6pF 2) Tmin= -40°C to Tmax= 85°C. Not fully tested over the temperature range. Guaranted by sampling. 7/19 TSA1002 DEFINITIONS OF SPECIFIED PARAMETERS STATIC PARAMETERS Static measurements are performed through method of histograms on a 2MHz input signal, sampled at 40Msps, which is high enough to fully characterize the test frequency response. The input level is +1dBFS to saturate the signal. Differential Non Linearity (DNL) The average deviation of any output code width from the ideal code width of 1LSB. Integral Non linearity (INL) An ideal converter presents a transfer function as being the straight line from the starting code to the ending code. The INL is the deviation for each transition from this ideal curve. DYNAMIC PARAMETERS Dynamic measurements are performed by spectral analysis, applied to an input sinewave of various frequencies and sampled at 40Msps. Spurious Free Dynamic Range (SFDR) The ratio between the amplitude of fundamental tone (signal power) and the power of the worst spurious signal (not always an harmonic) over the full Nyquist band. It is expressed in dBc. Total Harmonic Distortion (THD) The ratio of the rms sum of the first five harmonic distortion components to the rms value of the fundamental line. It is expressed in dB. Signal to Noise Ratio (SNR) The ratio of the rms value of the fundamental component to the rms sum of all other spectral components in the Nyquist band (fs/2) excluding DC, fundamental and the first five harmonics. SNR is reported in dB. Signal to Noise and Distorsion Ratio (SINAD) Similar ratio as for SNR but including the harmonic distortion components in the noise figure (not DC signal). It is expressed in dB. From the SINAD, the Effective Number of Bits (ENOB) can easily be deduced using the formula: SINAD= 6.02 × ENOB + 1.76 dB. When the applied signal is not Full Scale (FS), but has an A0 amplitude, the SINAD expression becomes: SINAD= 6.02 × ENOB + 1.76 dB + 20 log (2A0/FS) The ENOB is expressed in bits. Analog Input Bandwidth The maximum analog input frequency at which the spectral response of a full power signal is reduced by 3dB. Higher values can be achieved with smaller input levels. Effective Resolution Bandwidth (ERB) The band of input signal frequencies that the ADC is intended to convert without loosing linearity i.e. the maximum analog input frequency at which the SINAD is decreased by 3dB or the ENOB by 1/2 bit. Pipeline delay Delay between time when the analog input is initially sampled and time when the corresponding digital data output is valid on the output bus. Also called data latency. It is expressed as a number of clock cycles. 8/19 TSA1002 EQUIVALENT CIRCUITS Figure 1 : Analog Input Circuit A VCC=2.5V Figure 3 : Input buffers VCCbuf=2.5V VIN 355.5 Ω 278.5 Ω 208.2 Ω DFS (or VINB) P AD CAP ACITANCE 7 pF Req # 33 kΩ (if Fs=50 MHz) P AD CAP ANCE ACIT 7 pF AGND=0V com mon m ode G buff=0V ND Figure 2 : Input clock circuit DVC C=2.5V Figure 4 : Tri-state output buffers VCC buf=2.5V CLK OE DATA GND buff=0V VCC buf =2.5V OUT 2 mA OUTPUT BUFFER P AD C ACITANCE AP 7 pF PAD CAPACITANCE 7pF DGND=0V GND buff=0V 9/19 TSA1002 Static parameter: Integral Non Linearity Fs=50MSPS; Fin=1MHz; Icc=20mA; N=131072pts 0 .8 0 .6 0 .4 INL (LSBs) 0 .2 0 - 0 .2 - 0 .4 - 0 .6 - 0 .8 0 200 400 600 800 1000 O u tp u t C o d e Static parameter: Differential Non Linearity Fs=50MSPS; Fin=1MHz; Icc=20mA; N=131072pts 0 .5 0 .4 0 .3 0 .2 0 .1 0 -0 .1 -0 .2 -0 .3 -0 .4 -0 .5 0 200 400 600 800 1000 DNL (LSBs) O u tp u t C o d e Linearity vs. AVcc Fs=50MSPS; Icca=20mA; Fin=1MHz 60 10 Distortion vs. AVcc Fs=50MSPS; Icca=20mA; Fin=1MHz -69 Dynamic parameters (dB) 59.5 59 58.5 58 57.5 57 56.5 56 55.5 55 2.25 2.35 2.45 2.55 2.65 ENOB SINAD SNR Dynamic Parameters (dB) 9.9 -71 -73 -75 -77 -79 -81 -83 -85 2.25 THD SFDR 9.7 9.6 9.5 9.4 9.3 ENOB (bits) 9.8 2.35 2.45 2.55 2.65 AVCC (V) AVCC (V) 10/19 TSA1002 Linearity vs. DVcc Fs=50MSPS; Icca=20mA; Fin=1MHz Distortion vs. DVcc Fs=50MSPS; Icca=20mA; Fin=1MHz 59.1 9.6 -65 Dynamic parameters (dB) Dynamic parameters (dB) -67 -69 -71 -73 -75 -77 -79 -81 -83 -85 2.25 2.35 2.45 2.55 2.65 THD SFDR 59.05 59 SNR 9.595 9.59 ENOB 58.95 58.9 58.85 58.8 2.25 SINAD 9.585 9.58 9.575 9.57 2.35 2.45 2.55 2.65 DVCC (V) ENOB (bits) DVCC (V) Linearity vs. VccB Fs=50MSPS; Icca=20mA; Fin=1MHz Distortion vs. VccB Fs=50MSPS; Icca=20mA; Fin=1MHz 59.5 10 -72 Dynamic parameters (dB) Dynamic Parameters (dB) 59 58.5 58 57.5 57 2.25 SNR 9.9 9.8 -73 -74 -75 -76 -77 -78 -79 -80 2.25 SFDR THD SINAD 9.7 ENOB 9.6 9.5 9.4 2.35 2.45 2.55 2.65 ENOB (bits) 2.35 2.45 2.55 2.65 VCCB (V) VCCB (V) Linearity vs. Fs Icca=20mA; Fin=5MHz Distortion vs. Fs Icca=20mA; Fin=5MHz 10 -50 Dynamic parameters (dB) ENOB Dynamic parameters (dB) 66 -55 -60 -65 -70 -75 -80 -85 -90 25 35 45 55 65 75 SFDR THD 9.5 SNR SINAD ENOB (bits) 61 9 8.5 56 51 8 7.5 46 25 35 45 55 65 75 Fs (MHz) Fs (MHz) 11/19 TSA1002 Linearity vs. Fs Icca=20mA; Fin=15MHz Distortion vs. Fs Icca=20mA; Fin=15MHz 10 -50 Dynamic parameters (dB) Dynamic parameters (dB) 66 ENOB -55 -60 -65 -70 -75 -80 -85 -90 25 35 45 55 65 75 9.5 ENOB (bits) 61 SNR SINAD 9 8.5 THD 56 SFDR 51 8 7.5 25 35 45 55 65 75 46 Fs (MHz) Fs (MHz) Linearity vs. Fin Fs=50MSPS; Icca=20mA Distortion vs. Fin Fs=50MSPS; Icca=20mA -50 Dynamic parameters (dB) 64 9.6 62 60 SNR 58 56 54 0 20 40 60 8.6 ENOB 9.1 Dynamic parameters (dB) -55 -60 -65 -70 -75 -80 -85 0 20 40 60 THD SFDR SINAD 8.1 7.6 Fin (MHz) ENOB (bits) Fin (MHz) Linearity vs.Temperature Fs=50MSPS; Icca=20mA; Fin=5MHz Distortion vs. Temperature Fs=50MSPS; Icca=20mA; Fin=5MHz; Dynamic Parameters (dB) 62 60 58 56 54 52 50 -50 0 ENOB SNR Dynamic Parameters (dB) 64 SINAD 10 9.8 9.6 9.4 9.2 9 8.8 8.6 8.4 8.2 8 80 75 SFDR 70 THD 65 60 55 -50 0 50 100 50 100 Temperature (°C) Temperature (°C) 12/19 TSA1002 APPLICATION NOTE DETAILED INFORMATION The TSA1002 is a High Speed analog to digital converter based on a pipeline architecture and the latest deep submicron CMOS process to achieve the best performances in terms of linearity and power consumption. The pipeline structure consists of 9 internal conversion stages in which the analog signal is fed and sequencially converted into digital data. Each 8 first stages consists of an Analog to Digital converter, a Digital to Analog converter, a Sample and Hold and a gain of 2 amplifier. A 1.5bit conversion resolution is achieved in each stage. The latest stage simply is a comparator. Each resulting LSB-MSB couple is then time shifted to recover from the conversion delay. Digital data correction completes the processing by recovering from the redundancy of the (LSB-MSB) OPERATIONAL MODES DESCRIPTION Inputs Analog input differential level (VIN-VINB) -RANGE RANGE> (VIN-VINB) -RANGE RANGE> > > (VIN-VINB) > > (VIN-VINB) X RANGE (VIN-VINB) >-RANGE RANGE (VIN-VINB) >-RANGE DFSB H H H L L L X couple for each stage. The corrected data are outputed through the digital buffers. Signal input is sampled on the rising edge of the clock while digital outputs are delivered on the falling edge of the Data Ready signal. The advantages of such a converter reside in the combination of pipeline architecture and the most advanced technologies. The highest dynamic performances are achieved while consumption remains at the lowest level. Some functionalities have been added in order to simplify as much as possible the application board. These operational modes are described in the following table. The TSA1002 is pin to pin compatible with the 8bits/40Msps TSA0801, the 10bits/25Msps TSA1001 and the 12bits/50Msps TSA1201. This ensures a conformity within the product family and above all, an easy upgrade of the application. Outputs OEB L L L L L L H OR H H L H H L HZ DR CLK CLK CLK CLK CLK CLK HZ Most Significant Bit (MSB) D9 D9 D9 Complemented D9 Complemented D9 Complemented D9 HZ Data Format Select (DFSB) When set to low level (VIL), the digital input DFSB provides a two’s complement digital output MSB. This can be of interest when performing some further signal processing. When set to high level (VIH), DFSB provides a standard binary output coding. Output Enable (OEB) When set to low level (VIL), all digital outputs remain active and are in low impedance state. When set to high level (VIH), all digital outputs buffers are in high impedance state. This results in 13/19 lower consumption while the converter goes on sampling. When OEB is set to low level again, , the data is then valid on the output with a very short Ton delay. The timing diagram summarizes this operating cycle. Out of Range (OR) This function is implemented on the output stage in order to set up an "Out of Range" flag whenever the digital data is over the full scale range. TSA1002 Typically, there is a detection of all the data being at ’0’ or all the data being at ’1’. This ends up with an output signal OR which is in low level state (VOL) when the data stay within the range, or in high level state (VOH) when the data are out of the range. Data Ready (DR) The Data Ready output is an image of the clock being synchronized on the output data (D0 to D9). This is a very helpful signal that simplifies the synchronization of the measurement equipment or the controlling DSP. As digital output, DR goes in high impedance state when OEB is asserted to High level as described in the timing diagram. DRIVING THE ANALOG INPUT Differential inputs The TSA1002 has been designed to obtain optimum performances when being differentially driven. An RF transformer is a good way to achieve such performances. Figure 5 describes the schematics. The input signal is fed to the primary of the transformer, while the secondary drives both ADC inputs. The common mode voltage of the ADC (INCM) is connected to the center-tap of the secondary of the transformer in order to bias the input signal around this common voltage, internally set to 0.56V. The INCM is decoupled to maintain a low noise level on this node. Our evaluation board is mounted with a 1:1 ADT1-1 transformer from Minicircuits. You might also use a higher impedance ratio (1:2 or 1:4) to reduce the driving requirement on the analog signal source. Each analog input can drive a 1Vpp amplitude input signal, so the resultant differential amplitude is 2Vpp. Figure 5 : Differential input configuration Analog source 50Ω 330pF Single-ended input configuration Some applications may require a single-ended input which is easily achieved with the configuration reported on Figure 6. In this case, it is recommended to use an AC-coupled analog input and connect the other analog input to the common mode voltage of the circuit (INCM) so as to properly bias the ADC. The INCM may remain at the same internal level (0.56V) thus driving only a 1Vpp input amplitude, or it must be increased to 0.9V to drive a 2Vpp input amplitude. You will get higher performances using a 2Vpp signal. Figure 6 : Single-ended input configuration Signal source 50Ω 100nF VIN TSA1002 VINB INCM 10nF 470nF 0.9V Dynamic characteristics, while not being as remarkable as for differential configuration, are still of very good quality. Measurements done at 50Msps, 2MHz input frequency, -1dBFS input level sum up these performances. An SFDR of -64.5dBc, a SNR of 57.8dB and an ENOB Full Scale of 9.3bits are achieved. REFERENCE CONNECTION Internal reference In the standard configuration, the ADC is biased with the internal reference voltage. VREFM pin is connected to Analog Ground while VREFP is internally set to a voltage of 1.03V. It is recommended to decouple the VREFP in order to minimize low and high frequency noise. Refer to Figure 7 for the schematics. Figure 7 : Internal reference setting ADT1-1 1:1 VIN 100pF TSA1002 VINB INCM VIN 1.03V VREFP 330pF 10nF 470nF TSA1002 330pF 10nF 470nF VINB VREFM 14/19 TSA1002 External reference It is possible to use an external reference voltage instead of the internal one for specific applications requiring even better linearity or enhanced temperature behaviour. In this case, the amplitude of the external voltage must be at least equal to the internal one (1.03V). Using the STMicroelectronics Vref TS821 leads to optimum performances when configured as shown on Figure 8. Figure 8 : External reference setting 60 20 RPOL 18 16 12 30 20 ICCA 10 0 25 35 45 55 65 75 10 8 6 4 2 0 Rpol (kOhms) 14 The TSA1002 will combine highest performances and lowest consumption at 50Msps when Rpol is in the range of 12kΩ to 20kΩ. At lower sampling frequency, this value of resistor may be changed and the consumption will decrease as well. The figure 9 sums up the relevant data. Figure 9 : Analog Current consumption vs. Fs According value of Rpol polarization resistance 1kΩ VCCA VREFP VIN 50 TSA1002 VINB VREFM TS821 external reference Icca (mA) 330pF 10nF 470nF 40 Fs (MHz) At 15Msps sampling frequency, 1MHz input frequency and -1dBFS amplitude signal, performances can be improved of up to 2dBc on SFDR and 0.3dB on SINAD. At 50Msps sampling frequency, 1MHz input frequency and -1dBFS amplitude signal, performances can be improved of up to 1dBc on SFDR and 0.6dB on SINAD. This can be very helpful for example for multichannel application to keep a good matching among the sampling frequency range. Clock input The quality of your converter is very dependant on your clock input accuracy, in terms of aperture jitter; the use of low jitter crystal controlled oscillator is recommended. The duty cycle must be between 45% and 55%. The clock power supplies must be separated from the ADC output ones to avoid digital noise modulation at the output. It is recommended to always keep the circuit clocked, even at the lowest specified sampling frequency of 0.5Msps, before applying the supply voltages. Power consumption The internal architecture of the TSA1002 enables to optimize the power consumption according to the sampling frequency of the application. For this purpose, a resistor is placed between IPOL and the analog Ground pins. Layout precautions To use the ADC circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: - First of all, the implementation of 4 separate proper supplies and ground planes (analog, digital, internal and external buffer ones) on the PCB is mandatory for high speed circuit applications to provide low inductance and low resistance common return. The separation of the analog signal from the digital part is essential to prevent noise from coupling onto the input signal. - Power supply bypass capacitors must be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. - Proper termination of all inputs and outputs must be incorporated with output termination resistors; then the amplifier load will be only resistive and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for the analog input in order to decrease parasitic capacitance and inductance. - To keep the capacitive loading as low as possible at digital outputs, short lead lengths of routing are essential to minimize currents when the output changes. To minimize this output 15/19 TSA1002 capacitance, buffers or latches close to the output pins will relax this constraint. - Choose component sizes as small as possible (SMD). EVAL1002 evaluation board The characterization of the board has been made with a fully ADC devoted test bench as shown on Figure 10. The analog signal must be filtered to be very pure. The dataready signal is the acquisition clock of the logic analyzer. The ADC digital outputs are latched by the octal buffers 74LCX573. All characterization measurements have been made with: SFSR=+0.2dB for static parameters.SFSR=-0.5dB for dynamic parameters. Figure 10 : Analog to Digital Converter characterization bench Power HP8644B Sine wave Generator Vin ADC evaluation board ck data Logic Analyzer dataready TLA704 HP8133A Pulse Generator HP8644B Sine Wave Generator 16/19 J9 DFSB J11 1 2 1 2 1 2 VCCB2 C34 + J10 OEB J13 1 2 J17 VDDBUFF3V R10 47K R11 47K R12 47K R13 47K C16 AVCC 470nF C15 10nF C14 R2 1K 330pF 330pF R14 R15 R16 R17 R18 R19 47K 47K 47K 47K 47K 47K 330pF 10nF C25 10nF C26 DR DO D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 C38 C29 6 2 4 + 1 2 C28 VCCB1 470nF C27 470nF C39 47µ C37 J2 Raj1 47K 1 2 VrefP J6 J5 1 2 VrefM C32 470nF AGND AVCC AVCC DFSB OEB NC NC 2.5VCCBUFF GNDBUFF 2.5VCCBUFF DR D0 10nF 330pF C31 C13 C12 C30 330pF 470nF 10nF C11 48 47 46 45 44 43 42 41 40 39 38 37 J1 Vin 1 T2 6 2 Figure 11 : TSA1002 Evaluation board schematic R1 50 3 4 T2-AT1-1WT 8-14bits ADC TSA1002 74LCX573 C1 100pF 1 2 3 4 5 6 7 8 9 10 OEB VCC D0 Q0 D1 Q1 D2 Q2 D3 Q3 D4 Q4 U2 D5 Q5 D6 Q6 D7 Q7 GND LE 20 19 18 17 16 15 14 13 12 11 J7 C10 C9 C8 1 2 C3 AVCC 470nF 10nF 330pF C4 C2 470nF 10nF 330pF Regl com mode J8 C7 C6 C5 1 2 13 14 15 16 17 18 19 20 21 22 23 24 Mes com Mode J12 74LCX573 DVCC DVCC DGND CLK DGND NC DGND GNDBUFF GNDBUFF 2.5VCCBUFF OR D13 470nF 10nF 330pF 1 2 3 4 5 6 7 8 9 10 11 12 Ipol VrefP VrefM AGND Vin AGND VINB AGND INCM AGND AVCC AVCC 1 2 3 4 5 6 7 8 9 10 OEB VCC D0 Q0 D1 Q1 U3 D2 Q2 D3 Q3 D4 Q4 D5 Q5 D6 Q6 D7 Q7 GND LE 20 19 18 17 16 15 14 13 12 11 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 36 35 34 33 32 31 30 29 28 27 26 25 2 1 AVCC + C42 47µF J19 C20 10µF C17 C41 10µF OR 470nF C40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 32PIN 1 2 AGND J20 1 330pF C21 3 R3 50 10nF C19 470nF C24 10µ + 1 2 10nF C22 470nF C23 10µ + T1 T2-AT1-1WT 330pF C18 10nF C33 330pF DGND J21 1 2 GndB2 C36 47µ 2 1 J4 CLJ/SMB C35 47µ VCCB1 J22 1 2 2 1 GndB1 J15 DVCC J16 CON2 J18 VccB1 2 1 TSA1002 17/19 TSA1002 Figure 12 : Printed circuit of evaluation board. Printed circuit board - List of components P a rt T yp e 10 u F 10 u F 10 u F 10 u F 10 0 p F 10 n F 10 n F 10 n F 10 n F 10 n F 10 n F 10 n F 10 n F 10 n F 10 n F 10 n F 1K Ω 3 2 P IN 330pF 330pF D e s i g n F o o t p r in t ato r C 24 C 23 C 41 C 29 C1 C 12 C 39 C 15 C 40 C 27 C4 C 21 C 31 C6 C9 C 18 R2 J6 C 25 C 26 12 10 12 10 12 10 12 10 603 603 603 603 603 603 603 603 603 603 603 603 603 ID C 3 2 603 603 P a rt T yp e 3 3 0 pF 3 3 0 pF 3 3 0 pF 3 3 0 pF 3 3 0 pF 3 3 0 pF 3 3 0 pF 3 3 0 pF 3 3 0 pF 47uF 47uF 47uF 47uF 4 7 0 nF 4 7 0 nF 4 7 0 nF 4 7 0 nF 4 7 0 nF 4 7 0 nF 4 7 0 nF D e s ig n F o o t p r in t ato r C 33 C 20 C8 C2 C5 C 11 C 30 C 17 C 14 C 36 C 34 C 35 C 42 C 22 C 32 C 37 C 38 C 13 C 28 C 10 603 603 603 603 603 603 603 603 603 CAP CAP CAP CAP 805 805 805 805 805 805 805 P a rt T yp e 470nF 470nF 470nF 470nF 47K Ω 47K Ω 47K Ω 47K Ω 47K Ω 47K Ω 47K Ω 47K Ω 47K Ω 47K Ω 47K Ω 50 Ω 50 Ω D e s i g n F o o t p r in t ato r C7 C 16 C 19 C3 R 12 R 14 R 11 R a j1 R 10 R 19 R 13 R 15 R 16 R 17 R 18 R3 R1 805 805 805 805 603 603 603 VR 5 603 603 603 603 603 603 603 603 603 TSSOP 20 TSSOP 20 S IP 2 P a rt T yp e A VC C C LJ / S M B A GN D D FSB D GN D D VC C G ndB 1 G ndB 2 D e s ig n ato r J 12 J4 J 19 J9 J20 J 15 J22 J21 F IC H E 2 M M SM B /H F IC H E 2 M M F IC H E 2 M M F IC H E 2 M M F IC H E 2 M M F IC H E 2 M M F IC H E 2 M M F IC H E 2 M M F IC H E 2 M M F IC H E 2 M M ADT ADT F IC H E 2 M M F IC H E 2 M M SM B /H F IC H E 2 M M F IC H E 2 M M T QF P 48 F o o t p r in t M es co m m o de J8 OEB J 10 R e gl c o m m o de J 7 T 2 - A T 1- 1W T T 2 - A T 1- 1W T VccB 1 VD D B UF F 3V V in V re f M V re f P T S A 10 0 2 T2 T1 J 18 J 17 J1 J5 J2 U1 7 4 LC X 5 7 3 U3 7 4 LC X 5 7 3 U2 CON2 J 16 18/19 TSA1002 PACKAGE MECHANICAL DATA 48 PINS - PLASTIC PACKAGE A A2 48 1 e A1 37 36 0,10 mm .004 inch SEATING PLANE 12 13 24 25 E3 E1 E D3 D1 D L1 L K Millimeters Dim. Min. A A1 A2 B C D D1 D3 e E E1 E3 L L1 K 0.05 1.35 0.17 0.09 Typ. Max. 1.60 0.15 1.45 0.27 0.20 0,25 mm .010 inch GAGE PLANE Min. 0.002 0.053 0.007 0.004 B c Inches Typ. Max. 0.063 0.006 0.057 0.011 0.008 1.40 0.22 9.00 7.00 5.50 0.50 9.00 7.00 5.50 0.60 1.00 0.055 0.009 0.354 0.276 0.216 0.0197 0.354 0.276 0.216 0.024 0.039 0.45 0.75 0.018 0.030 0° (min.), 7° (max.) Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics © 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com 19/19
TSA1002CFT 价格&库存

很抱歉,暂时无法提供与“TSA1002CFT”相匹配的价格&库存,您可以联系我们找货

免费人工找货