0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSB572IYQ2T

TSB572IYQ2T

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    WDFN8

  • 描述:

    IC OPAMP GP 2 CIRCUIT 8DFN

  • 数据手册
  • 价格&库存
TSB572IYQ2T 数据手册
TSB571, TSB572 Datasheet Low-power, 2.5 MHz, RR IO, 36 V BiCMOS operational amplifier Features TSB571 SOT23-5 TSB572 MiniSO8 SO8 DFN8 (3x3 mm) • • • • • • • • • • • • Low-power consumption: 380 µA typ. Wide supply voltage: 4 V - 36 V Rail-to-rail input and output Gain bandwidth product: 2.5 MHz Low input bias current: 30 nA max. No phase reversal High tolerance to ESD: 4 kV HBM Extended temperature range: -40 °C to 125 °C Automotive grade Small SMD packages 40 V BiCMOS technology Enhanced stability vs. capacitive load Applications Maturity status link For below 100 µA solution • • • • • • For a higher precision Description TSB571, TSB572 Related products TSB611 TSB711 TSB712 Active filtering Audio systems Automotive Power supplies Industrial Low/high side current sensing The TSB571 (single) and TSB572 (dual) operational amplifiers offer an extended voltage operating range from 4 V to 36 V and rail-to-rail input/output. The TSB571 and TSB572 give a very good speed/power consumption ratio with a 2.5 MHz gain bandwidth product and a consumption of 380 µA typically only at 36 V supply voltage. Stability and robustness of these devices make them an ideal solution for a wide voltage range of applications. DS11248 - Rev 9 - October 2022 For further information contact your local STMicroelectronics sales office. www.st.com TSB571, TSB572 Package pin connections 1 Package pin connections Figure 1. Pin connections (top view) VCC+ OUT VCC- IN- IN+ SOT23-5 Table 1. Pin description (SOT23-5) DS11248 - Rev 9 Pin n° Pin name Description 1 OUT Output channel 2 VCC- Negative supply voltage 3 IN1+ Non-inverting input channel 4 IN- Inverting input channel 5 VCC+ Positive supply voltage page 2/31 TSB571, TSB572 Package pin connections Figure 2. Pin connections for each package (top view) Out1 VCC+ Out1 VCC+ In1- Out2 In1- Out2 In1+ In2- In1+ In2- VCC- In2+ VCC- In2+ SO8 MiniSO8 Out1 1 8 VCC+ In1- 2 7 Out2 In1+ 3 6 In2- VCC- 4 5 In2+ DFN8 (3 x 3) 1. (1) Exposed pad can be left floating or connected to ground. Table 2. Pin description (miniSO8/SO8/DFN8) DS11248 - Rev 9 Pin Pin name 1 OUT1 2 IN1- Inverting input channel 1 3 IN1+ Non-inverting input channel 1 4 VCC- Negative supply voltage 5 IN2+ Non-inverting input channel 2 6 IN2- Inverting input channel 2 7 OUT2 Output channel 2 8 VCC+ Positive supply voltage Description Output channel 1 page 3/31 TSB571, TSB572 Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 3. Absolute maximum ratings Symbol Parameter Value VCC Supply voltage (1) 40 Vid Differential input voltage (2) ±1 Vin Input voltage Iin Input current (4) Tstg Tj (3) (VCC Storage temperature + 0.2 -65 to 150 Maximum junction temperature 150 Thermal resistance junction to MiniSO8 ambient (5) (6) DFN8 3x3 SO-8 (7) mA °C 250 190 40 °C/W 125 4 kV Machine model (MM) (8) 100 V CDM: charged device model (9) 1.5 kV Human body model (HBM) ESD - 0.2 to (VCC V +) 10 SOT23-5 Rthja -) Unit 1. All voltage values, except the differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. VCC-Vin must not exceed 40 V, Vin must not exceed 40 V. 4. Input current must be limited by a resistor in-series with the inputs. 5. Rth are typical values. 6. Short-circuits can cause excessive heating and destructive dissipation. 7. According to JEDEC standard JESD22-A114F. 8. According to JEDEC standard JESD22-A115A. 9. According to ANSI/ESD STM5.3.1. Table 4. Operating conditions Symbol DS11248 - Rev 9 Parameter VCC Supply voltage Vicm Common mode input voltage range Toper Operating free-air temperature range Value Unit 4 to 36 (VCC -) - 0.1 to (VCC +) + 0.1 -40 to 125 V °C page 4/31 TSB571, TSB572 Electrical characteristics 3 Electrical characteristics Table 5. Electrical characteristics at Vcc = 4 V, Vicm = Vcc/2, Tamb = 25 °C, and RL connected to Vcc/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. -1.5 -0.2 1.5 Unit DC performance Vio ΔVio/ΔT Iio Iib Input offset voltage Input offset voltage drift Input offset current Input bias current -40 °C < T < 125 °C -2.1 -40 °C < T < 125 °C 2.1 1.5 6 2 15 -40 °C < T < 125 °C 35 8 -40 °C < T < 125 °C 30 mV μV/°C nA 70 CIN Input capacitor 2 pF RIN Input impedance 1 TΩ CMR Common mode rejection ratio 20 log (ΔVicm/ΔVio) Avd Large signal voltage gain VOH High level output voltage (drop voltage from (VCC+)) VOL Low level output voltage Isink Iout Isource ICC Supply current (per channel) Vicm = (VCC-) to (VCC+) - 1.5 V, Vout = VCC/2 90 -40 °C < T < 125 °C 80 Vicm = (VCC-) to (VCC+), Vout = VCC/2 75 -40 °C < T < 125 °C 70 RL= 10 kΩ, Vout = 0.5 to 3.5 V 90 -40 °C < T < 125 °C 85 RL = 10 kΩ 114 97 dB 100 19 -40 °C < T < 125 °C 60 80 RL = 10 kΩ 12 -40 °C < T < 125 °C 50 mV 70 Vout = VCC 20 -40 °C < T < 125 °C 5 Vout = 0 V 10 -40 °C < T < 125 °C 5 No load, Vout = VCC/2 38 mA 32 340 -40 °C < T < 125 °C 430 μA 500 AC performance GBP Gain bandwidth product RL = 10 kΩ, CL = 100 pF 1.5 -40 °C < T < 125 °C 1.2 2.2 MHz ϕm Phase margin RL = 10 kΩ, CL = 100 pF 45 degrees Gm Gain margin RL = 10 kΩ, CL = 100 pF 5 dB Negative slew rate SR Positive slew rate en Equivalent input noise voltage DS11248 - Rev 9 Vin = 3.5 to 0.5 V, Av = 1, 10 % to 90 %, RL = 10 kΩ, CL= 100 pF 0.50 -40 °C < T < 125 °C 0.37 Vin = 0.5 to 3.5 V, Av = 1, 10% to 90%, RL = 10 kΩ, CL= 100 pF 0.50 -40 °C < T < 125 °C 0.37 f = 1 kHz 0.78 0.89 20 V/μs nV/√Hz page 5/31 TSB571, TSB572 Electrical characteristics Symbol en THD+N Parameter Conditions Equivalent input noise voltage f = 0.1 Hz to 10 Hz Total harmonic distortion + noise f = 1 kHz, Vin = 3.8 Vpp, RL = 10 kΩ, CL=100 pF DS11248 - Rev 9 Min. Typ. Max. Unit 0.7 μVpp 0.001 % page 6/31 TSB571, TSB572 Electrical characteristics Table 6. Electrical characteristics at Vcc = 12 V, Vicm = Vcc/2, Tamb = 25 °C, and RL connected to Vcc/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. -1.5 -0.1 1.5 Unit DC performance Vio ΔVio/ΔT Iio Iib Input offset voltage Input offset voltage drift Input offset current Input bias current -40 °C < T < 125 °C -2.1 -40 °C < T < 125 °C 2.1 1.5 6 2 15 -40 °C < T < 125 °C 35 8 -40 °C < T < 125 °C 30 mV μV/°C nA 70 CIN Input capacitor 2 pF RIN Input impedance 1 TΩ CMR Common mode rejection ratio 20 log (ΔVicm/ΔVio) SVR Supply voltage rejection ratio 20 log (ΔVCC/ΔVio) Avd Large signal voltage gain VOH High level output voltage (drop voltage from VCC+) VOL Low level output voltage Isink Iout Isource ICC Supply current (per channel) Vicm = (VCC-) to (VCC+) - 1.5 V, Vout = VCC/2 100 -40 °C < T < 125 °C 90 Vicm = (VCC-) to (VCC+), Vout = VCC/2 85 -40 °C < T < 125 °C 80 VCC = 4 to 12 V 90 -40 °C < T < 125 °C 80 RL= 10 kΩ, Vout = 0.5 to 11.5 V 95 -40 °C < T < 125 °C 90 RL = 10 kΩ 123 106 dB 99 106 38 -40 °C < T < 125 °C 100 150 RL = 10 kΩ 16 -40 °C < T < 125 °C 70 mV 90 Vout = VCC 20 -40 °C < T < 125 °C 8 Vout = 0 V 15 -40 °C < T < 125 °C 7 No load, Vout = VCC/2 42 mA 35 360 -40 °C < T < 125 °C 450 530 μA AC performance GBP Gain bandwidth product RL = 10 kΩ, CL = 100 pF 1.6 -40 °C < T < 125 °C 1.3 2.4 MHz ϕm Phase margin RL = 10 kΩ, CL = 100 pF 50 degrees Gm Gain margin RL = 10 kΩ, CL = 100 pF 6 dB Negative slew rate Vin = 10.5 to 1.5 V, Av = 1, 10 % to 90 %, RL = 10 kΩ, CL = 100 pF 0.53 -40 °C < T < 125 °C 0.40 Vin = 1.5 to 10.5 V, Av = 1, 10 % to 90 %, RL = 10 kΩ, CL = 100 pF 0.55 -40 °C < T < 125 °C 0.40 SR Positive slew rate DS11248 - Rev 9 0.82 V/μs 0.92 page 7/31 TSB571, TSB572 Electrical characteristics Symbol en THD+N Parameter Equivalent input noise voltage Total harmonic distortion + noise DS11248 - Rev 9 Conditions Min. Typ. Max. Unit f = 1 kHz 20 nV/√Hz f = 0.1 Hz to 10 Hz 0.7 μVpp 0.000 5 % f = 1 kHz, Vin = 7 Vpp, RL = 10 kΩ, CL= 100 pF page 8/31 TSB571, TSB572 Electrical characteristics Table 7. Electrical characteristics at Vcc = 36 V, Vicm = Vcc/2, Tamb = 25 °C, and RL connected to Vcc/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. -1.5 0.1 1.5 Unit DC performance Vio ΔVio/ΔT ΔVio Iio Iib Input offset voltage -40 °C < T < 125 °C -2.1 2.1 Input offset voltage drift -40 °C < T < 125 °C 1.5 Long-term input offset voltage drift (1) T = 25 °C 1.5 Input offset current Input bias current 2 -40 °C < T < 125 °C 6 -40 °C < T < 125 °C μV/°C µV/√month 15 35 8 mV 30 nA 70 CIN Input capacitor 2 pF RIN Input impedance 1 TΩ CMR Common mode rejection ratio 20 log (ΔVicm/ΔVio) SVR Supply voltage rejection ratio 20 log (ΔVCC/ΔVio) Avd Large signal voltage gain VOH High level output voltage (drop voltage from VCC+) VOL Low level output voltage Isink Iout Isource ICC Supply current (per channel) Vicm = (VCC-) to (VCC+) - 1.5 V, Vout = VCC/2 105 -40 °C < T < 125 °C 95 Vicm = (VCC-) to (VCC+), Vout = VCC/2 95 -40 °C < T < 125 °C 90 VCC = 4 to 36 V 90 -40 °C < T < 125 °C 85 RL= 10 kΩ, Vout = 0.5 to 35.5 V 95 -40 °C < T < 125 °C 90 RL = 10 kΩ 129 115 dB 104 114 78 -40 °C < T < 125 °C 150 200 RL = 10 kΩ 30 -40 °C < T < 125 °C 90 mV 120 Vout = VCC 25 -40 °C < T < 125 °C 10 Vout = 0 V 20 -40 °C < T < 125 °C 10 No load, Vout = VCC/2 65 mA 50 380 -40 °C < T < 125 °C 470 550 μA AC performance GBP Gain bandwidth product RL = 10 kΩ, CL = 100 pF 1.7 -40 °C < T < 125 °C 1.4 2.5 MHz ϕm Phase margin RL = 10 kΩ, CL = 100 pF 50 degrees Gm Gain margin RL = 10 kΩ, CL = 100 pF 8 dB Vin = 22.5 to 13.5 V, Av = 1, 10 % to 90 %, RL = 10 kΩ, CL = 100 pF 0.57 SR Negative slew rate -40 °C < T < 125 °C 0.44 DS11248 - Rev 9 0.88 V/μs page 9/31 TSB571, TSB572 Electrical characteristics Symbol SR en THD+N Parameter Positive slew rate Equivalent input noise voltage Total harmonic distortion + noise Conditions Min. Typ. Vin = 13.5 to 22.5 V, Av = 1, 10 % to 90 %, RL = 10 kΩ, CL = 100 pF 0.60 1.00 -40 °C < T < 125 °C 0.44 Max. Unit V/μs f = 1 kHz 20 nV/√Hz f = 0.1 Hz to 10 Hz 0.7 μVpp 0.001 % f = 1 kHz, Vin = 7 Vpp, RL = 10 kΩ, CL = 100 pF 1. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 4.5 Section 4.5). DS11248 - Rev 9 page 10/31 TSB571, TSB572 Electrical characteristics Figure 4. Input offset voltage distribution at VCC = 4 V Figure 3. Supply current vs. supply voltage 0.5 35 T = 125 °C 0.4 T = 25°C 0.3 0.2 Vcc=4V Vicm=2V T=25°C 30 Population (%) Supply Current (mA) Vicm = Vcc/2 T = -40°C 25 20 15 10 0.1 5 0.0 0 5 10 15 20 25 30 0 -1.5 35 -1.2 -0.9 Supply Voltage (V) 0.3 0.6 0.9 1.2 1.5 35 Vcc=12V Vicm=6V T=25°C 30 Population (%) Population (%) 0.0 Figure 6. Input offset voltage distribution at VCC = 36 V 35 25 20 15 20 15 10 5 5 0 -1.5 -1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 1.2 1.5 0 -1.5 -1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 1.2 1.5 Input offset voltage (mV) Input offset voltage (mV) Figure 7. Input offset voltage vs. temperature at VCC = 36 V 2.5 Vcc=36V Vicm=18V T=25°C 25 10 Figure 8. Input offset voltage temperature variation distribution at VCC = 36 V Vio limit 2.0 Input offset voltage (mV) -0.3 Input offset voltage (mV) Figure 5. Input offset voltage distribution at VCC = 12 V 30 -0.6 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 Vcc=36V Vicm=18V -2.0 -2.5 -40 DS11248 - Rev 9 -20 0 20 40 60 Temperature (°C) 80 100 120 page 11/31 TSB571, TSB572 Electrical characteristics Figure 9. Input offset voltage vs. supply voltage Figure 10. Input offset voltage vs. common-mode voltage at VCC = 4 V Input Offset Voltage (mV) -0.2 Vicm=Vcc/2 -0.3 -0.4 -0.5 -0.6 T=25°C T=125°C -0.7 -0.8 4 8 12 T=-40°C 16 20 24 28 Supply voltage (V) 32 36 Figure 11. Input offset voltage vs. common-mode voltage at VCC = 36 V Figure 12. Input bias current vs. temperature at VICM = VCC/2 0 Input bias current (nA) Vicm=Vcc/2 -2 -4 -6 Vcc=4V Vcc=12V Vcc=36V -8 -10 -40 -20 0 20 40 60 80 100 120 Temperature (°C) Figure 13. Input bias current vs. common-mode voltage at VCC = 36 V Figure 14. Output current vs. output voltage at VCC = 4 V 50 60 T=-40°C 40 Output Current (mA) Input bias current (nA) Vcc=36V T=25°C 20 T=125°C 0 -20 Sink 40 Vid=-1V 30 20 10 0 -10 T=-40°C T=25°C T=125°C -20 -30 -40 -40 -60 0 5 10 15 20 25 Input Common Mode Voltage (V) DS11248 - Rev 9 30 35 -50 0.0 Vcc=4V 0.5 1.0 1.5 2.0 2.5 3.0 Output Voltage (V) Source Vid=1V 3.5 4.0 page 12/31 TSB571, TSB572 Electrical characteristics 70 Output Current (mA) 56 Vcc=36V Sink Vid=-1V 42 28 14 0 T=125°C T=-40°C T=25°C -14 -28 -42 Source Vid=1V -56 -70 0 5 10 15 20 25 Output Voltage (V) 30 Figure 16. Output voltage (Voh) vs. supply voltage Output voltage drop (from Vcc+) (mV) Figure 15. Output current vs. output voltage at VCC = 36 V 110 100 90 80 70 60 50 40 20 Vid=0.1V Rl=10kΩ  to Vcc/2 10 0 35 T=125°C T=25°C T=-40°C 30 4 8 12 16 20 24 28 Power supply voltage (V) 1.2 40 Vcc=36V Vicm=Vcc/2 Rl=10kΩ Cl=100pF 1.0 0.8 T=-40°C 0.6 30 0.4 25 Voltage (V) Output voltage (mV) 35 20 15 T=25°C 0.2 0.0 T=125°C -0.2 -0.4 10 T=-40°C T=25°C 5 -0.6 T=125°C -0.8 Vid=-0.1V  to Vcc/2 Rl=10kΩ 4 8 -1.0 12 16 20 24 28 Power supply voltage (V) 32 36 -1.2 0.0 1.0 0.6 0.4 T=-40°C T=25°C -0.2 Vcc=36V Vicm=Vcc/2 Rl=10kΩ Cl=100pF -0.4 T=125°C -0.6 -0.8 -1.0 -1.2 0.0 0.5 1.0 1.5 2.0 Time (µs) DS11248 - Rev 9 2.5 3.0 3.5 4.0 Slew rate (V/µs) 0.8 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Figure 20. Slew rate vs. supply voltage 1.2 0.2 0.5 Time (µs) Figure 19. Positive slew rate at VCC = 36 V Voltage (V) 36 Figure 18. Negative slew rate at VCC = 36 V Figure 17. Output voltage (Vol) vs. supply voltage 0 32 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 4.0 Vicm=Vcc/2 T=125°C T=25°C T=-40°C Vload=Vcc/2 Rl=10kΩ Cl=100pF 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 Supply Voltage (V) page 13/31 TSB571, TSB572 Electrical characteristics Figure 21. Bode diagram at VCC = 4 V 0 40 Phase Gain 0 -40 -60 1k 10k 100k 40 -120 20 -180 Vcc=4V Vicm=2V Rl=10kΩ  Cl=100pF Gain=100 -20 -60 Phase (°) 20 60 1M 0 T=-40°C T=25°C T=125°C Phase 0 -180 -240 -20 -300 -40 -360 10M -60 Vcc=36V Vicm=18V Rl=10kΩ  Cl=100pF Gain=100 1k -240 -300 10k 100k Figure 24. Phase margin vs. output current at VCC = 36 V 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 0 -1.0 1.0 Figure 25. Phase margin vs. capacitive load Overshoot (%) Phase margin(°) -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Vcc=36V Vicm=Vcc/2 Rl=10kΩ Vin=100mVpp Gain=1 T=25°C 80 30 Vcc=4V 20 Vcc=36V Vicm=Vcc/2 Rl=10kΩ  T=25°C 60 40 20 Sustained Oscillations 0 200 300 400 500 Capacitive load (pF) DS11248 - Rev 9 -0.6 100 40 0 100 -0.8 Figure 26. Overshoot vs. capacitive load at VCC = 36 V 50 10 -360 10M 1M Frequency (Hz) Figure 23. Phase margin vs. output current at VCC = 4 V -0.8 -120 Gain Frequency (Hz) 0 -1.0 -60 Phase (°) T=-40°C T=25°C T=125°C Gain (dB) 60 Gain (dB) Figure 22. Bode diagram at VCC = 36 V 700 1000 10 100 1000 10000 Capacitive load (pF) page 14/31 TSB571, TSB572 Electrical characteristics Figure 27. Small step response vs. time at VCC = 4 V Figure 28. Output desaturation vs. time Vcc=4V Vicm=2V  Rl=10kΩ Cl=100pF Follower Configuration T=25°C 0.07 20 Input and Output voltages (V) Output Voltage (V) 0.15 0.00 -0.07 Vcc=+/-18V Vicm=0V Gain=4.7 Rl=10kΩ Cl=100pF 15 10 5 0 -5 -10 -15 -20 0 -0.15 0.0 2.5 5.0 Time (µs) 7.5 36.00 35.95 35.90 35.85 35.80 35.70 35.75 0.25 0.20 0.15 0.10 0.05 Vcc=36V Follower configuration 60 40 20 0 10 100 1000 Frequency (Hz) 10000 Figure 32. THD+N vs. frequency 0.01 400 Vicm=Vcc/2 Gain=1 Rl=10kΩ Cl=100pF BW=80kHz T=25°C Vcc=36V 300 Vicm=Vcc/2 Vload=Vcc/2 200 THD + N (%) Input voltage nosie (nV) 1000 @Vcc=36V @Vcc=12V @Vcc=4V Vicm=Vcc/2 T=25°C 80 Figure 31. Noise vs. time at VCC = 36 V 100 0 -100 1E-3 -200 Vcc=4V with Vin=3.8Vpp Vcc=12V with Vin=7Vpp Vcc=36V with Vin=7Vpp -300 DS11248 - Rev 9 800 100 Input voltage (V) -400 0 600 Figure 30. Noise vs. frequency at VCC = 36 V Equivalent Input Noise Voltage (nV/√Hz) T=-40°C T=25°C T=125°C 0.00 Output voltage (V) 36.00 35.95 35.90 35.85 35.80 35.75 35.70 400 Time (µs) Figure 29. Amplifier behavior close to the rails at VCC = 36 V 0.25 0.20 0.15 0.10 0.05 0.00 200 10.0 1 2 3 4 5 6 Time (s) 7 8 9 10 1E-4 10 100 1000 Frequency (Hz) 10000 page 15/31 TSB571, TSB572 Electrical characteristics Figure 34. PSRR vs. frequency at VCC = 36 V Figure 33. THD+N vs. output voltage 0.1 -20 0.01 1E-3 1E-4 0.01 Vicm=Vcc/2 Gain=1 f=1kHz BW=22kHz Rl=10kΩ  Cl=100pF T=25°C 0.1 PSRR (dB) THD + N (%) -40 4V PSRR + -60 -80 12V PSRR -100 36V -120 1 10 Output Voltage (Vpp) 10 100 1k 10k 100k Frequency (Hz) Channel Separation refered to input (dB) Figure 35. Channel separation vs. frequency at VCC= 36 V 160 Vcc=36V Vicm=18V Gain=11 Vin = 1Vpp 140 120 100 80 60 40 20 0 100 1k 10k 100k 1M Frequency (Hz) DS11248 - Rev 9 page 16/31 TSB571, TSB572 Application information 4 Application information 4.1 Operating voltages The TSB571 and TSB572 can operate from 4 V to 36 V. The parameters are fully specified for 4 V, 12 V, and 36 V power supplies. However, the parameters are stable in the full VCC range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to 125 °C. 4.2 Input pin voltage ranges The TSB571 and TSB572 have an internal ESD diode protection on the inputs. These diodes are connected between the inputs and each supply rail to protect the input transistors from electrical discharge. If the input pin voltage exceeds the power supply by 0.2 V, the ESD diodes become conductive and excessive current can flow through them. Without limitation this over current can damage the device. In this case, it is important to limit the current to 10 mA, by adding resistance on the input pin, as shown in Figure 37. Input current limitation. Figure 36. Input current limitation 16 V R Vin 4.3 - + + - Vout Rail-to-rail input The TSB571 and TSB572 have rail-to-rail inputs. The input common mode range is extended from (VCC -) - 0.1 V to (VCC+) + 0.1 V at T = 25 °C. 4.4 Input offset voltage drift over temperature The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift over temperature is computed using Equation 1. Equation 1 ∆V io V ( T ) – V io ( 25 °C) = ma x io ∆T T – 25 °C where T = -40 °C and 125 °C. The TSB571 and TSB572 datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a Cpk (process capability index) greater than 1.3. DS11248 - Rev 9 page 17/31 TSB571, TSB572 Long term input offset voltage drift 4.5 Long term input offset voltage drift To evaluate product reliability, two types of stress acceleration are used: • • Voltage acceleration, by changing the applied voltage Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2. Equation 2 A FV = e β . ( VS – VU ) Where: AFV is the voltage acceleration factor β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1) VS is the stress voltage used for the accelerated test VU is the voltage used for the application The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3. Equation 3 A FT = e E 1 1 -----a- . – k TU TS Where: AFT is the temperature acceleration factor Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eV.K-1) TU is the temperature of the die when VU is used (K) TS is the temperature of the die under temperature stress (K) The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4). Equation 4 A F = A FT × A FV AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. Equation 5 Months = A F × 1000 h × 12 months / ( 24 h × 365.25 days ) To evaluate the op amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6). Equation 6 V CC = maxV op with V icm = V CC / 2 The long term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7). Equation 7 ∆V io = V io dr ift ( month s ) Where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration. DS11248 - Rev 9 page 18/31 TSB571, TSB572 Capacitive load 4.6 Capacitive load Driving large capacitive loads can cause stability problems. Increasing the load capacitance produces gain peaking in the frequency response, with overshoot and ringing in the step response. It is usually considered that with a gain peaking higher than 2.3 dB an op amp might become unstable. Generally, unity gain configuration is the worst situation for stability and the ability to drive large capacitive loads. Figure 38. Stability criteria with a serial resistor at different supply voltages shows the serial resistor that must be added to the output, to make a system stable. Figure 39. Test configuration for Riso shows the test configuration using an isolation resistor, Riso. Figure 37. Stability criteria with a serial resistor at different supply voltages Serial Riso (Ω) 100 Vcc=36V Vicm=18V follower configuration T=25°C Stable 10 Unstable 1 @Vcc=4V @Vcc=12V @Vcc=36V 0.1 2 10 10 3 10 4 10 5 Capacitive load (pF) 10 6 Figure 38. Test configuration for Riso V CC+ Riso VIN + V CC- 4.7 Cload VOUT 10 kΩ PCB layout recommendations Particular attention must be paid to the layout of the PCB tracks connected to the amplifier, load, and power supply. The power and ground traces are critical as they must provide adequate energy and grounding for all circuits. The best practice is to use short and wide PCB traces to minimize voltage drops and parasitic inductance. In addition, to minimizing parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used. The copper traces that connect the output pins to the load and supply pins should be as wide as possible to minimize trace resistance. 4.8 Optimized application recommendation It is recommended to place a 22 nF capacitor as close as possible to the supply pin. A good decoupling will help to reduce electromagnetic interference impact. DS11248 - Rev 9 page 19/31 TSB571, TSB572 Package information 5 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 5.1 SOT23-5 package information Figure 39. SOT23-5 package outline Table 8. SOT23-5 package mechanical data Dimensions Millimeters Ref. A Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 DS11248 - Rev 9 Inches 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.014 0.016 0.020 C 0.09 0.15 0.20 0.004 0.006 0.020 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.014 0.024 K 0° 10° 0° 10° page 20/31 TSB571, TSB572 MiniSO8 package information 5.2 MiniSO8 package information Figure 40. MiniSO8 package outline Table 9. MiniSO8 package mechanical data Dimensions Millimeters Ref. Min. Typ. A Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.0006 0.033 0.80 0.016 0.024 0.95 0.037 L2 0.25 0.010 ccc 0° 0.037 0.026 L1 k DS11248 - Rev 9 Inches 8° 0.10 0° 0.031 8° 0.004 page 21/31 TSB571, TSB572 DFN8 3x3 wettable flanks package information (package code: A03Y) 5.3 DFN8 3x3 wettable flanks package information (package code: A03Y) Figure 41. DFN8 3x3 package outline and mechanical data Table 10. DFN8 3x3 mechanical data Symbol mm Min. Typ. Max. A 0.70 0.75 0.80 A1 0.0 A2 0.10 A3 0.20 Ref. b 0.25 0.30 0.35 D 2.95 3.00 3.05 D2 2.25 2.35 2.45 e 0.65 BSC E 2.95 3.00 3.05 E2 1.45 1.55 1.65 L 0.35 0.45 0.55 K DS11248 - Rev 9 0.05 0.275 Ref. page 22/31 TSB571, TSB572 DFN8 3x3 wettable flanks package information (package code: A03Y) Figure 42. DFN8 3x3 footprint data DS11248 - Rev 9 page 23/31 TSB571, TSB572 SO8 package information 5.4 SO8 package information Figure 43. SO8 package outline 0016023_So-807_fig2_Rev10 Table 11. SO8 mechanical data Dim. mm Min. Typ. A 1.75 A1 0.10 A2 1.25 b 0.31 0.51 b1 0.28 0.48 0.25 c 0.10 0.25 c1 0.10 0.23 D 4.80 4.90 5.00 E 5.80 6.00 6.20 E1 3.80 3.90 4.00 e 1.27 h 0.25 0.50 L 0.40 1.27 L1 1.04 L2 0.25 k ccc DS11248 - Rev 9 Max. 0° 8° 0.10 page 24/31 TSB571, TSB572 SO8 package information Figure 44. SO8 recommended footprint DS11248 - Rev 9 page 25/31 TSB571, TSB572 Ordering information 6 Ordering information Table 12. Order codes Order code TSB571ILT TSB571IYLT (1) Temperature range Package Packing -40 °C to +125 °C SOT23-5 Tape and reel TSB572IQ2T TSB572IST -40 °C to 125 °C TSB572IYST (1) TSB572IDT MiniSO8 SO8 package K31 K32 K31 DFN8 3x3 TSB572IYQ2T (1) Marking K32 Tape and reel K31 K32 TSB572I 1. Automotive qualification according to AEC-Q100. DS11248 - Rev 9 page 26/31 TSB571, TSB572 Revision history Table 13. Document revision history Date Version Changes 12-Oct-2015 1 Initial release 17-Dec-2015 2 Section 2: "Absolute maximum ratings and operating conditions": updated ESD, MM value. Section 6: "Ordering information": removed footnote (1) from order code TSB572IQ2T In Table1: "Absolute maximum ratings": 26-Jun-2017 3 - Updated Latch-up immunity Parameter Value - updated footnote (3) DS11248 - Rev 9 10-Nov-2017 4 Added: new SO-8 Package information and new order code TSB572IDT Section 6 Ordering information 26-Mar-2018 5 Updated: Section 5.2 DFN8 3x3 package information 22-Jul-2019 6 Added the root part number TSB571 and updated the whole document accordingly 06-May-2020 7 Updated cover page 09-Jun-2021 8 Added Vio Typ. value in Table 5, Table 6 and Table 7 24-Oct-2022 9 Updated Section 5.3 DFN8 3x3 wettable flanks package information (package code: A03Y) page 27/31 TSB571, TSB572 Contents Contents 1 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 5 6 4.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Input pin voltage ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.5 Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.6 Capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.7 PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.8 Optimized application recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 5.1 SOT23-5 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2 MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.3 DFN8 3x3 wettable flanks package information (package code: A03Y). . . . . . . . . . . . . . . . . 22 5.4 SO8 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 DS11248 - Rev 9 page 28/31 TSB571, TSB572 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Pin description (SOT23-5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin description (miniSO8/SO8/DFN8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical characteristics at Vcc = 4 V, Vicm = Vcc/2, Tamb = 25 °C, and RL connected to Vcc/2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical characteristics at Vcc = 12 V, Vicm = Vcc/2, Tamb = 25 °C, and RL connected to Vcc/2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical characteristics at Vcc = 36 V, Vicm = Vcc/2, Tamb = 25 °C, and RL connected to Vcc/2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MiniSO8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DFN8 3x3 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SO8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DS11248 - Rev 9 . . . . 2 3 4 4 . 5 . 7 . 9 20 21 22 24 26 27 page 29/31 TSB571, TSB572 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. DS11248 - Rev 9 Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin connections for each package (top view) . . . . . . . . . . . . . . . . Supply current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . Input offset voltage distribution at VCC = 4 V . . . . . . . . . . . . . . . . . Input offset voltage distribution at VCC = 12 V . . . . . . . . . . . . . . . . Input offset voltage distribution at VCC = 36 V . . . . . . . . . . . . . . . . Input offset voltage vs. temperature at VCC = 36 V . . . . . . . . . . . . Input offset voltage temperature variation distribution at VCC = 36 V Input offset voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . Input offset voltage vs. common-mode voltage at VCC = 4 V . . . . . . Input offset voltage vs. common-mode voltage at VCC = 36 V . . . . . Input bias current vs. temperature at VICM = VCC/2 . . . . . . . . . . . . Input bias current vs. common-mode voltage at VCC = 36 V . . . . . . Output current vs. output voltage at VCC = 4 V . . . . . . . . . . . . . . . Output current vs. output voltage at VCC = 36 V . . . . . . . . . . . . . . Output voltage (Voh) vs. supply voltage . . . . . . . . . . . . . . . . . . . . Output voltage (Vol) vs. supply voltage . . . . . . . . . . . . . . . . . . . . Negative slew rate at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . Positive slew rate at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . Slew rate vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bode diagram at VCC = 4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bode diagram at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase margin vs. output current at VCC = 4 V . . . . . . . . . . . . . . . . Phase margin vs. output current at VCC = 36 V . . . . . . . . . . . . . . . Phase margin vs. capacitive load . . . . . . . . . . . . . . . . . . . . . . . . Overshoot vs. capacitive load at VCC = 36 V. . . . . . . . . . . . . . . . . Small step response vs. time at VCC = 4 V . . . . . . . . . . . . . . . . . . Output desaturation vs. time. . . . . . . . . . . . . . . . . . . . . . . . . . . . Amplifier behavior close to the rails at VCC = 36 V . . . . . . . . . . . . . Noise vs. frequency at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . Noise vs. time at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD+N vs. output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. frequency at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . Channel separation vs. frequency at VCC= 36 V . . . . . . . . . . . . . . Input current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stability criteria with a serial resistor at different supply voltages . . . Test configuration for Riso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SOT23-5 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MiniSO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DFN8 3x3 package outline and mechanical data . . . . . . . . . . . . . . DFN8 3x3 footprint data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SO8 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 19 19 20 21 22 23 24 25 page 30/31 TSB571, TSB572 IMPORTANT NOTICE – READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2022 STMicroelectronics – All rights reserved DS11248 - Rev 9 page 31/31
TSB572IYQ2T 价格&库存

很抱歉,暂时无法提供与“TSB572IYQ2T”相匹配的价格&库存,您可以联系我们找货

免费人工找货