0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSC2011HYDT

TSC2011HYDT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC8_150MIL

  • 描述:

    TSC2011HYDT

  • 数据手册
  • 价格&库存
TSC2011HYDT 数据手册
TSC2010H, TSC2011H, TSC2012H Datasheet High temperature, high voltage, precision, bidirectional current sense amplifiers Features SO8 • • • • • • • • • Wide common mode voltage: - 20 to 70 V Offset voltage: ± 200 µV max. 2.7 to 5.5 V supply voltage Different gain available – TSC2010H: 20 V/V – TSC2011H: 60 V/V – TSC2012H: 100 V/V Gain error: 0.3% max. Offset drift: 5 µV/°C max. Quiescent current: 20 µA in shutdown mode SO8 package -40 to +150 °C temperature range Applications • • • • • High-side current sensing Low-side current sensing Industrial process control Motor control Solenoid control Product status link TSC2010H, TSC2011H and TSC2012H Description The TSC2010H, TSC2011H and TSC2012H are precision bidirectional current sense amplifiers. They can sense the current thanks to a shunt resistor over a wide range of common mode voltages, from - 20 to + 70 V, whatever the supply voltage is. They are available with an amplifier gain of 20 V/V for TSC2010H, 60 V/V for TSC2011H and 100 V/V for TSC2012H. They are able to sense very low drop voltages as low as 10 mV full scale minimizing the measurement error. The TSC2010H, TSC2011H and TSC2012H can also be used in other functions such as: precision current measurement, overcurrent protection, current monitoring, and feedback loops. This device fully operates over the broad supply voltage range from 2.7 to 5.5 V and over the industrial temperature range from -40 to 150 °C. DS13791 - Rev 1 - September 2021 For further information contact your local STMicroelectronics sales office. www.st.com TSC2010H, TSC2011H, TSC2012H Diagram 1 Diagram Figure 1. Block diagram DS13791 - Rev 1 page 2/50 TSC2010H, TSC2011H, TSC2012H Pin configuration 2 Pin configuration Figure 2. Pin connection (top view) Table 1. Pin description DS13791 - Rev 1 Pin Pin name Description 1 IN - 2 GND 3 VREF2 Reference voltage 2 4 SHDN Shutdown 5 OUT Output 6 VCC Supply voltage 7 VREF1 8 IN + Negative input Ground Reference voltage 1 Positive input page 3/50 TSC2010H, TSC2011H, TSC2012H Maximum ratings 3 Maximum ratings Table 2. Absolute maximum ratings Symbol Parameter Value Unit VCC Supply voltage (1) -0.3 to 7 V VICM Common mode voltage on input pins -25 to 76 V VDIF Differential voltage between input pins (In+, In-) 7 V Gnd - 0.3 to Vcc + 0.3 V 5 mA VREF1 VREF2 VOUT IIN Voltage present on pins REF1, REF2, OUT Input current to any pins (2) TSTG Storage temperature -65 to 150 °C TJ Junction temperature 160 °C 125 °C/W RTHJA ESD Thermal resistance junction to ambient (3)(4) SO8 Human body model (HBM) (5) 2000 Charged device model (CDM) (6) 1000 Latch-up immunity 200 V mA 1. All voltage values, except the differential voltage are with respect to the network ground terminal. 2. Input voltage can go beyond supply voltage but input current must be limited. Using a serial resistor with the input is highly recommended in that case. 3. Short-circuits can cause excessive heating and destructive dissipation. 4. Rth are typical values. 5. According to JEDEC standard JESD22-A114F. 6. According to ANSI/ESD STM5.3.1. Table 3. Operating conditions Symbol Value Unit Vcc Supply voltage 2.7 to 5.5 V Vicm Common mode voltage on input pins -20 to +70 V Vref Output offset adjustment range 0 to Vcc V -40 to 150 °C T DS13791 - Rev 1 Parameter Operating free-air temperature range page 4/50 TSC2010H, TSC2011H, TSC2012H Electrical characteristics 4 Electrical characteristics Table 4. Electrical characteristics Vcc = 2.7 V, Vicm = 12 V, T = 25 °C (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit Power supply Current consumption Icc Current consumption with shutdown active Vicm = -20 to 70 V 1.5 2.3 2.3 Tmin < T < Tmax Vicm = -20 to 70 V 20 50 Tmin < T < Tmax 150 Vicm = 1 V 200 Tmin < T < Tmax 825 Vicm = 12 V 500 Tmin < T < Tmax 1300 mA µA Input |Vos| |ΔVos/ΔT| CMR Iib+ Iib- |Vsense| Offset voltage (RTI) (1) Offset drift vs. temperature Common mode rejection Input bias current Input bias current Vsense operating range with Eg ≤ 0.3% (2) µV Vicm = 1 V, Tmin < T < Tmax 5 Vicm = 12 V, Tmin < T < Tmax 8 Vicm = -20 to 70 V, DC mode 90 Tmin < T < Tmax 80 Vicm = 12 V Tmin < T < Tmax, Vicm = -20 to 70 V dB 350 -400 Vicm = 12 V Tmin < T < Tmax, Vicm= -20 to 70 V 115 µV/°C 600 100 -150 µA 350 TSC2010H 123.6 Tmin < T < Tmax 122.4 TSC2011H 40.5 Tmin < T < Tmax 39.3 TSC2012H 23.9 Tmin < T < Tmax 22.7 mV Output G Eg Gain error vs. temperature 20 TSC2011H 60 TSC2012H 100 0.3 Tmin < T < Tmax 0.3 25 Gain error drift Tmin < T < Tmax NLE Linearity error Vicm = 12 V Drop voltage output high V/V ΔVout = 100 mV to (Vcc - 100 mV) ΔEg/ΔT Vcc - Voh DS13791 - Rev 1 Gain TSC2010H Isource = 0.2 mA Tmin < T < Tmax 0.03 8 % ppm/°C % 15 20 mV page 5/50 TSC2010H, TSC2011H, TSC2012H Electrical characteristics Symbol Vol Iout Reg Load Parameter Output voltage low Output current Load regulation Conditions Min. Isink = 0.2 mA Typ. Max. 12 20 30 Tmin < T < Tmax Sink mode 12 Tmin < T < Tmax 8 Source mode 6 Tmin < T < Tmax 4 Iout = -10 to +4 mA 20 Unit mV 25 30 10 14 mA 17 0.3 1.5 mV/mA OFFSET adjustment Rt Acc Ratiometric accuracy Accuracy, RTO Voltage applied to Vref1 and Vref2 in parallel 0.5 V/V 0.1 % Dynamic performances Rl = 10 kΩ, Cl = 100 pF BW Small signal -3 dB bandwidth TSC2010H 600 TSC2010H, Tmin < T < Tmax 270 TSC2011H 500 TSC2011H, Tmin < T < Tmax 225 TSC2012H 330 TSC2012H, Tmin < T < Tmax 150 750 620 kHz 415 Rl = 10 kΩ, Cl = 100 pF, Vicm = 1 V SR En Slew rate TSC2010H, Vsense = 120 mV 3.0 TSC2010H, Tmin < T < Tmax 2.25 TSC2011H, Vsense = 40 mV 2.7 TSC2011H, Tmin < T < Tmax 2.1 TSC2012H, Vsense = 24 mV 2.0 TSC2012H, Tmin < T < Tmax 1.5 3.9 3.5 V/µs 2.8 Noise, RTI 0.1 Hz to 10 Hz 37 µVpp Spectral density, RTI f = 1 kHz 100 nV/√Hz Shutdown function (active high) Vil Logical low level 0 0.3xVcc Vih Logical high level 0.7xVcc Vcc Iih Leakage current Vshdn = Vcc (shutdown mode) V 0.9 µA TSC2011H 6 µs TSC2010H, TSC2012H 8 Vshdn = 2.7 V to 0 V, Rl = 10 kΩ Ton Turn-on time Vshdn = 0 V to 2.7 V, Rl = 10 kΩ Toff DS13791 - Rev 1 Turn-off time TSC2011H 4 TSC2010H, TSC2012H 5 µs page 6/50 TSC2010H, TSC2011H, TSC2012H Electrical characteristics Symbol Iout Parameter Output leakage current Conditions Shdn active Min. Typ. 50 Max. Unit nA 1. RTI stands for “Related to input”. 2. Vsense=(Vin+) – (Vin-). DS13791 - Rev 1 page 7/50 TSC2010H, TSC2011H, TSC2012H Electrical characteristics Table 5. Electrical characteristics (Vcc = 5 V, Vicm = 12 V, T = 25 °C unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. 1.6 2.4 Unit Power supply Current consumption Icc Current consumption with shutdown active SVR Supply voltage rejection Vicm = -20 to 70 V 2.4 Tmin < T < Tmax Vicm = -20 to 70 V 20 Tmin < T < Tmax Vcc = 2.7 to 5.5 V Tmin < T < Tmax 50 150 80 100 mA µA dB 75 Input |Vos| |ΔVos/ΔT| CMR Iib+ Iib- |Vsense| Offset voltage (RTI) (1) Offset drift vs. temperature Common mode rejection Input bias current Input bias current Vsense operating range with Eg ≤ 0.3% (2) Vicm = 1 V 200 Tmin < T < Tmax 825 Vicm = 12 V 500 Tmin < T < Tmax 1300 µV Vicm = 1 V, Tmin < T < Tmax 5 Vicm = 12 V, Tmin < T < Tmax 8 Vicm = -20 to 70 V, DC mode 90 Tmin < T < Tmax 80 Vicm = 12 V Tmin < T < Tmax, Vicm = -20 to 70 V dB 350 -400 Vicm = 12 V Tmin < T < Tmax, Vicm= -20 to 70 V 120 µV/°C 600 100 -150 µA 350 TSC2010H 238.3 Tmin < T < Tmax 237.1 TSC2011H 78 Tmin < T < Tmax 77.6 TSC2012H 46.9 Tmin < T < Tmax 45.7 mV Output G Eg Gain error vs. temperature 20 TSC2011H 60 TSC2012H 100 0.3 Tmin < T < Tmax 0.3 25 Gain error drift Tmin < T < Tmax NLE Linearity error Vicm = 12 V Drop voltage output high V/V ΔVout = 100 mV to (Vcc - 100 mV) ΔEg/ΔT Vcc - Voh DS13791 - Rev 1 Gain TSC2010H Isource = 0.2 mA Tmin < T < Tmax 0.03 15 % ppm/°C % 30 35 mV page 8/50 TSC2010H, TSC2011H, TSC2012H Electrical characteristics Symbol Vol Iout Reg Load Parameter Output voltage low Output current Load regulation Conditions Min. Isink = 0.2 mA Typ. Max. 26 40 50 Tmin < T < Tmax Sink mode 25 Tmin < T < Tmax 15 Source mode 12 Tmin < T < Tmax 8 Iout = -10 to +10 mA 36 Unit mV 50 60 25 45 mA 55 0.3 1.5 mV/mA OFFSET adjustment Rt Acc Ratiometric accuracy Accuracy, RTO Voltage applied to Vref1 and Vref2 in parallel 0.5 V/V 0.1 % Dynamic performance Rl = 10 kΩ, Cl = 100 pF BW Small signal -3 dB bandwidth TSC2010H 650 TSC2010H, Tmin < T < Tmax 300 TSC2011H 600 TSC2011H, Tmin < T < Tmax 270 TSC2012H 390 TSC2012H, Tmin < T < Tmax 180 820 750 kHz 490 Rl = 10 kΩ, Cl = 100 pF, Vicm = 1 V SR En Slew rate TSC2010H, Vsense = 230 mV 5.7 TSC2010H, Tmin < T < Tmax 3.6 TSC2011H, Vsense = 78 mV 5.4 TSC2011H, Tmin < T < Tmax 3.4 TSC2012H, Vsense = 47 mV 4.4 TSC2012H, Tmin < T < Tmax 2.6 7.5 7 V/µs 5.2 Noise, RTI 0.1 Hz to 10 Hz 37 µVpp Spectral density, RTI f = 1 kHz 100 nV/√Hz Shutdown function (active high) Vil Logical low level 0 0.3xVcc Vih Logical high level 0.7xVcc Vcc Iih Leakage current Vshdn = Vcc (shutdown mode) V 1.2 µA TSC2011H 6 µs TSC2010H, TSC2012H 8 Vshdn= 5 V to 0 V, Rl = 10 kΩ Ton Turn-on time Vshdn = 0 V to 5 V, Rl= 10 kΩ Toff DS13791 - Rev 1 Turn-off time TSC2011H 4 TSC2010H, TSC2012H 5 µs page 9/50 TSC2010H, TSC2011H, TSC2012H Electrical characteristics Symbol Iout Parameter Output leakage current Conditions Shdn active Min. Typ. 50 Max. Unit nA 1. RTI stands for “Related to input”. 2. Vsense = (Vin+) – (Vin-). DS13791 - Rev 1 page 10/50 TSC2010H, TSC2011H, TSC2012H Typical characteristics 4.1 Typical characteristics The TSC2011H is used for typical characteristics, unless otherwise noted. Figure 3. Supply current vs. supply voltage Figure 4. Supply current vs. input common mode 1.9 1.9 Vicm=2.5V 1.7 Vicm=0V Vicm=12V 1.6 1.5 Vicm=70V 1.4 1.3 2.8 3.1 3.5 3.9 4.2 Vref=Vcc/2 Vsense=0V T=25°C 1.8 4.5 Supply current (mA) Supply Current (mA) 1.8 1.7 Vcc=5V 1.6 Vcc=3.3V 1.5 Vcc=2.7V Vref=Vcc/2 Vsense=0V T=25°C 1.4 4.9 1.3 -20 5.3 -10 0 10 Supply voltage (V) 20 30 40 50 60 70 Vicm (V) Figure 5. Supply current vs. temperature Figure 6. Supply current vs. input common mode with active shutdown mode 1.9 1.8 22 20 Vicm=0V 1.7 Vicm=12V 1.6 1.5 Vicm=70V Vicm=48V Supply Current (µA) Supply Current (mA) 24 Vicm=-20V 18 16 12 8 4 Vsense=0V Vcc=5V 1.3 -40 -20 DS13791 - Rev 1 0 2 20 40 60 80 Temperature (°C) 100 120 140 Vcc=3.3V 10 6 1.4 Vref=Vcc/2 Vcc=5 V 14 0 -20 Vref=Vcc/2 SHDN=Vcc Vsense=0V T=25°C -10 0 Vcc=2.7V 10 20 30 40 50 60 70 Vicm (V) page 11/50 TSC2010H, TSC2011H, TSC2012H Typical characteristics Figure 7. Input bias current vs. input common mode with shutdown active Figure 8. Input bias current vs. temperature VCC = 2.7 V 600 400 500 300 Iibp 400 300 200 Iibn Iib (µA) Iib (µA) 100 0 -100 -200 -300 -400 -20 -10 0 10 20 30 40 50 60 --600 -20 70 Iibp 25°C Vio (µV) Iibn [-40°:150°] 0 -100 Iibp 150°C -300 -400 Vref=Vcc/2 Vsense=0V Vcc=5V -500 -10 0 10 20 30 Vicm (V) 40 50 60 70 Vref =VCC /2 Vsense=0V Vcc=2.7V Iibp 150 °C -10 0 10 20 30 40 50 60 70 Figure 10. Input offset voltage vs. temperature Iibp -40°C 100 -200 Iibp 125°C Vicm(V) 200 Iib (µA) -100 -500 500 DS13791 - Rev 1 Iibn [-40°:150°] 0 --400 600 -600 -20 100 -300 Figure 9. Input bias current vs. temperature with VCC = 5 V 300 Iibp -40 °C --200 Vref=Vcc/2 SHDN=Vcc Vsense=0V T=25 °C Vcc=2.7 to 5.5V Vicm (V) 400 Iibp 25 °C 200 700 600 500 Vicm=12V Vicm=48V 400 Vicm=-20V Vicm=70V 300 200 100 0 Vicm=0V -100 --200 -300 Vref=Vcc/2 --400 Vsense=0V -500 Vcc=5V --600 -700 --40 -20 0 20 40 60 80 100 120 140 Temperature (°C) page 12/50 TSC2010H, TSC2011H, TSC2012H Typical characteristics 700 600 500 T=125°C T=150°C 400 T=25°C 300 200 T=85°C 100 0 T=-20°C -100 T=-40°C --200 0 T=0°C -300 --400 0 Vref=Vcc/2 -500 Vsense =0V --600 0 Vcc=2.7V -700 -20 -10 0 10 20 30 40 50 Vicm (V) Figure 12. Input offset voltage vs. input common mode with VCC = 5 V Vio (µV) Vio (µV) Figure 11. Input offset voltage vs. input common mode with VCC = 2.7 V 60 70 Figure 13. Input offset voltage vs. supply voltage 300 Vicm=12V Vicm=5V 0 -100 -200 Vicm=1V Vicm= -20V Vicm=48V Vicm= -10V Vicm=70V -300 Vref=Vcc/2 Vsense=0V T=25°C -400 -500 3.0 3.5 4.0 Vcc (V) DS13791 - Rev 1 Iout (mA) Vio (µV) 200 100 4.5 5.0 5.5 T=125°C T=25°C T=-20°C 10 20 30 Vicm (V) T=85°C T=0°C 40 50 60 70 Figure 14. Output current vs. output voltage 500 400 700 600 500 400 T=150°C 300 200 100 0 T=-40°C -100 --200 -300 --400 Vref=Vcc/2 -500 Vsense=0V --600 Vcc=5V -700 -20 -10 0 40 35 30 Isink 25 20 15 10 Vcc=2.7V Vcc=3.3V Vcc=5.5V 5 0 -5 -10 -15 -20 Vref=Vcc/2 -25 Vsense=100mV -30 Isource Vicm=12V T=25°C -35 -40 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Vout (V) page 13/50 TSC2010H, TSC2011H, TSC2012H Typical characteristics Figure 15. Output current vs. temperature with VCC = 5 V 50 50 45 45 40 35 35 30 30 25 Isource 20 15 25 Isink 20 15 10 Vcc=5V Vicm=12V Vref=Vcc/2 Vsense=100mV 5 0 -40 Vcc=2.7V Vicm=12V Vref=Vcc/2 Vsense=100mV 40 Isink Iout (mA) Iout (mA) Figure 16. Output current vs. temperature with VCC = 2.7 V -20 0 20 40 60 80 Temperature (°C) 100 120 10 0 -40 - 140 Figure 17. Voh and Vol vs. input common mode voltage with VCC = 5 V Isource 5 -20 - 0 20 40 60 80 Temperature (°C) 100 120 140 Figure 18. (Output voltage + Vref) vs. Vsense unidirectional with VCC = 5 V 6.0 5.4 Vcc=5V; Vref=Vcc/2 Vsense= 100mV Rl=10kΩ connected to Vcc/2 T=25 °C 4.8 4.2 34 Vref=0V Vcc=5V T=25 °C Unidirectionnal 3.6 26 VOL 17 VOH Vout (V) VOH and VOL drop (mV) 43 3.0 2.4 1.8 1.2 0.6 9 0.0 -0.6 0 -20 -10 0 10 20 30 Vicm (V) DS13791 - Rev 1 40 50 60 70 -10 0 10 20 30 40 50 60 70 80 90 Vsense (mV) page 14/50 TSC2010H, TSC2011H, TSC2012H Typical characteristics Figure 19. (Output voltage + Vref) vs. Vsense bidirectional with VCC = 5 V Figure 20. Output rail linearity vs. load with VCC = 5 V 5.5 6.0 5.4 4.8 4.2 Vref=Vcc/2 Vcc=5V T=25 °C Bidirectionnal 5.0 Vout (V) 3.0 2.4 Rl=10k Ω No load 4.5 Rl=1kΩ 1.8 1.2 0.0 Rl=2kΩ 0.6 Rl=4.7k Ω 0.0 -0.6 50 Vsense (mV) Vsense (mV) Figure 22. Linearity vs. Vsense and temperature Figure 21. Linearity vs. Vsense with VCC = 5 V 0.15 0.15 0.12 0.12 0.09 0.09 Vicm=-10V 0.03 Vicm=1V Linearity error (%) Linearity error (%) 0.06 0.00 -0.03 -0.06 Vicm=12V -0.09 DS13791 - Rev 1 -40 -30 -20 -10 0 10 Vsense(mV) 20 30 40 T=150°C 0.06 T=25°C 0.03 0.00 -0.03 - T=-40°C -0.06 - T=125°C -0.09 - . Vref=Vcc/2 Vcc=5V T=25°C -0.12 -0.15 -50 50 40 45 30 40 20 -40 10 -45 0 -50 -0.5 -50 -40 -30 -20 -10 35 Vout (V) 3.6 Vcc=5V Vicm=12V Vref=Vcc/2 T=25°C Vref =Vcc/2 Vcc=5V Vicm=12V -0.12 - 50 -0.15 - . -50 -40 -30 -20 -10 0 10 Vsense (mV) 20 30 40 50 page 15/50 TSC2010H, TSC2011H, TSC2012H Typical characteristics Figure 23. Gain error vs. input common mode Figure 24. Gain error vs. input common mode and temperature 0.30 0.25 0.30 0.20 0.25 0.15 0.05 Vcc=2.7V Vcc=3.3V Gain error(%) Gain error(%) 0.10 0.00 -0.05 -0.10 Vcc=5V -0.15 -0.20 -0.25 -0.30 -20 T=150°C 0.20 0.15 T=125°C 0.10 T=25°C 0.05 0.00 -0.05 T=-40°C -0.10 . -0.15 Vref=Vcc/2 T=25°C Vref=Vcc/2 vcc=5V -0.20 -0.25 -10 0 10 20 30 40 50 60 -0.30 -20 70 -10 0 Vicm (V) Figure 25. Load regulation with VCC = 5 V 10 20 30 Vicm (V) 40 50 60 70 Figure 26. Gain vs. frequency 1.30 Vcc = 3.3 V 40 Isink Isource Vcc = 5 V 1.25 Vcc = 2.7 V 20 1.20 Gain (dB) Vout (V) Vicm=70V Vicm=12V Vicm=-20V 1.15 1.10 -15.0 Vref=Vcc/2 Vsense=19.8mV Vcc=5V T=25°C Vicm=0V -10.0 -5.0 0.0 Iout (mA) DS13791 - Rev 1 5.0 10.0 15.0 0 -20 Vicm = 12 V, Vref = Vcc / 2 Rl = 10kΩ ,Cl = 100 pF connected to Vcc / 2 -40 1 10 100 1000 10000 Frequency (kHz) page 16/50 TSC2010H, TSC2011H, TSC2012H Typical characteristics Figure 27. Gain vs. frequency VCC = 5 V Figure 28. Gain vs. frequency different capacitive load Vcc = 3.3 V 40 40 CI = 100 pF Vcc = 5 V CI = 330 pF Gain (dB) Gain (dB) 20 Vcc = 2.7 V 20 0 0 CI = 470 pF -20 -20 Vicm = 12 V, Vref = Vcc / 2 Rl = 10kΩ ,Cl = 100 pF connected to Vcc / 2 -40 1 10 100 Vcc=5V, Vicm=12V, Vref=Vcc/2 RI=10kΩ connected to Vcc/2 -40 1000 1 10000 10 Figure 29. Gain vs. frequency different capacitive load (TSC2010H) 100 1000 10000 Frequency (kHz) Frequency (kHz) Figure 30. Gain vs. frequency different capacitive load (TSC2012H) 40 40 Cl = 100 pF Cl = 100 pF 20 Gain (dB) Gain (dB) 20 Cl = 330 pF 0 Cl = 470 pF Cl = 680 pF -20 Cl = 330 pF Cl = 470 pF 0 Cl = 680 pF -20 Vcc = 5 V, Vicm = 12 V, Vref = Vcc/2 Rl = 10 kΩ connected to Vcc/2 -40 1 10 100 Frequency (kHz) DS13791 - Rev 1 Vcc = 5 V, Vicm = 12 V, Vref = Vcc / 2 RI = 10kΩ connected to Vcc / 2 1000 10000 -40 1 10 100 1000 10000 Frequency (kHz) page 17/50 TSC2010H, TSC2011H, TSC2012H Typical characteristics Figure 31. Bandwidth vs. input common mode Figure 32. Bandwidth vs. input common mode (TSC2010H) 1.1M 900.0k 1.1M . 1.0M T=25°C . 800.0k 700.0k T=125°C . 600.0k 500.0k 400.0k T=150°C 300.0k . 200.0k 100.0k 0.0 -20 T=-40°C T=25°C 900.0k Bandwidth -3dB (Hz) Bandwidth-3dB (Hz) 1.2M T=-40°C 1.0M Vref=Vcc/2 Vcc=5V Rl=10kΩ ,Cl=100pFconnected to Vcc/2 -10 0 10 20 30 Vicm (V) 40 800.0k . 700.0k 600.0k . 500.0k 400.0k . 300.0k 200.0k . 100.0k 50 60 70 Figure 33. Bandwidth vs. input common mode (TSC2012H) T=125°C T=150°C 0.0 -20 Vref =Vcc/2 Vcc =5V Rl=10kΩ, Cl=100pFconnected to Vcc/2 -10 0 10 20 30 Vicm (V) 40 50 60 70 Figure 34. Overshoot vs. capacitive load 900.0k 800.0k Band width -3dB (Hz) 700.0k T=-40 °C 600.0k T=25 °C 500.0k T=125 °C 400.0k 300.0k 200.0k 100.0k 0.0 -20 DS13791 - Rev 1 T=150 °C Vref=Vcc/2 Vcc=5V Rl=10kΩ Cl=100pF connected to Vcc/2 -10 0 10 20 30 Vicm (V) 40 50 60 70 page 18/50 TSC2010H, TSC2011H, TSC2012H Typical characteristics Figure 35. Small signal response with VCC = 5 V 50 1.0 25 Vout Vsense 0.0 0 Vsense (mV) Vout (V) 0.5 Figure 36. Small signal response with VCC = 5 V (TSC2010H) -25 -0.5 Vcc=5V, Vicm=12V, Vsense=10mVpp T=25°C, Cl=100pF -1.0 -60µ -40µ -20µ 0 -50 20µ Time (s) Figure 37. Small signal response with VCC = 5 V (TSC2012H) Figure 38. Small signal response with VCC = 2.7 V 50 1.0 0.5 25 0.5 0.0 0 1.0 50 -0.5 -25 Vout (V) -0.5 -20µ Time (s) DS13791 - Rev 1 0 0 -25 Vcc=2.7V, Vicm=12V, Vsense=10mVpp T=25°C, Cl=100pF T = 25 °C, Cl = 100 pF -40µ Vsense 0.0 Vcc = 5 V, Vicm = 12 V, Vsense = 6 mVpp -1.0 -60µ 25 Vout Vsense (mV) Vsense Vsense (mV) Vout (V) Vout -50 20µ -1.0 -60µ -40µ -20µ 0 -50 20µ Time (s) page 19/50 TSC2010H, TSC2011H, TSC2012H Typical characteristics Figure 40. Large signal response with VCC = 5 V (TSC2010H) Figure 39. Large signal response with VCC = 5 V 3 50 150 3 125 100 2 2 75 25 Vcc=5V, Vicm=12V, Vsense=80mVpp Cl=100pF, T=25°C -1 -2 0 5µ Vout -2 -3 -50 15µ 10µ 25 0 -25 Vcc = 5 V, Vicm = 12 V, Vsense = 230 mVpp Cl = 100 pF, T = 25 °C -1 -25 -3 -5µ Vsense 0 -5µ 0 5µ -50 Vsense (mV) 0 Vout (V) Vout Vsense (mV) Vout (V) Vsense 0 50 1 1 -75 -100 -125 -150 15µ 10µ Time (s) Time (s) Figure 41. Large signal response with VCC = 5 V (TSC2012H) Figure 42. Large signal response with VCC = 2.7 V 3 3 150 50 125 2 100 25 50 25 Vsense 0 Vout -25 Vcc = 5 V, Vicm = 12 V, Vsense = 45 mVpp Cl = 100 pF, T = 25°C -1 -2 0 -50 -100 5µ Vout Vcc=2.7V, Vicm=12V, Vsense=40mVpp Cl=100pF, T=25°C -1 -2 -125 -150 0 Vsense 0 -75 -3 -5µ 1 Vout (V) Vout (V) 1 Vsense (mV) 75 10µ 15µ -25 -3 -5µ 0 5µ 0 Vsense (mV) 2 10µ -50 15µ Time (s) Time (s) DS13791 - Rev 1 page 20/50 TSC2010H, TSC2011H, TSC2012H Typical characteristics Figure 43. 12 V common mode step response recovery 5 Figure 44. 50 V common mode step response recovery 20 5 15 4 70 60 Vicm Vout 3 10 -5 Vcc=5V, Vicm edge 10ns, Vsense=0V, Vref=2.5V Rl=10kΩ , Cl=100pF, T=25°C 0 -1 Vout (V) 1 0 10µ 20µ 0 -10 1 -1 -15 20µ -50 -60 30µ Figure 45. PSRR vs. frequency Figure 46. CMRR vs. frequency -120 Vcc=3.3V Vcc=2.7V -100 Vcc=2.7V CMRR (dB) PSRR (dB) 10µ Time (s) Vcc=5V -60 -40 -80 -60 Vcc=5V -40 Vicm=12V Vripple=100mVpp T=25°C 1k -20 10k 100k Frequency (Hz) DS13791 - Rev 1 0 Time (s) -100 0 100 -40 -70 -10µ Vcc=3.3V -20 -30 -2 30µ -120 -80 -20 Vcc=5V, Vicm edge 10ns, Vsense=0V, Vref=2.5V Rl=10kΩ, Cl=100pF, T=25°C -10 -20 -10µ 10 2 0 -2 30 20 Vicm (V) Vout (V) 0 40 Vout 3 5 2 50 Vicm Vicm (V) 4 1M 10M 0 100 Vicm=12V Vripple=100mVpp T=25°C 1k 10k 100k 1M 10M Frequency (Hz) page 21/50 TSC2010H, TSC2011H, TSC2012H Typical characteristics Figure 47. Positive overvoltage recovery VCC = 2.7 V 100 200 3 Vcc=2.7V, Vicm=12V, CI=100pF T=25°C 0 50 0 -1 -50 Vout Vcc=2.7V, Vicm=12V, CI=100pF, T=25°C -2 -50 0 -100 -3µ -2µ -1µ 0 1µ 2µ 3µ 4µ 5µ -2µ -1µ 0 1µ 2µ 3µ 4µ Time (s) Figure 49. Overvoltage recovery vs. Vicm VCC = 5 V Figure 50. Noise vs. frequency Equivalent Input Voltage Noise (nV/√ √ Hz) Over Voltage Recovery (µs) 1.5 Negative recovery time 1.3 1.0 0.8 0.5 Positive recovery time 0.3 0.0 -20 -10 0 10 Vicm (V) DS13791 - Rev 1 20 30 5µ 6µ 10000 Vref = Vcc / 2 Vcc = 5 V, T = 25 °C Vout = 100 mV drop after Vsense edge 1.8 -150 -200 -3µ Time (s) 2.0 -100 -3 6µ Vsense (mV) Vsense 100 Vout Vsense 50 Vout (V) 1 0 150 Vsense (mV) 2 Vout (V) Figure 48. Negative overvoltage recovery VCC = 2.7 V 40 5V 1000 3.3V Lorem ipsum 2.7V 100 10 Vicm=Vcc/2 Tamb=25°C 1 100m 1 10 100 1k 10k 100k 1M Frequency (Hz) page 22/50 TSC2010H, TSC2011H, TSC2012H Typical characteristics Figure 52. Output voltage vs. Vsense beyond the sense operating Figure 51. ON/OFF delay for shutdown mode 3 4.0 3.2 2 2.4 VSHDN 1.6 Vout Vout (V) 1V/div 1 0 Vref=Vcc/2 Vsense=20mV, Vcc=5V, Vicm=12V, RI=10k Ω connected to Vcc-, T=25°C -1 -2 -3 -10µ Vout phase reversal for Vsense Vcc In Figure 2, the current used to power the TSC2011H increases together with the Vicm voltage. The slope represents the internal common mode resistances. The greater part of the current is drawn by the pin In+, as we can see on the iibp curve of Figure 7 the current is around 450 µA. Some of it being Vicm / (R4+R1) and some supplies the input stage of the circuit, roughly 250 µA. On the In- pin 250 µA is drawn only. DS13791 - Rev 1 page 24/50 TSC2010H, TSC2011H, TSC2012H Theory of operation So due to the architecture of the TSC2011H, the current to be measured must be much larger than the input bias current. In case of small current to measure the Iib current must be taken into account. Figure 55. Input bias current vs. common mode voltage Vcc = 5 V 600 500 400 300 Iibp Iib (µA) 200 100 Iibn 0 -100 -200 -300 -400 Vref=Vcc/2 Vsense=0V Vcc=5V -500 -600 -20 -10 0 10 20 30 40 50 60 70 Vicm (V) • Gnd < Vicm < Vcc In this manner, the TSC2011H is only powered by the power supply Vcc, and the iib currents are very close to 0 µA and do not have any impact on the current measurement. • -20 V < Vicm < Gnd The TSC2011H is fully functional in this range of common mode voltage and has also been characterized. As the high positive common mode voltage, in this specific range, the TSC2011H is also powered by the input, see Figure 3. Figure 56. Power supply when Vicm < Gnd DS13791 - Rev 1 page 25/50 TSC2010H, TSC2011H, TSC2012H Theory of operation Most of the current is still due to the pin In+ as we can see on the iibp curve of Figure 7. The current is about 300 µA, some of it being Vicm / (R4 + R1) and some other supplies the circuit, roughly 250 µA. A small part of the current, coming from the common mode rail, is also due to the input In– in order to power the TSC2011H, in a range of -100 µV. • Output common mode range The TSC2011H output common mode voltage level can be set thanks to voltages applied on the VREF1 and VREF2 pins. These two pins allow the device to be set either in bidirectional or in unidirectional operation. The voltage applied to those pins must not exceed the Vcc range. The different configurations are detailed in the section Unidirectional/Bidirectional operation. As depicted by Figure 4, VREF1 and VREF2 pins can be driven by an external voltage source capable of sourcing/sinking a current following the equation below: Iref = Vicm − Vref 5kΩ + 275kΩ + 25kΩ (1) Figure 57. Vref powered by an external voltage source When the output common mode voltage is supplied by an external power supply, in order to improve the output voltage measurement, it is recommended to measure the Vout differentially with respect to Vref voltage. It provides a better CMRR measurement, better noise immunity and also a more accurate Vout voltage. A decoupling capacitance of 1 nF minimum can be also added to better filter the power supply, and can also be used as a tank capacitance in case an ADC is connected to this reference voltage. DS13791 - Rev 1 page 26/50 TSC2010H, TSC2011H, TSC2012H Unidirectional / bidirectional operation 5.3 Unidirectional / bidirectional operation • Unidirectional operation Unidirectional mode of operation allows the device to measure the current through a shunt resistor in one direction only. The output reference can be ground or Vcc and can be set by using VREF1 and VREF2 pins for adjustment. • Ground referenced Figure 58. Output reference to ground In this configuration VREF1 pin and VREF2 pin are connected together to the ground. The output common mode voltage is then automatically set to GND when no current flows through the Rshunt resistance. This configuration allows the full scale output in unidirectional mode. It allows a current to be measured as described in Figure 1. • Vcc referenced Figure 59. Output reference to Vcc In this configuration VREF1 pin and VREF2 pin are connected together to the Vcc power supply. The output common mode voltage is then automatically set to Vcc voltage when no current flows through the Rshunt resistance. This configuration allows the full scale output in unidirectional mode. It measures the current as described in Figure 2. DS13791 - Rev 1 page 27/50 TSC2010H, TSC2011H, TSC2012H Unidirectional / bidirectional operation • Bidirectional operation Bidirectional mode of operation allows the device to measure currents through a shunt resistor in two directions. The output reference can be set anywhere within the power supply range. If the output common mode voltage is set at mid-range, the full scale current measurement range is equal in both directions. This is achieved by connecting one VREF pin to Vcc and the other VREF pin to Gnd as described by Figure 3. It can also be done by connecting both VREF pins to Vcc / 2 voltage as described by Figure 4. In case the current measurement is not equal in both directions, the user can set the output in a non-symmetrical configuration, adjusting Vref according to the user's needs. • Split supply Figure 60. Split supply The biggest advantage of this configuration is that the TSC2011H can be used in bidirectional mode with an output common mode voltage set at the middle of scale, with an accuracy of 0.1%, without any added external component or power supply. This configuration creates a midscale offset ratiometric to the power supply. • External Figure 61. External supply DS13791 - Rev 1 page 28/50 TSC2010H, TSC2011H, TSC2012H RSENSE selection In this configuration, VREF1 pin and VREF2 pin are connected together to a reference voltage. The output common mode voltage is then automatically set to this reference voltage value when no current flows through the Rshunt resistance. This configuration adjusts the output offset as needed by the application. A DAC for calibration of the analog chain could also be used. 5.4 RSENSE selection The selection of the shunt resistor is a trade-off between the dynamic range and power dissipation. Generally, in high current sensing applications, the main focus is to reduce as much as possible the power dissipation (I²R) by choosing the smallest value of shunt. It could be quite easy if a full scale current to measure is small. In low current applications the Rsense value could be higher, to minimize the impact of the offset voltage on the circuit. Due to input bias current of several µA, the TSC2011H cannot measure the current in the same range, when the common mode voltage overpasses the power supply voltage (refer to section about theory of operation). The trade-off is mainly when a dynamic range of current to measure is large, meaning ability to measure with the same shunt value from low current to high current. Generally, the current full scale (Imax-Imin) defines the shunt value thanks to the full output voltage range, the gain of the TSC2011H. The TSC2011H can work with a full scale ∆Vout = 100 mV to Vcc - 100 mV with maximum gain accuracy of 0.3%. At first order, the full current range to measure through Rsense can be defined by equation 2, just by taking the gain error and input offset voltage as inaccuracy parameters: Isense_full_scale*Rsense = Vcc − 200mV − 2 Vio TSC_Gain 1 + Eg (2) The Vsense parameter is defined in the electrical characteristics following equation 2. Its purpose is to highlight that the product Rsense*TSC_gain is determined by the application, and that once one of these two parameters is selected, the maximum value of the second one can be calculated. • If power dissipation in the shunt is the key point, RSense should be chosen as follows: Rsense ≤ Pmax Imax² and then choosing the right gain. For example, for high current to sense, the TSC2012H can offer a gain of 100, in this manner a smaller shunt can be used and so limited power losses. However accuracy can be lower. • 5.5 Or choosing the product available on the shelf, and then size the shunt resistor value accordingly. Input offset voltage drift overtemperature The maximum input offset voltage drift overtemperature is defined as the offset variation related to the offset value measured at 25 °C. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift overtemperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift overtemperature is computed using equation 3: ΔVio V T − Vio 25°C = max io ΔT T − 25°C (3) where T = -40 °C and 150 °C. The TSC2011H datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a Cpk (process capability index) greater than 1.3. DS13791 - Rev 1 page 29/50 TSC2010H, TSC2011H, TSC2012H Error calculation 5.6 Error calculation The principal source of error, such as: input offset voltage, gain error, common mode rejection ratio, are described separately in the electrical characteristics. This chapter summarizes the most important error to take into account during a design phase. • Input offset voltage error Equation 2 depicts a first order error calculation just by taking into account the input offset voltage. In a temperature environment, the deviation of the Vio and the error linked to the input offset on the output voltage can be written as equation 4: • Vio Error = ± Vio ± Dvio/Dt *Gain (4) Gain error = Gain 1 + εgain (5) Gain error and shunt resistance accuracy Rsense error = Gain 1 + εRsense (6) Where εgain is the gain error 0.3% max. for the TSC2011H. Where εRsense is the shunt resistance error. Shunt resistors from 5 mΩ to 100 mΩ are available with 1% accuracy or better. • CMR error In the electrical characteristics, CMR is specified at one input common mode voltage. So in order to take into consideration the variation of the input voltage offset depending on the Vicm, the calculus must be done till this known point. Let us get Vicm = 12 V as a reference point. So the error on Vout due to a common mode voltage variation can be written as in equation 7: • Vicm − 12V *Gain CMR error = ± CMR (7) Output common mode error (Vocm) This error can be taken into account when the output common mode voltage is set as suggested in Figure 62. Schematic for Vocm error, and so by using the internal divider bridge. Otherwise it is important to take into consideration the error linked to the voltage source applied on the VREF1 pin and VREF2 pin. Figure 62. Schematic for Vocm error The divider bridge is made by two resistances of 50 kΩ given an output common mode voltage of: Vref1 + Vref2 2 Due to a small mismatch of the internal resistance the error, on the output common mode voltage, can be described as in equation 8: DS13791 - Rev 1 page 30/50 TSC2010H, TSC2011H, TSC2012H Error calculation Vocm = Vref1 + Vref2 . 1 + εAcc 2 (8) Where  εAcc is the accuracy referred to the output with a typical value of 0.1%. • Noise The Figure 50. Noise vs. frequency expresses the noise referred to the input of the TSC2011H. This device shows a 1/f noise until 10 kHz frequency. Above this limit the white noise density is 29 nV/ Hz, until the bandwidth of the TSC2011H. The noise can be then expressed as two terms, the former related to the 1/f noise and the latter due to the white noise. If we consider that there is no additional filter on the TSC2011H and it is only bandwidth limited, it can be considered that over the 750 kHz, there is an attenuation of the noise with a first order filtering. So the equivalent noise bandwidth is 750kHz . π 2. The RMS value of the output noise is the integration of the spectral noise over the bandwidth of interest and can be expressed as equation 9: enRMS = • Total error 10000 29 . 10−9 ∫0.1 f 10 . 103 2 750000 . π 2 29 . 10−9 2df *Gain df + ∫ 0.1 (9) The maximum total error expected on the output of the device can be described as the sum of the different source described just above. The total output accuracy can be written as equation 10. Vouterr = Gain*Rsense* Iload εgain + εRsense + Gain . Vio + Gain . Vocm εAcc + noise Vicm − 12V + CMR (10) Iload is described in Figure 63. Input current and the output noise is described by equation 9. Note that the input bias currents are not taken into account in this section, as they are already integrated in the Vsense. Figure 63. Input current below depicts the current flowing from the source to the load when the input common mode voltage is higher than the supply voltage. Figure 63. Input current From a calculation approach, when Vicm voltage is beyond Vcc, Iload must be considered as the sum of Isource and Input bias current (Iib). Note that the input bias current on the pin IN– is largely lower and can be neglected. Figure 63. Input current also expresses that the TSC2011H cannot measure the current in the same order as input bias current (several hundreds of µA). The linearity is not taken into account in the error calculus as it represents 0.03% of error only and it is negligible. Nevertheless, as the gain error has been calculated thanks to the best fit line approach, it gives the information that the gain error can be relatively constant throughout the linear input range of the TSC2011H. DS13791 - Rev 1 page 31/50 TSC2010H, TSC2011H, TSC2012H Error calculation Equation 10 has been described for a temperature of 25 °C. For sure with a temperature variation, Dvio/DT error term must be added. And if the power supply is susceptible to change, the SVR parameter must also be taken into account. • Example Let us consider that the maximum total error can happen on the output of the TSC2011H. • Use case: Vcc = 5 V – – Vicm = 24 V – Vocm = 2.5 V – – Temperature = 25 °C Iload = 5 A – Shunt 5 mΩ with 1% accuracy Theoretically the expected output voltage should be Vout = Rshunt * Iload *60 + Vocm = 4 V. From the equations above, all the error terms are detailed by using the maximum value of the electrical characteristics (when available), in order to express as much as possible, the worst case condition. The % error on output of the following table is expressed in reference to Vout – Vref, so in this typical example: 1.5 V. Table 6. Gain error Error source Calculus Output voltage error % error on output Gain error 60*5 . 10−3*5*0.3% 4.5 mV 0.3% 30 mV 2% 22.7 mV 1.5% 2.5 mV 0.2% 1.98 mVRMS 0.4% (1) Vio error 60*500µV 60* CMRR error Vocm error Noise Total 60* 24V − 12V 90 10 20 2.5*0.1% 29nV 10kHz* ln 10k − ln 0.1 Hz + 750kHz* π 2 − 0.1Hz 60 mV +1.98 mVRMS 4.4% 1. The percentage is based on voltage peak value, which is 3 times RMS value. So the maximum output voltage in the worst case condition at ambient temperature is 4.060 V + 1.98 mVRMS instead of 4 V expected. This represents an error on the current reading of about 4.4%. 1% more must be added due to the shunt accuracy. This calculus comes from all the maximum values and all the error terms which have been added to each other, meaning that the chance of getting 4.4% precision in the use case above is extremely low and on the whole population, the error is largely smaller. DS13791 - Rev 1 page 32/50 TSC2010H, TSC2011H, TSC2012H Shutdown mode 5.7 Shutdown mode If the SHDN pin is driven between 0.7 x Vcc and Vcc the TSC2011H enters low power shutdown mode, drawing less than 20 µA, over the Vcc and Vicm range. In SHDN mode the output is in HiZ state. Although there is an internal current source of 500 nA on the SHDN pin, keeping a low state allowing the TSC2011H to work without any voltage applied on the SHDN pin, it is strongly recommended to apply the dedicated voltage on the SHDN pin to ensure the full functionality of the TSC2011H, especially when fast common mode variation appears. The figure below depicts the architecture of the SHDN pin. Figure 64. SHDN pin • • 5.8 With GND applied to SHDN pin the TSC2011H is in active mode With Vcc applied to SHDN pin the TSC2011H is in shutdown mode Stability • Driving switched capacitive loads Some ADCs get their signal thanks to a sample and hold capacitor. If before a sampling this capacitance is fully discharged, a fast current load can appear on the output of the TSC2011H during the sampling phase. The scope probe in the figure below shows the output voltage of the TSC2011H excited by a 40 pF capacitor with a 3.3 Vpp signal at 50 kHz to simulate the sample and hold circuit of the ADC120. 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 Sample and hold Vout Vcc=3.3V, Vicm=1.65V, Vsense=0Vpp T=25°C, 50kHz square signal of 3.3V amplitude injected in the output through 40pF -4µ 0 4µ 8µ 1000 900 800 700 600 500 400 300 200 100 0 -100 -200 -300 -400 -500 -600 -700 -800 -900 -1000 Vout (mV) Simulated Sample and Hold (V) Figure 65. Capacitive load response at Vcc = 3.3 V 12µ Time (s) The ADC120 has a conversion rate of 50 ksps, which is perfect to sample and hold the output of the TSC2011H without any error. DS13791 - Rev 1 page 33/50 TSC2010H, TSC2011H, TSC2012H Stability The following graph shows the behavior of the output of the TSC2011H under the worst case condition, as for example, when there is an ADC120 channel change between two measurements. If a single channel is used, the change on the sample and hold capacitance is very small for sure, and so the recovery time is extremely low as described by the figure below. Figure 66. Capacitive load response at Vcc = 3.3 V with a step of 100 mV Simulated Sample and Hold (mV) 80 60 Sample and hold 40 20 Vout 0 -20 -40 -60 Vcc=3.3V, Vicm=1.65V, Vsense=0Vpp T=25°C, 50kHz square signal of 100mV amplitude injected in the output through 40pF -80 -100 -4µ 0 4µ 8µ 1000 900 800 700 600 500 400 300 200 100 0 -100 -200 -300 -400 -500 -600 -700 -800 -900 -1000 Vout (mV) 100 12µ Time (s) The effect of the ADC sampling and hold can be easily smoothed thanks to an RC filter. As suggested on the schematic below. The capacitor of the external filter must be chosen much higher than the internal ADC capacitor, in order to easily absorb the sudden voltage variation on the output due to the sampling and hold of the ADC. The resistance must be chosen according to the application speed of the system in order not to impact the whole application. The main advantage of using an RC filter is to have an antialiasing system. The used ADC should certainly have sample and hold conversion in accordance with the RC filter value, in order to let the output recover before sampling. Figure 67. RC filter when driving ADC In Figure 4 an Rs = 470 Ω resistance and a Ct = 470 pF capacitance have been set. Given a low-pass filter of 720 kHz and a response time of roughly 660 ns. In Figure 5 an Rs = 820 Ω resistance and a Ct = 1 nF capacitance have been set. Given a low-pass filter of 194 kHz and a response time of roughly 2.5 µs. DS13791 - Rev 1 page 34/50 TSC2010H, TSC2011H, TSC2012H Stability Vout Vcc=3.3V, Vicm=1.65V, Vsense=0Vpp T=25°C, Rs=470Ω,Ct=470pF 50kHz square signal of 3.3V amplitude injected in the output through 40pF -4µ 0 4µ 8µ 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 Sample and hold Vout Vcc=3.3V, Vicm=1.65V, Vsense=0Vpp T=25°C, Rs=820Ω,Ct=1nF 50kHz square signal of 3.3V amplitude injected in the output through 40pF -4µ 12µ 0 4µ 8µ 1000 900 800 700 600 500 400 300 200 100 0 -100 -200 -300 -400 -500 -600 -700 -800 -900 -1000 Vout (mV) Sample and hold 1000 900 800 700 600 500 400 300 200 100 0 -100 -200 -300 -400 -500 -600 -700 -800 -900 -1000 Simulated Sample and Hold (V) 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 Figure 69. Capacitive load response at Vcc = 3.3 V with 194 kHz RC filter Vout (mV) Simulated Sample and Hold (V) Figure 68. Capacitive load response at Vcc = 3.3 V with 720 kHz RC filter 12µ Time (s) Time (s) The value of the added external capacitor must be taken into account. Indeed, if this one is chosen with an excessive value and the serial resistance with a too small value, the risk of instability on the output of the TSC2011H is high. • Driving large capacitive Cload Increasing the load capacitance produces gain peaking in the frequency response, with an overshoot and ringing in the step response. The figure below shows the serial resistors that must be added to the output, to make a system stable. The chosen criteria ensures the stability of the system and it is an overshoot lower than 24%. Figure 70. Stability criteria with a serial resistor at VCC = 5 V 500 Vcc=5V, Vicm=0V, Vref=Vcc/2, T=25°C, Serial Resistor (Ohm) 400 300 Stable 200 100 Unstable 0 0.1 1 10 100 Capacitive Load (nF) DS13791 - Rev 1 page 35/50 TSC2010H, TSC2011H, TSC2012H Power supply recommendation 5.9 Power supply recommendation In order to decouple correctly the TSC2011H, a 100 nF bypass capacitor can be placed between Vcc and Gnd. This capacitor must be placed as close as possible to the supply pins. The figure below shows a start-up time with a decoupling capacitance of 100 nF. Figure 71. Start-up time with a decoupling capacitance of 100 nF 6 5 Vcc 4 Voltage (V) 3 2 Vout 1 0 Vref=0V Vsense=20mV, Vcc=5V, Vicm=12V, RI=10k Ω, Cl=10pF connected to Vcc-, T=25°C -1 -2 -3 -200µ 0 200µ 400µ 600µ 800µ Time (s) The VREF pin is used to fix the output common mode voltage and it is driven by a low impedance voltage source and can be decoupled thanks to a 10 nF bypass capacitor. A greater bypass capacitor added on the Vcc pin and VREF pin helps to enhance CMRR and PSRR performance. 5.10 PCB layout recommendations The layout of the PCB tracks connected to the current sensing, load and power supply is very important. It is good practice to use short and wide PCB traces to minimize voltage drops and parasitic inductance. When a shunt resistance, lower than 1 Ω, is used, a 4-wire connection technique should be used to sense the current as described in the schematic below. This technique separates pairs of current carrying and voltagesensing electrodes to make more accurate measurements by eliminating the lead and contact resistance from the measurement. The track connected to the input pin of the TSC2011H has to be considered as a differential pair, it must have the same length and width, and ideally placed on the same PCB plane, and above all must be routed as far as possible from any noisy source. As this track carries the input bias current, in a range of hundreds of µA, it can be designed small but always by taking care of its resistivity. Any via in these input tracks are not recommended to avoid any parasitic resistance in this path. To minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used. A ground plane generally helps to reduce EMI; that is why a multilayer PCB use is suggested as well as the ground planes as a shield to protect the internal track. In this case, the digital from the analog ground must be separated and any ground loop must be avoided. Loop area or antenna must be reduced to minimize EMI impact. Figure 1 suggests a possible routing for the TSC2011H, in order to minimize parasitic effect. DS13791 - Rev 1 page 36/50 TSC2010H, TSC2011H, TSC2012H PCB layout recommendations Figure 72. Recommended layout DS13791 - Rev 1 page 37/50 TSC2010H, TSC2011H, TSC2012H EMI rejection ratio (EMIRR) 5.11 EMI rejection ratio (EMIRR) The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of current sensing device. An adverse effect that is common to many current sensing is a change in the offset voltage as a result of RF signal rectification. A first order internal low-pass filter is included on the input of the TSC2011H to minimize susceptibility to EMIRR. Figure 1 shows the EMIRR on pin IN+, Figure 2 shows the EMIRR on pin IN- of the TSC2011H measured from 400 MHz up to 2.4 GHz. Figure 73. EMIRR on pin+ Figure 74. EMIRR on pin- 100 100 EMIRR In-(dB) 120 EMIRR In+(dB) 120 80 60 60 40 40 20 20 Vcc=5V, T=25°C Prf=-10dBm Vcc=5V, T=25°C Prf=-10dBm 0 400 80 600 0 400 800 1000 1200 1400 1600 1800 2000 2200 2400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 Frequency (MHz) Frequency (MHz) Figure 75. EMIRR on pin+ (TSC2010H) shows the EMIRR on pin IN+, Figure 76. EMIRR on pin- (TSC2010H) shows the EMIRR on pin IN- of the TSC2010H measured from 10 MHz up to 2.4 GHz. Figure 75. EMIRR on pin+ (TSC2010H) Figure 76. EMIRR on pin- (TSC2010H) 100 100 80 80 EMIRR In- (dB) 120 EMIRR In+ (dB) 120 60 40 40 20 20 Vcc = 5 V, T = 25°C Prf = 10 dBm 0 60 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 Frequency (MHz) DS13791 - Rev 1 Vcc = 5 V, T = 25°C Prf = 10 dBm 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 Frequency (MHz) page 38/50 TSC2010H, TSC2011H, TSC2012H Overload recovery 5.12 Overload recovery Overload recovery is defined as the time required for the current sensing output to recover from a saturated state to a linear state. The saturation state occurs when the output voltage gets very close to rails in the application. It results from an excessive input voltage. When the output of the TSC2011H enters saturation state, less than 1 µs is needed to get back to a linear state as shown by Figure 77 and Figure 78. Figure 45 and Figure 46 show the overvoltage recovery for a VCC = 2.7 V. Figure 77. Negative overvoltage recovery VCC = ± 2.5 V DS13791 - Rev 1 Figure 78. Positive overvoltage recovery VCC = ± 2.5 V page 39/50 TSC2010H, TSC2011H, TSC2012H Application examples 5.13 5.13.1 Application examples H-bridge motor control The H-bridge topology is very popular in motor control, DC-DC converters, LED lighting control and other bidirectional loads from a single supply potential. The TSC2011H provides a feedback control system for current but also detects overload conditions. Figure 1 describes a typical schematic using the TSC2011H in a motor control application. A 20 mΩ shunt resistance in series with the motor monitors a measurable voltage drop representing the load current, and the TSC2011H amplifies the Vsense in order to give some information about the current flowing into the motor in real time. This information is then digitalizing by the 12-bit ADC (ADC120). Figure 79. H-bridge application General overview: To make the motor rotation occur, the NMOS H1, H2, L1, L2 are driven by a H-bridge quad power MOSFET driver. We have to consider that the current flows from 12 V to the GND, through H1 NMOS and L2 NMOS. A PWM is applied on the NMOS L2 in order to control the current and thus the speed of the motor. By PWM, the average voltage applied on the motor is controlled. H1 remains always ON and the PWM is applied on L2. When L2 is turned OFF, H2 must be turned ON, for freewheeling, allowing the discharge of the motor inductance current. This phenomenon generates a fast input common mode voltage transition on the TSC2011H, from 0 V to 12 V. Thanks to a good recovery time due to fast input common mode change, the TSC2011H follows the current flowing into the motor as depicted by the scope probe in Figure 80. TSC2011H H-bridge application. The black curve represents the fast Vicm variation step of 12 V in 500 ns when the freewheeling is activated. The blue curve represents the current flowing into the motor measured with a current probe. The red curve represents the output voltage - 1.35 V (Vref voltage) of the TSC2011H probe after the RC filter. The RC filter, used to drive the ADC120, smoothens the output signal a little and adds a small constant time, in the range of 1 µs. DS13791 - Rev 1 page 40/50 TSC2010H, TSC2011H, TSC2012H Application examples Figure 80. TSC2011H H-bridge application 1.0 1.20 0.96 Vicm variation from 0V to 12V 0.6 0.72 0.4 0.48 0.2 0.24 Vout 0.0 0.00 -0.2 -0.24 Current flowing into the motor -0.48 -0.4 -50µ Vout - Vref (V) input current (A) 0.8 -40µ -30µ -20µ -10µ 0 10µ 20µ 30µ 40µ 50µ Time (s) After a fast variation of the input common mode, the TSC2011H needs less than 5 µs to recover its normal behavior. 5.13.2 Solenoid valve In automotive applications, the automatic transmission relies on bands and clutches to change gears, and the only way they can be applied is by fluid pressure. The transmission solenoid is responsible for opening or closing valves in the valve body to allow transmission fluid to enter, at which point the fluid can pressurize the clutches and bands. Solenoids consist of a spring loaded plunger wrapped with a coil of wire, and it is generally driven thanks to a MOS transistor. In the schematic below the TSC2011H is used in mono-directional mode. When the MOS is ON, the current can flow through the solenoid and actuate this one. The input common mode is high in this case. When the MOS is turned OFF, as the current stored in the solenoid cannot stop instantaneously, the diode turns ON allowing a freewheeling to discharge the solenoid resulting in a common mode one diode voltage drop below ground. Thanks to its large input common mode range, the TSC2011H can be used for such applications depicted in the figure below. In order not to saturate the output when no current is flowing into Rsense, a small voltage on Vref has to be applied. DS13791 - Rev 1 page 41/50 TSC2010H, TSC2011H, TSC2012H Application examples Figure 81. Solenoid valve application DS13791 - Rev 1 page 42/50 TSC2010H, TSC2011H, TSC2012H Package information 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 6.1 SO8 package information Figure 82. SO8 package outline Table 7. SO-8 mechanical data Dim. mm Min. Inches Typ. A Min. Typ. 1.75 0.25 Max. 0.069 A1 0.1 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.01 D 4.8 4.9 5 0.189 0.193 0.197 E 5.8 6 6.2 0.228 0.236 0.244 E1 3.8 3.9 4 0.15 0.154 0.157 e 0.004 0.01 0.049 1.27 0.05 h 0.25 0.5 0.01 0.02 L 0.4 1.27 0.016 0.05 L1 k ccc DS13791 - Rev 1 Max. 1.04 0 0.04 8° 0.1 1° 8° 0.004 page 43/50 TSC2010H, TSC2011H, TSC2012H Ordering information 7 Ordering information Table 8. Order codes Order code Gain (V/V) TSC2010HYDT (1) 20 TSC2011HYDT (1) 60 TSC2012HYDT (1) 100 Package Packing Marking 2010HY SO8 Tape and reel 2011HY 2012HY 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent. DS13791 - Rev 1 page 44/50 TSC2010H, TSC2011H, TSC2012H Revision history Table 9. Document revision history DS13791 - Rev 1 Date Revision 02-Sep-2021 1 Changes Initial release. page 45/50 TSC2010H, TSC2011H, TSC2012H Contents Contents 1 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 4 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.1 5 6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 Theory of operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3 Unidirectional / bidirectional operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 RSENSE selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.5 Input offset voltage drift overtemperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.6 Error calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.7 Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.8 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.9 Power supply recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.10 PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.11 EMI rejection ratio (EMIRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.12 Overload recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.13 Application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.13.1 H-bridge motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.13.2 Solenoid valve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 6.1 7 Typical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 SO8 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 DS13791 - Rev 1 page 46/50 TSC2010H, TSC2011H, TSC2012H List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical characteristics Vcc = 2.7 V, Vicm = 12 V, T = 25 °C (unless otherwise specified) Electrical characteristics (Vcc = 5 V, Vicm = 12 V, T = 25 °C unless otherwise specified). . Gain error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DS13791 - Rev 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 4 . 4 . 5 . 8 32 43 44 45 page 47/50 TSC2010H, TSC2011H, TSC2012H List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. DS13791 - Rev 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . Supply current vs. input common mode . . . . . . . . . . . . . . . . . . . . Supply current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . Supply current vs. input common mode with active shutdown mode Input bias current vs. input common mode with shutdown active . . . Input bias current vs. temperature VCC = 2.7 V . . . . . . . . . . . . . . . Input bias current vs. temperature with VCC = 5 V . . . . . . . . . . . . . Input offset voltage vs. temperature. . . . . . . . . . . . . . . . . . . . . . . Input offset voltage vs. input common mode with VCC = 2.7 V . . . . . Input offset voltage vs. input common mode with VCC = 5 V . . . . . . Input offset voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . Output current vs. output voltage . . . . . . . . . . . . . . . . . . . . . . . . Output current vs. temperature with VCC = 5 V . . . . . . . . . . . . . . . Output current vs. temperature with VCC = 2.7 V . . . . . . . . . . . . . . Voh and Vol vs. input common mode voltage with VCC = 5 V . . . . . . (Output voltage + Vref) vs. Vsense unidirectional with VCC = 5 V . . . (Output voltage + Vref) vs. Vsense bidirectional with VCC = 5 V . . . . . Output rail linearity vs. load with VCC = 5 V. . . . . . . . . . . . . . . . . . Linearity vs. Vsense with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . Linearity vs. Vsense and temperature . . . . . . . . . . . . . . . . . . . . . . Gain error vs. input common mode . . . . . . . . . . . . . . . . . . . . . . . Gain error vs. input common mode and temperature . . . . . . . . . . . Load regulation with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain vs. frequency VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain vs. frequency different capacitive load . . . . . . . . . . . . . . . . . Gain vs. frequency different capacitive load (TSC2010H) . . . . . . . . Gain vs. frequency different capacitive load (TSC2012H) . . . . . . . . Bandwidth vs. input common mode . . . . . . . . . . . . . . . . . . . . . . . Bandwidth vs. input common mode (TSC2010H) . . . . . . . . . . . . . Bandwidth vs. input common mode (TSC2012H) . . . . . . . . . . . . . Overshoot vs. capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . Small signal response with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . Small signal response with VCC = 5 V (TSC2010H) . . . . . . . . . . . . Small signal response with VCC = 5 V (TSC2012H) . . . . . . . . . . . . Small signal response with VCC = 2.7 V . . . . . . . . . . . . . . . . . . . . Large signal response with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . Large signal response with VCC = 5 V (TSC2010H) . . . . . . . . . . . . Large signal response with VCC = 5 V (TSC2012H) . . . . . . . . . . . . Large signal response with VCC = 2.7 V . . . . . . . . . . . . . . . . . . . . 12 V common mode step response recovery . . . . . . . . . . . . . . . . 50 V common mode step response recovery . . . . . . . . . . . . . . . . PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CMRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive overvoltage recovery VCC = 2.7 V . . . . . . . . . . . . . . . . . . Negative overvoltage recovery VCC = 2.7 V . . . . . . . . . . . . . . . . . Overvoltage recovery vs. Vicm VCC = 5 V . . . . . . . . . . . . . . . . . . . Noise vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21 21 21 22 22 22 22 page 48/50 TSC2010H, TSC2011H, TSC2012H List of figures Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. DS13791 - Rev 1 ON/OFF delay for shutdown mode . . . . . . . . . . . . . . . . . . . . Output voltage vs. Vsense beyond the sense operating . . . . . . . Power-up time delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply when Vicm > Vcc . . . . . . . . . . . . . . . . . . . . . . . Input bias current vs. common mode voltage Vcc = 5 V . . . . . . Power supply when Vicm < Gnd . . . . . . . . . . . . . . . . . . . . . . Vref powered by an external voltage source . . . . . . . . . . . . . . Output reference to ground . . . . . . . . . . . . . . . . . . . . . . . . . Output reference to Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . Split supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematic for Vocm error . . . . . . . . . . . . . . . . . . . . . . . . . . . Input current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SHDN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacitive load response at Vcc = 3.3 V. . . . . . . . . . . . . . . . . Capacitive load response at Vcc = 3.3 V with a step of 100 mV . RC filter when driving ADC. . . . . . . . . . . . . . . . . . . . . . . . . . Capacitive load response at Vcc = 3.3 V with 720 kHz RC filter . Capacitive load response at Vcc = 3.3 V with 194 kHz RC filter . Stability criteria with a serial resistor at VCC = 5 V . . . . . . . . . . Start-up time with a decoupling capacitance of 100 nF. . . . . . . Recommended layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMIRR on pin+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMIRR on pin- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMIRR on pin+ (TSC2010H) . . . . . . . . . . . . . . . . . . . . . . . . EMIRR on pin- (TSC2010H) . . . . . . . . . . . . . . . . . . . . . . . . . Negative overvoltage recovery VCC = ± 2.5 V . . . . . . . . . . . . . Positive overvoltage recovery VCC = ± 2.5 V. . . . . . . . . . . . . . H-bridge application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSC2011H H-bridge application . . . . . . . . . . . . . . . . . . . . . . Solenoid valve application . . . . . . . . . . . . . . . . . . . . . . . . . . SO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 23 23 24 25 25 26 27 27 28 28 30 31 33 33 34 34 35 35 35 36 37 38 38 38 38 39 39 40 41 42 43 page 49/50 TSC2010H, TSC2011H, TSC2012H IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics – All rights reserved DS13791 - Rev 1 page 50/50
TSC2011HYDT 价格&库存

很抱歉,暂时无法提供与“TSC2011HYDT”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TSC2011HYDT
  •  国内价格
  • 10+30.88746
  • 100+30.27825
  • 250+29.66383
  • 500+29.03900

库存:0