0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSC214ICT

TSC214ICT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SC70-6

  • 描述:

    TSC214ICT

  • 数据手册
  • 价格&库存
TSC214ICT 数据手册
TSC210, TSC211, TSC212 TSC213, TSC214, TSC215 Datasheet High/low-side, bidirectional, zero-drift current sense amplifiers Features • • • • • • • • • • Wide common mode voltage: -0.3 to 26 V Offset voltage: ±35 µV max. (TSC210) 2.7 to 26 V supply voltage Different gain available – TSC210 (200 V/V) – TSC211 (500 V/V) – TSC212 (1000 V/V) – TSC213 (50 V/V) – TSC214 (100 V/V) – TSC215 (75 V/V) Gain error: ±1% max. Offset drift: 0.1 µV/°C max. Gain drift: 20 ppm/°C max. Quiescent current: 100 µA QFN10 (1.8x1.4) and SC70-6 Applications Product status link TSC210, TSC211, TSC212, TSC213, TSC214 and TSC215 • • • • • Telecom equipment Power management Notebook computers Industrial applications Battery chargers Description The TSC210, TSC211, TSC212, TSC213, TSC214 and TSC215 are a series of zerodrift current sense amplifiers that can sense current via a shunt resistor over a wide range of common mode voltages from -0.3 to +26 V, whatever the supply voltage is. They are available in three different versions, each of them having a different gain. The TSC21x are designed with a specific zero-drift architecture, which can achieve high precision. The TSC21x are current sense amplifiers that may be used in various functions such as precision current measurement, over current protection, current monitoring, feedback loops. These devices fully operate over the broad supply voltage range of 2.7 to 26 V and over the industrial temperature range -40 to 125 °C. DS13237 - Rev 6 - September 2022 For further information contact your local STMicroelectronics sales office. www.st.com TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Pin connections and description 1 Pin connections and description Figure 1. Pin connections (top view) Table 1. Pin description Name SC70-6 QFN10 REF 1 8 Reference voltage input GND 2 9 Ground Vcc 3 6 Power supply voltage Vin+ 4 2, 3 Connection to the external sense resistor Vin- 5 4, 5 Connection to the external sense resistor OUT 6 10 Output voltage 1, 7 Not connected(1) NC Description 1. Pins can be left floating or connected to VCC or GND. DS13237 - Rev 6 page 2/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Block diagram 2 Block diagram Figure 2. Block diagram Vcc R4 Iload Vref R2 + R Rshunt Output voltage R1 R3 TSC21x GND Output voltage = ( Rshunt x Iload ) x Gain + Vref Table 2. Resistors and gain values DS13237 - Rev 6 Product R1 and R2 R3 and R4 Gain TSC210 1 MΩ 5 kΩ 200 TSC211 1 MΩ 2 kΩ 500 TSC212 1 MΩ 1 kΩ 1000 TSC213 1 MΩ 20 kΩ 50 TSC214 1 MΩ 10 kΩ 100 TSC215 1 MΩ 13.3 kΩ 75 page 3/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Absolute maximum ratings and operating conditions 3 Absolute maximum ratings and operating conditions Table 3. Absolute maximum ratings Symbol VCC VIN Parameter Value Unit 26 V Supply voltage(1) Differential voltage between input pins (In+, In-) -26 to +26 Common mode voltage on input pins V Gnd-0.3 to 26 Ref Reference input voltage Gnd-0.3 to Vcc+0.3 V Iin Input current to any pin(2) 5 mA Gnd-0.3 to Vcc+0.3 V 260 °C -65 to 150 °C 150 °C Vout TLead Output voltage Lead temperature for 10 Tstg Storage temperature Tj Junction temperature s(3) Thermal resistance junction to ambient Rth-ja (4)(5) 124 QFN10 ESD °C/W 232 SC70-6 HBM: human body model(6) 4000 CDM: charged device model (7) 1000 V 1. All voltage values, except the differential voltage are with respect to the network ground terminal. 2. Due to AMR on input current (Iin), differential voltage may be limited. 3. Reflow at peak temperature of 260 °C. Time above 255 °C must not exceed 30 s. 4. Short-circuits can cause excessive heating and destructive dissipation. 5. Rth are typical values. 6. According to JEDEC standard JESD22-A114F. 7. According to ANSI/ESD STM5.3.1. Table 4. Operating conditions Symbol Value Unit 2.7 to 26 V VCC Supply voltage Vicm Common mode voltage on input pins -0.3 to +26 V Operating free-air temperature range -40 to 125 °C T DS13237 - Rev 6 Parameter page 4/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Electrical characteristics 4 Electrical characteristics Table 5. Electrical characteristics, T = 25 °C, VSENSE = VIN+- VIN- (unless otherwise specified), TSC210, TSC213, TSC214, TSC215: VCC= 5 V, VIN+=12 V, VREF= VCC/2 (unless otherwise specified), TSC211, TSC212: VCC = 12 V, VIN+ = 12 V, VREF = VCC/2 ( unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit 26 V Power supply Vcc Supply voltage Icc Quiescent current 2.7 VSENSE = 0 mV 65 Tmin. < T < Tmax. 100 115 µA Input Offset voltage (RTI) (1) VO |Δ VO/ΔT| TSC210, TSC211, TSC212 VSENSE = 0 mV -35 35 TSC214, TSC215 VSENSE = 0 mV -60 60 TSC213 VSENSE = 0 mV -100 100 Offset voltage variation (RTI) vs. temperature VSENSE = 0 mV, 0.05 Tmin.< T < Tmax. 0.3 µV µV/°C Common mode rejection ratio VIN+= 0 to 26 V, TSC210, TSC211, TSC212 CMRR VSENSE = 0 mV, 105 140 Tmin. < T < Tmax. dB Vin+= 0 to 26 V, TSC213, TSC214, TSC215 VSENSE = 0 mV, 100 120 Tmin. < T < Tmax. Power supply rejection ratio Vcc= 2.7 to 26 V IIB Input bias current VSENSE = 0 mV IIO Input offset current VSENSE = 0 mV 0.02 TSC210 200 TSC211 500 TSC212 1000 TSC213 50 TSC214 100 TSC215 75 PSRR VIN+=18 V, VSENSE = 0 mV 15 0.1 10 28 35 µV/V µA Output G DS13237 - Rev 6 Gain VSENSE = -5 to + 5 mV EG Gain error TG Gain error vs. temperature Tmin. < T < Tmax. NLE Linearity error VSENSE = -5 to + 5 mV Tmin. < T < Tmax. V/V 0.02 ±1 % 7 20 ppm/°C 0.01 % page 5/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Electrical characteristics Symbol Parameter Conditions CL Maximum capacitive load No sustained oscillation Vsw+ Output swing close to VCC RL=10 kΩ to Gnd Vsw- Output swing close to Gnd Tmin. < T < Tmax. RLoad Load regulation IOUT= -10 to +10 mA Tmin. < T < Tmax. RL=10 kΩ to Gnd Min. Vcc-0.2 Typ. Max. Unit 470 pF Vcc-0.05 V 5 0.5 30 mV Ω Dynamic performance VCC = 5 V, Vicm = 12 V, Cl = 100 pF BW Bandwidth TSC210 25 TSC211 8 TSC212 6 TSC213 100 TSC214 40 TSC215 60 kHz VCC = 5 V, Vicm = 12 V, Cl = 100 pF SR Slew rate TSC210 0.2 TSC211 0.075 TSC212 0.05 TSC213 0.85 TSC214 0.32 TSC215 0.42 V/µs f = 1 kHz EN Noise (RTI)(1) TSC210 40 TSC211 48 TSC212 50 TSC213 38 TSC214 40 TSC215 39 nV/√Hz 1. RTI stands for “related to input” DS13237 - Rev 6 page 6/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Typical characteristics 5 Typical characteristics The TSC210 is used for typical characteristics, unless otherwise specified Figure 3. Input offset voltage production distribution Figure 4. Input offset voltage vs. temperature 100 20 80 40 Vio (µV) Population (%) 60 T=25°C Vcc=5V, Vicm=12V 15 10 20 0 -20 -40 5 -60 -80 30 35 25 20 15 5 10 0 -5 -1 0 -2 0 -1 5 -2 5 -100 -3 0 -3 5 0 Input offset voltage (µV) Figure 5. Common-mode rejection ratio production distribution -25 0 25 50 75 Temperature (°C) 100 125 Figure 6. Common mode rejection ratio vs. temperature 5 30 4 T=25°C Vcc= 5V 25 3 2 CMRR (µV/V) 20 Population (%) Vref=Vcc/2 Vsense=0V Vcc=5V 15 10 1 0 -1 -2 5 -3 -4 -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5 -2 .0 -1 .5 -1 .0 -0 .5 0. 0 0. 5 1. 0 1. 5 2. 0 2. 5 3. 0 3. 5 4. 0 4. 5 5. 0 0 Common-ModeRejection Ratio (µV/V) DS13237 - Rev 6 -5 Vref=Vcc/2 Vsense= 0 V Vcc=5V Vicm =12V -25 0 25 50 75 Temperature (°C) 100 125 page 7/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Typical characteristics Figure 8. Power supply rejection ratio vs. frequency Figure 7. Gain vs. frequency 140 120 PSRR (dB) 100 80 60 40 20 Vicm =12 V Vripple =100 mVpp T = 25 °C 0 10 100 1k 10k 100k Frequency (Hz) Figure 9. Common mode rejection ratio vs. frequency Figure 10. Positive output voltage swing vs. output current VCC = 2.7 V 140 V+ 120 Isource Vcc=2.7 V Vicm=12 V (V+)-0.5V Output Voltage (V) CMRR (dB) 100 80 60 40 Vcc=5V, Vicm=12 V Vripple=100 mVpp T=25 °C 20 0 10 100 (V+)-1.0V (V+)-1.5V (V+)-2.0V (V+)-2.5V 1k 10k (V+)-3.0V 0.0 100k 125 °C 5.0 Frequency (Hz) 25 °C -40 °C 10.0 15.0 20.0 25.0 Output current (mA) 30.0 35.0 Figure 11. Negative output voltage swing vs. output Figure 12. Positive output voltage swing vs. output current VCC = 2.7 V current V = 5 V CC 125 °C GND+2.5 (V+)-0.5V GND+2.0 (V+)-1.0V GND+1.5 GND+1.0 GND+0.5 GND 0.0 DS13237 - Rev 6 V+ 25 °C -40 °C Output Voltage (V) Output Voltage (V) GND+3.0 Isink Vcc=2.7 V Vicm=12 V 5.0 10.0 15.0 20.0 25.0 Output current (mA) 30.0 35.0 Isource Vcc=5 V Vicm=12 V (V+)-1.5V (V+)-2.0V (V+)-2.5V (V+)-3.0V 0.0 125 °C 5.0 25 °C -40 °C 10.0 15.0 20.0 25.0 Output current (mA) 30.0 35.0 page 8/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Typical characteristics GND+6 GND+5.5 GND+5 GND+4.5 GND+4 GND+3.5 GND+3.0 GND+2.5 GND+2 GND+1.5 GND+1 GND+0.5 GND 0.0 V+ 125 °C 25 °C -40 °C (V+)-1.0V 5.0 10.0 15.0 20.0 25.0 Output current (mA) (V+)-1.5V (V+)-2.0V (V+)-2.5V (V+)-3.0V (V+)-3.5V 30.0 (V+)-4.0V 0.0 35.0 -40 °C 125 °C 25 °C Isink Vcc=5 V Vicm=12 V Figure 15. Negative output voltage swing vs. output current VCC = 26 V 5.0 10.0 15.0 20.0 25.0 Output current (mA) 30.0 35.0 Figure 16. Input bias current vs. input common mode voltage with supply voltage = 5 V 50 GND+6 GND+5.5 GND+5 GND+4.5 GND+4 GND+3.5 GND+3.0 GND+2.5 GND+2 GND+1.5 GND+1 GND+0.5 GND 0.0 125 °C 25 °C -40 °C 40 Iibp, Iibn Vref=0V 30 Iib (µA) Output Voltage (V) Isource Vcc=26 V Vicm=12 V (V+)-0.5V Output Voltage (V) Output Voltage (V) Figure 13. Negative output voltage swing vs. output Figure 14. Positive output voltage swing vs. output current VCC = 5 V current VCC = 26 V Iibp, Iibn Vref=2.5V 20 10 Isink Vcc=26 V Vicm=12 V 5.0 10.0 15.0 20.0 25.0 Output current (mA) 30.0 0 35.0 Figure 17. Input bias current vs. input common mode voltage with supply voltage = 0 V -10 T=25°C Vcc=5V 0 5 10 15 Vicm (V) 20 25 30 Figure 18. Input bias current vs. temperature 35 30 30 Iibn Vref=2.5V; 0V 25 25 20 Iib (µA) Iib (µA) Iibp Vref=0V 15 20 15 10 10 5 Iibp Vref=2.5V 0 -5 DS13237 - Rev 6 T=25°C Vcc=0V 0 5 10 15 Vicm (V) 20 Vref=Vcc/2 Vicm=12V Vcc=5V 5 25 30 0 -40 -20 0 20 40 60 Temperature (°C) 80 100 120 page 9/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Typical characteristics Figure 19. Quiescent current vs. temperature Figure 20. Input referred noise vs. frequency 100 90 80 70 Icc (µA) 60 50 40 30 20 Vref=Vcc/2 Vicm=12V Vcc=5V 10 0 -40 -20 0 20 40 60 Temperature (°C) 80 100 120 Figure 21. 0.1 Hz to 10 Hz voltage noise (referred to input) Figure 22. Step response (10-mVpp input step) 800 Vout 400 200 Vout (V) (0.5V/div) Refered to input noise (nV) 600 0 -200 Vsense -400 -800 Vcc = 5 V, Vicm = 12 V, Vsense =10 mVpp T = 25 °C, Cl = 100pF T=25°C Vcc=5V Vref=2.5V -600 0 1 2 3 4 5 6 Time (s) 7 8 9 -200µ 10 Figure 23. Common mode voltage transient response 0 200µ 400µ 600µ Time (s) Figure 24. Inverting differential input overloaded Vicm 0V -100µ Vout Vcc = 5 V, Vref = 2.5 V, Vicm = 12 V, Vsense = 0 V, T = 25 °C 0V Vout -50µ 0 50µ 100µ 150µ Time (s) DS13237 - Rev 6 1 V/div Vcc = 5 V, T = 25 °C Output Voltage (500mV/div) Common-Mode Voltage (1V/div) Inverting input 200µ 250µ 300µ 350µ Time (200 µs/div) page 10/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Typical characteristics Figure 25. Non inverting differential input overload Figure 26. Start-up response 6 Non inverting input 5 Vcc 4 1 V/div 1V/div 3 Vout 2 1 Vout 0 Vcc=5 V, Vref=2.5 V, Vicm=12 V, Vsense=0 V, T=25 °C 0V -1 Vref=2.5 V, Vsense=0 V, T=25 °C -2 -3 Time (100 µs/div) Time (200 µs/div) Figure 27. Brownout recovery DS13237 - Rev 6 page 11/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Application information 6 Application information 6.1 Overview TSC21x series are specially designed to accurately measure current by amplifying the voltage across a shunt resistor connected to its input. This voltage drop Vsense, is then amplified by an instrumentation amplifier providing a max. input offset voltage of 35 µV (25 °C) for an input common voltage of 12 V for gain higher than 200. TSC21x series with the use of thin film resistor and zero-drift architecture, offer an extremely precise input offset voltage, gain error and very high CMRR performance even in high frequency range. Moreover, thanks to the possibility to fix the output common mode voltage, the TSC21x can be either used as unidirectional or bidirectional current sensing amplifier. TSC21x provide an extended input common range from ground, and up to 26 V allowing either low-side or high-side current sensing, while the TSC21x devices can operate from 2.7 to 26 V. The parameters are very stable in the full VCC range and several characterization curves show the TSC21x device characteristics at 5.0 V. Additionally, the main specifications are guaranteed in extended temperature ranges from - 40 to 125 °C. 6.2 Theory of operation The main particularity of the TSC21x is the ability to work with input common mode voltage largely beyond the power supply Vcc range. • Vicm > 2.5 V In this case, the power supply of the TSC21x is issued from the input and not only from the Vcc power supply. More precisely a current is drawn from the common mode rail as depicted in Figure 28 to power it. Figure 28. Power supply when Vicm > 2.5 V VCC R4 In- - R1 Shunt resistor OUT In+ + R2 R3 VREF Gnd In Figure 29 we can see that the current used to power the TSC21x is increasing with the Vicm voltage. The slope is representing the internal common mode resistances. Part of it being Vicm / (R4 + R1) and part of it serving to supply the input stage of the circuit, roughly 20 µA. So due to the architecture of the TSC21x the current to be measured through the shunt resistor must be much larger than the input bias current. In case of small current to measure the Iib, current must be taken into account. DS13237 - Rev 6 page 12/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Theory of operation Figure 29. Input bias current vs. common mode voltage Vcc = 5 V 50 40 Iib (µA) 30 20 10 0 -10 T=25°C Vcc=5V Vref=2.5V 0 5 10 15 20 25 30 Vicm (V) • Output common mode range The TSC21x output common mode voltage level can be set thanks to voltages applied on the Vref pin. This pin allows to set the device either in bidirectional or in unidirectional operation. The voltage applied on this pin must not exceed the Vcc range. The different configurations are detailed in the chapter Unidirectionnal/Bidirectionnal operation. As depicted by Figure 30 and using a TSC210, the Vref pin can be driven by an external voltage source capable of sourcing/sinking a current following the below equation 1: Iref = Vicm − Vref Vicm − Vref R1 + R4 = 5kΩ + 1MΩ (1) Figure 30. Vref powered by an external voltage source with a TSC210 VCC 1MΩ InShunt resistor - 5kΩ OUT + 5kΩ 1MΩ In+ VREF Gnd Gnd When the output common mode voltage is supplied by an external power supply, in order to improve the output voltage measurement, it is recommended to measure the Vout differentially with respect to Vref voltage. It provides a best CMRR measurement, a best noise immunity and also a more accurate Vout voltage. A decoupling capacitance of 1 nF minimum can be also added in order to better filter the power supply, and can also be used as a tank capacitance in case an ADC is connected to this reference voltage. DS13237 - Rev 6 page 13/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Unidirectionnal / bidirectionnal operation 6.3 Unidirectionnal / bidirectionnal operation • Unidirectional operation Unidirectional mode of operation allows the device to measure the current through a shunt resistor in one direction only. The output reference can be Ground or Vcc and can be set by using Vref pins for adjustment. • Ground referenced Figure 31. Output reference to ground VCC R4 In- - R1 Shunt resistor OUT In+ + R2 R3 Current VREF Gnd In this configuration the Vref pin is connected to the ground. The output common mode voltage is then automatically set to GND when no current flows through the Rshunt resistance. This configuration allows the full-scale output in unidirectional mode. It allows to measure a current as described in Figure 31. • Vcc referenced Figure 32. Output reference to Vcc VCC R4 Current In- - R1 Shunt resistor OUT In+ + R2 R3 VREF Gnd DS13237 - Rev 6 page 14/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 RSENSE selection In this configuration the Vref pin is connected to the Vcc power supply. The output common mode voltage is then automatically set to Vcc voltage when no current flows through the Rshunt resistance. This configuration allows the full-scale output in unidirectional mode. It allows to measure a current as described in Figure 32 • Bidirectional operation Bidirectional mode of operation allows the device to measure currents through a shunt resistor in two directions. The output reference can be set anywhere within the power supply range. If the output common mode voltage is set at mid-range, the full-scale current measurement range is equal in both directions. It can be done by connecting Vref pins to a reference voltage as suggested by Figure 33. In case the current measurement is not equal in both directions, users can set the output in a non-symmetrical configuration, adjusting Vref according to user needs. Figure 33. External supply VCC R4 In- - R1 Shunt resistor OUT In+ + R2 R3 VREF Reference Voltage Gnd Another simpler way to generate the reference voltage to fix the output common mode voltage can be used. As, for example, a resistive divider; in this case, as the VREF pin must be connected to a low impedance, it is important to add a buffer stage between the VREF pin and the resistive divider. The buffer can be simply done with an opamp as TSB611 in follower configuration. If for any reason the voltage on the Vref pin exceeds the power supply by 0.5 V, the ESD diodes become conductive and excessive current can flow through them. Without limitation this overcurrent can damage the device. In this case, it is important to limit the current to 5 mA. 6.4 RSENSE selection The selection of the shunt resistor is a trade-off between dynamic range and power dissipation. Generally, in high current sensing application, the main focus is to reduce as much as possible the power dissipation (I²R) by choosing the smallest value of shunt. It could be quite easy if full-scale current to measure is small. In low current application, the Rsense value could be higher, to minimize the impact of the offset voltage of the circuit. Still keep in mind that due to input bias of several µA the TSC21x cannot measure current in the same range, when the common mode voltage overpasses 2.5 V (refer to Section 6.2 Theory of operation). The trade-off is mainly when a dynamic range of current to measure is large, meaning ability to measure with the same shunt value low current to high current. Generally, the current full scale (Imax-Imin) defines the shunt value thanks to the full output voltage range, the gain of the TSC21x. Let’s illustrate with a simple example. In battery application a current in the range of 1 A to 10 A must be measured. A TSC213 with a gain of 50 is chosen. DS13237 - Rev 6 page 15/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Input offset voltage drift overtemperature Even if the TSC213 is a zero-drift current sensor allowing small shunt use, at first order the input offset voltage (Vio) and the input bias current (Iib) should be put in with regards to the differential voltage in the shunt resistance. Figure 34 shows the trade-off between the accuracy at minimum current and power dissipation. Figure 34. Shunt resistor value trade-off (TSC213) 14 Vcc = 5 V, Vicm = 12 V 1.2 Shunt resistor vs input error at minimum current (1 A) Input error (%) 10 8 0.8 6 Shunt resistor vs power dissipation at maximum current (10 A) 4 0.4 Power dissipationn (W) 12 2 0 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 Shunt resistor value (mW) Increasing the shunt resistor values improves current accuracy, but also increases power dissipation! • If power dissipation in the shunt is the key point, RSense should be chosen as Rsense ≤ Pmax Imax² and then chose the right TSC21x gain products. For example, for high current to sense, it is better to use the TSC212 offering a gain of 1000, allowing to use a smaller shunt and so limited power losses. But accuracy can be lower. • 6.5 Or choose the TSC21x gain product available on the shelf, and then size the shunt resistor value accordingly. Input offset voltage drift overtemperature The maximum input offset voltage drift overtemperature is defined as the offset variation related to the offset value measured at 25 °C. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift overtemperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift overtemperature is computed using equation 2: ΔVio Vio T − Vio 25°C ΔT = max T − 25°C (2) where T = - 40 °C and 125 °C The TSC21x datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a Cpk (process capability index) greater than 1.3. 6.6 Error calculation The principal source of error as input offset voltage, gain error, common mode rejection ration, are described separately in the electrical characteristics. This section summarizes the most important error to take into account during a design phase. • Input offset voltage error In a precision domain most of the time the input offset can be a major influence in the output error. It is so important to take it into account and also the derivation in temperature as depicted by equation 3: DS13237 - Rev 6 page 16/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Error calculation Vio Error = ± Vio ± Dvio/Dt *Gain (3) The TSC21x series have a zero drift architecture allowing to present very small input offset and also an extremely low variation in temperature. • Gain error and shunt resistance accuracy Gain error = Gain 1 + εgain (4) Rsense error = Gain 1 + εRsense (5) where εgain is the gain error 1% max. for the TSC21x. Where εRsense    is the shunt resistance error. Shunt resistors from 5 mΩ to 100 mΩ are available with 1% accuracy or better. • CMR error In the electrical characteristics CMR is specified at one input common mode voltage. So in order to take into consideration the variation of the input voltage offset depending on the Vicm, the calculus must be done till this known point. Vicm = 12 V is the reference point. So the error on Vout due to a common mode voltage variation can be written as in equation 6: • − 12V *Gain CMR error = ± Vicm CMR Noise (6) One of the other advantages of the zero-drift architecture, is to reject the low frequency noise over the bandwidth, and allow to have a white noise on all the bandwidth of the current sensing. This is a real added value for the precision measurement especially in DC environment. Figure 20 express the noise referred to the input of the TSC210. The TSC213 has white noise density of 38 nV/√Hz, on its whole bandwidth. The RMS value of the output noise of the TSC213 is the integration of the spectral noise over the bandwidth of interest and can be expressed as equation 7: enRMS = • Total output voltage 100000 . π 2 38 . 10−9 2 df *Gain ∫ 0.1 (7) The maximum total error that might happen on the output of the device in worst case condition can be described as the sum of the different source described just above. The total output voltage can be written as equation (8). Vout = G 1 + εG + dG * ∆ T . Rsℎunt  1 + εsℎunt . Isense + Vio + dVio * ∆ T + dT dT Vicm − 12V + noise CMRR (8) Note that the input bias currents are not considered in this section, as it has been already integrated in the Vsense. Figure 35 below depicts the current flowing from the source to the load when the input common mode voltage is higher than 2.5 V. DS13237 - Rev 6 page 17/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Error calculation Figure 35. Input current Vicm Isource Shunt lib+ lib- + - Load Iload Gnd From a calculation approach when working with a Vicm over 2.5 V, if Isource is considered to be known rather than the Iload, in this case the input bias current should be taken into consideration. Figure 35 express also the fact that the TSC21x cannot measure current in the same order than input bias current (several hundreds of µA). • Example Let’s take an example to get a better understanding of the maximum total error that can happen on the output of the TSC213. Use case: - Vcc = 5 V - Vicm = 24 V - Vocm = 2.5 V - Temperature = 25 °C - Iload = 5 A - Shunt 5 mΩ with 1% accuracy Theoretically the expected output voltage should be Vout = Rshunt * Iload * 50 + Vref = 3.75 V. From the above equations let’s detail all the error terms by using the maximum value of the electrical characteristic (when available), in order to express as much as possible, the worst case condition. The % error on output of the following table is expressed in reference to Vout – Vref, so in this typical example: 1.25 V. Table 6. Gain error Error source Calculus Output voltage error % error on output Gain error 50*5 . 10−3*5*1% 12.5 mV 1% 5 mV 0.4% 6 mV 0.5% 0.75 mVRMS 0.2% Vio error CMRR error Noise Total 50*100µV 12V 50* 24V − 100 10 20 50* 38nV 100kHz* π 2 − 0.1Hz Hz 18.1 mV +0.75 mVRMS 2.1% 1. The percentage is based on voltage peak value and is 3 times RMS value. DS13237 - Rev 6 page 18/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Stability So the maximum output voltage in worst case condition at ambient temperature is 3.768 V + 0.75 mVRMS instead of 3.75 V expected. This represents an error on the current reading of about 2.1%. 1% more must be added due to the shunt accuracy. It is important to note that this calculus has been done by using all the maximum values and all the error terms have been added to each other, meaning that the chance of getting 2.1% precision in the above use case is extremely low and on the whole population, the error is considerably smaller. 6.7 Stability • Driving switched capacitive loads Some ADC get their signal thanks to a sample and hold capacitor. If before a sampling this capacitance is fully discharged, a fast current load can appear on the output of the TSC21x during the sampling phase. The scope probe below in Figure 36 shows the output voltage of the TSC213 excited through a 40 pF capacitor with a 3.3 Vpp signal at 5 kHz to simulate the sample and hold circuit of an ADC. Figure 36. Capacitive load response at Vcc = 3.3 V 8 800 7 700 6 600 5 500 400 Sample and hold 3 300 2 200 1 100 0 0 -1 -100 Vout -2 -200 -3 -300 -4 Vcc = 3.3 V, Vicm = 1.65 V, Vsense = 0Vpp T = 25 °C, 5 kHz square signal of 3.3 V amplitude injected in the output through 47 pF -5 -6 -7 -8 -40µ Vout (mV) Simulated Sample and Hold (V) 4 -20µ 0 20µ 40µ 60µ 80µ 100µ 120µ -400 -500 -600 -700 -800 140µ Time (s) The graph in Figure 36 shows the behavior of the output of the TSC213 under worst case condition, as for example, when there is an ADC channel change between two measurements. If a single channel is used, the change on the sample and hold capacitance is certainly very small, and so the recovery time is extremely low as described by Figure 37. DS13237 - Rev 6 page 19/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Stability Figure 37. Capacitive load response at Vcc = 3.3 V with a step of 100 mV 100 800 700 80 600 Sample and hold 500 60 300 20 Vout 0 200 100 0 -100 -20 -200 Vout (mV) Simulated Sample and Hold (mV) 400 40 -300 -40 -400 -60 Vcc = 3.3 V, Vicm = 1.65 V, Vsense = 0Vpp T = 25 °C, 5 kHz square signal of 100mV amplitude injected in the output through 47 pF -80 -500 -600 -700 -100 -40µ -20µ 0 20µ 40µ 60µ 80µ 100µ 120µ -800 140µ Time (s) The effect of the ADC sampling and hold can be easily smoothed thanks to an RC filter. As suggested in the schematic below in Figure 38. The capacitor of the external filter much be chosen much higher than the internal ADC capacitor, in order to easily absorb the sudden voltage variation on the output due to the sampling and hold of the ADC. And the resistance must be chosen according to the application speed of the system in order not to impact the whole application. The main advantage to using an RC filter is to have an anti-aliasing system. The ADC used must certainly have sample and hold conversion in accordance with the RC filter value, in order to let the output recover before sampling. Figure 38. RC filter when driving ADC Vcc 100nF Vref 10nF + Shunt TSC21x ADC Ct Load - Rs In Figure 39 below an Rs = 1.3 kΩ resistance and a Ct = 470 pF capacitance have been set. Given a low pass filter of 260 kHz and a response time of roughly 1.8 µs. In Figure 40 below an Rs = 1.3 kΩ resistance and a Ct = 470 pF capacitance have been set. A load resistance of 10 kΩ is added in parallel of the Ct capacitance DS13237 - Rev 6 page 20/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Stability Figure 39. Capacitive load response at Vcc = 3.3 V with 260 kHz RC filter Figure 40. Capacitive load response at Vcc = 3.3 V with 260 kHz RC filter and Rl = 10 kΩ Special care must be also taken on the value of the added external capacitor. Indeed, if this is chosen with an excessive value and the serial resistance with a too small value, there is a risk of instability on the output of the TSC213. • Driving large capacitive Cload Increasing the load capacitance produces gain peaking in the frequency response, with overshoot and ringing in the step response. Figure 41 shows the serial resistors that must be added to the output, to make a system stable. Figure 42 shows that the stability of the TSC213 can be improved when a load of 10k is added on the output in order to source a small current. Figure 41. Stability criteria with a serial resistor at Vcc = 5 V DS13237 - Rev 6 Figure 42. Stability criteria with a serial resistor and a Rload = 10 kΩ at Vcc = 5 V page 21/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Improving precision 6.8 Improving precision If the TSC21x series current sensing is used with an ADC, it can be interesting to sense the output and the reference voltage applied on the Ref pin in a differential way as depicted in Figure 43. There are least two benefits to realizing the measurement in this way. Firstly, in case of the output common voltage being fixed thanks to the ref pin, done only with a resistor divider, without any buffer, it can cancel the effect of this external impedance. And secondly, it cancels the imprecision of the voltage reference source as well, as it serves as reference also for the ADC. Figure 43. ADC in differential mode Vcc 100nF Vref + Shunt TSC21x ADC Ct Load - Rs 6.9 Power supply recommendation In order to decouple correctly the TSC21x, it is recommended to place a 100 nF bypass capacitor between Vcc and Gnd. This capacitor must be placed as close as possible of the supply pins. It is also important to take into consideration the Vref pin which is used to fix the output common mode voltage. Effectively this pin must be driven by a low impedance voltage source and can be decoupled thanks to a 10 nF bypass capacitor. Larger bypass capacitor added on Vcc pin and Vref pin should help to enhance CMRR and PSRR performance. 6.10 PCB layout recommendations Particular attention must be paid to the layout of the PCB tracks connected to the current sensing, load and power supply. It is good practice to use short and wide PCB traces to minimize voltage drops and parasitic inductance. When using shunt resistance lower than 1 Ω, it is important to use a 4-wire connection technique to sense the current as described in the schematic below. Effectively, this technique allows to separate pairs of current carrying and voltage-sensing electrodes to make more accurate measurements by eliminating the lead and contact resistance from the measurement. It is also important to treat the track connected to the input pin of the TSC21x as a differential pair; it must have the same length and width, and ideally be placed on the same PCB plane, and above all must be routed as far as possible from noisy source. As this track carries the input bias current, in a range of hundreds of µA, it can be designed small but always by taking care of their resistivity. Any via in these input tracks are non-recommended to avoid any parasitic resistance in this path. To minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used. A ground plane generally helps to reduce EMI, which is why it is generally recommended to use a multi-layer PCB and use the ground planes as a shield to protect the internal track. In this case, pay attention to separate the digital from the analog ground and avoid any ground loop. To further minimize EMI impact, it is important to reduce loop area or antenna. DS13237 - Rev 6 page 22/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 EMI rejection ration (EMIRR) Figure 44 suggests a possible routing for the TSC21x, in order to minimize as much as possible parasitic effect. Figure 44. Recommended layout 6.11 EMI rejection ration (EMIRR) The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of a current sensing device. An adverse effect that is common to many current sensings is a change in the offset voltage as a result of RF signal rectification. A first order internal low pass filter is included on the input of the TSC21x to minimize susceptibility to EMIRR. Figure 45 shows the EMIRR on pin IN+, Figure 46 shows the EMIRR on pin IN- of the TSC21x measured from 10 MHz up to 2.4 GHz. Figure 45. EMIRR on pin+ DS13237 - Rev 6 Figure 46. EMIRR on pin- page 23/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Filtering input stage 6.12 Filtering input stage When a current sensing works in a high frequency noisy environment, it is mandatory to correctly filter the input of the TSC21x device, avoiding any parasitic offset due to the high frequency spikes. Both common mode and differential mode paths must be filtered. The best scenario is to match the capacitance between them to avoid adding differential error on the input of the current sensing. Otherwise, it is important to combine a common mode filter and a differential mode filter to compensate the mismatch of the capacitance. (Refer to Application note AN4304). Figure 47. Input filtering Vcc Vicm 100nF Ccm Vref 10nF + Rs TSC21x Cdiff Rshunt - Rs Ccm The differential voltage error due to the mismatch of the Ccm capacitance can be written: Vdiff ≅ Vin . Ccm2 − Ccm1 Rs . ω3 . 2 . Cdiff . Ccm1 + Ccm12 (9) where ω3 is the input signal frequency. It is still possible to improve the filtering by increasing the differential capacitance value. The drawback is that the response time increases. The TSC21x current sensing family have some trimmed input resistance; any external resistance added in series produces mismatches leading to both gain and CMR errors, typically calculated as follows (Rin is the specified amplifier input resistance): Gain error % = 100 − 100 . RinRin + Rs CMR  dB = 20log . Rs . Rserror% . 2 Rin (10) (11) The internal resistance of the TSC210 is 5 kΩ. Assuming that an external resistor of 100 Ω, with a tolerance of 1%, is used for filtering, the common mode rejection ratio due to these external components is 68 dB. There is a direct impact on the whole CMR as the TSC210 has a minimum CMR of 105 dB. The fact that Rs is quite big adds 2%. to the gain error. Therefore, care must be taken when introducing input filters. The only way to control this additional gain error is to ensure that the input series resistor, Rs, is small compared to Rin. Using a filter resistor that is less than 10 Ω is strongly recommended. This ensures that the high original accuracy of the TSC21x is maintained. Other parameters such as process variation or the temperature coefficient of the resistances must also be taken into consideration as possible error factors of current measurement. The calculation of total error due to external resistances is detailed in the application note AN4369. DS13237 - Rev 6 page 24/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 AMR limitation 6.13 AMR limitation In case of important differential input voltage, a high current above the maximum Iin = 5 mA specified in the AMR table may appear on the input pins. As shown in Figure 48, for example, when using the TSC212 current sensing device, a differential input voltage generates a current thru the input pins defined by: Iin = Vdiff Rin/ / R1 + R2 (12) If Vdiff = 26 V, the current Iin can rise, up to 23.4 mA Iin = 26V = 23.4mA 1.1kΩ (13) Figure 48. TSC212 with input differential voltage VCC 1MΩ R3 Iin - R1 1kΩ Vdiff Vin+ 2.5kΩ Rin OUT + R2 1kΩ R4 1MΩ TSC212 VREF Therefore, to avoid silicon damage, the input current must be limited to 5 mA. The differential input voltages should be limited to: • Vdiff = +/- 10 V for the TSC210 • Vdiff = +/- 7.7 V for the TSC211 • Vdiff = +/- 5.6 V for the TSC212 • Vdiff = +/- 11.8 V for the TSC213 • Vdiff = +/- 11.1 V for the TSC214 • Vdiff = +/- 11.4 V for the TSC215 To match this requirement a serial resistance can be used, but precision would be affected, see Section 6.12 Filtering input stage. Alternative methods can be the use of Zener diode or even application restriction. DS13237 - Rev 6 page 25/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Application example 6.14 Application example Power supply monitoring and OCP function. The TSC21x is used to sense the current into the load, and thus in both directions, in a very accurate way. Figure 49. Power supply monitoring and OCP function Rshunt power supply load R Vcc 100nF Vcc Vref Current sensing 10nF TSC21x Over current protection + Vcc Vcc STM32 + Ref - TS3021 Comparator HCF4013YM013TR D-latch Microcontroller When a short-circuit or overcurrent occurs, the application must be switched off as quickly as possible. And moreover, after such event, the application must not restart by itself and must stay switched off until a manual reload is applied. The TS3021 is a high speed comparator, which combined with D flip-flop HCF4013, is used to realize a latch function in case of an overcurrent event. In case of overcurrent, the output of the current sensing rises above the Ref voltage and so the output of the comparator changes from a low state to a high state. This information is directly latched because of the D flip-flop HCF4013. And after such an event, the output of the HCF4013 (Q1) changes from high state to a low state. The (Q1) is also supervised by a GPIO of the MCU, which can be informed in case of an overcurrent event. To restart the application and un-latch the D flip-flop, a clock signal must be applied on pin CLOCK1 of the HCF4013. A first approach calculation by considering a Vcc voltage at 3.3 V. The current sensing TSC213 has a slew rate of 0.85 V/µs. After an overcurrent event, its output is saturated and may rise up to its maximum output voltage, here 3.3 V. If we consider the worst case the output of the TSC213 is close to 0 V, the current sensing would need 3.9 µs to pass from 0 V to 3.3 V, after the overcurrent event. The comparator TS3021 is a high speed comparator with a propagation delay TPLH of 75 ns max. to change its state from low to high. The D flip-flop has a propagation delay TPHL of 400 ns to change its state from high to low. So after an overcurrent, the system takes, in worst condition, less than 4.4 µs to switch off the power (extra margin should be taken considering that the propagation delay of the comparator depends on the overdrive). DS13237 - Rev 6 page 26/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Package information 7 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 7.1 SC70-6 package information Figure 50. SC70-6 package outline Table 7. SC70-6 mechanical data Symbol Inches(1) Milimeters Min. Typ. Max. Min. Typ. Max. A 0.80 1.10 0.037 0.041 A1 0 0.10 0.000 0.004 A2 0.80 1.00 0.035 0.039 b 0.15 0.30 0.008 0.010 c 0.10 0.18 0.004 0.004 D 1.80 2.20 0.078 0.086 E 1.15 1.35 0.050 0.052 0.025 0.026 e 0.65 HE 1.8 2.4 0.083 0.090 L 0.10 0.40 0.013 0.015 Q1 0.10 0.40 0.011 0.013 1. Values in inches are converted from mm and rounded to 4 decimal digits. DS13237 - Rev 6 page 27/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 SC70-6 package information Figure 51. SC70-6 recommended footprint DS13237 - Rev 6 page 28/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 QFN10 package information 7.2 QFN10 package information Figure 52. QFN10 package outline DS13237 - Rev 6 page 29/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 QFN10 package information Figure 53. QFN10 detail A package outline Table 8. QFN10 mechanical data Symbol mm Min. Typ. Max. A 0.70 0.75 0.80 A1 0.0 A3 0.203REF b 0.15 0.20 0.25 D 1.35 1.40 1.45 e DS13237 - Rev 6 0.05 0.40 BSC E 1.75 1.80 1.85 L1 0.10 0.20 0.30 L2 0.25 0.35 0.45 L3 0.10 0.20 0.30 page 30/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 QFN10 package information Figure 54. QFN10 recommended footprint DS13237 - Rev 6 page 31/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Ordering information 8 Ordering information Table 9. Ordering information Order code Gain (V/V) Temperature range TSC210ICT TSC210IYCT(1) TSC210IQT TSC212IQT -40°C to 125°C TSC215IYQT(1) O12 O18 O12 Tape and reel SC70-6 50 QFN10 SC70-6 100 QFN10 TSC215ICT TSC215IQT O17 QFN10 TSC214IYQT(1) TSC215IYCT(1) O11 1000 TSC214ICT TSC214IQT O17 SC70-6 TSC213IYQT(1) TSC214IYCT(1) O11 QFN10 TSC213ICT TSC213IQT O16 500 TSC212IYQT(1) TSC213IYCT(1) O10 SC70-6 TSC212ICT TSC212IYCT(1) O16 QFN10 TSC211IYQT(1) SC70-6 75 QFN10 Marking O10 200 TSC211ICT TSC211IQT Packing SC70-6 TSC210IYQT(1) TSC211IYCT(1) Package O18 O13 O19 O13 O19 O14 O1A O14 O1A O15 O1B O15 O1B 1. Qualified and characterized according to the AEC Q100 and Q003 or equivalent, advanced screening according to the AEC Q001 and Q002 or equivalent. DS13237 - Rev 6 page 32/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Revision history Table 10. Document revision history Date Version Changes 13-Feb-2020 1 Initial release. 27-Feb-2020 2 Update features in cover page and Section 4 Electrical characteristics. Added the part numbers: TSC211, TSC214 and TSC215. 24-Nov-2020 3 Updated cover page. Updated Table 2. Resistors and gain values, Section 4 Electrical characteristics and Section 7 Ordering information. 29-Mar-2021 4 02-Aug-2021 5 Updated Table 3. Absolute maximum ratings and Section 4 Electrical characteristics. Updated Figure 7 and Figure 20. Added new Section 6 Application information. Updated Figure 52. QFN10 package outline 06-Sep-02 6 Updated Figure 53. QFN10 detail A package outline Updated Table 8. QFN10 mechanical data DS13237 - Rev 6 page 33/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 Contents Contents 1 Pin connections and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 3 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 7 8 6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.2 Theory of operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.3 Unidirectionnal / bidirectionnal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.4 RSENSE selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.5 Input offset voltage drift overtemperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.6 Error calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.7 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.8 Improving precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.9 Power supply recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.10 PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.11 EMI rejection ration (EMIRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.12 Filtering input stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.13 AMR limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.14 Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 7.1 SC70-6 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.2 QFN10 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 DS13237 - Rev 6 page 34/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Resistors and gain values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Electrical characteristics, T = 25 °C, VSENSE = VIN+- VIN- (unless otherwise specified), TSC210, TSC213, TSC214, TSC215: VCC= 5 V, VIN+=12 V, VREF= VCC/2 (unless otherwise specified), TSC211, TSC212: VCC = 12 V, VIN+ = 12 V, VREF = VCC/2 ( unless otherwise specified). . . . . . . . . . . . . . . . . . . . . . . . . . 5 Gain error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SC70-6 mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 QFN10 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DS13237 - Rev 6 page 35/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. DS13237 - Rev 6 Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input offset voltage production distribution . . . . . . . . . . . . . . . . . . . . . . . . . . Input offset voltage vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Common-mode rejection ratio production distribution. . . . . . . . . . . . . . . . . . . Common mode rejection ratio vs. temperature . . . . . . . . . . . . . . . . . . . . . . . Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply rejection ratio vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . Common mode rejection ratio vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . Positive output voltage swing vs. output current VCC = 2.7 V . . . . . . . . . . . . . Negative output voltage swing vs. output current VCC = 2.7 V . . . . . . . . . . . . . Positive output voltage swing vs. output current VCC = 5 V . . . . . . . . . . . . . . . Negative output voltage swing vs. output current VCC = 5 V . . . . . . . . . . . . . . Positive output voltage swing vs. output current VCC = 26 V . . . . . . . . . . . . . . Negative output voltage swing vs. output current VCC = 26 V . . . . . . . . . . . . . Input bias current vs. input common mode voltage with supply voltage = 5 V . . Input bias current vs. input common mode voltage with supply voltage = 0 V . . Input bias current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quiescent current vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input referred noise vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1 Hz to 10 Hz voltage noise (referred to input) . . . . . . . . . . . . . . . . . . . . . . Step response (10-mVpp input step) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Common mode voltage transient response. . . . . . . . . . . . . . . . . . . . . . . . . . Inverting differential input overloaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non inverting differential input overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . Start-up response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brownout recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply when Vicm > 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input bias current vs. common mode voltage Vcc = 5 V . . . . . . . . . . . . . . . . . Vref powered by an external voltage source with a TSC210 . . . . . . . . . . . . . . Output reference to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output reference to Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shunt resistor value trade-off (TSC213) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacitive load response at Vcc = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacitive load response at Vcc = 3.3 V with a step of 100 mV . . . . . . . . . . . . RC filter when driving ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacitive load response at Vcc = 3.3 V with 260 kHz RC filter . . . . . . . . . . . . Capacitive load response at Vcc = 3.3 V with 260 kHz RC filter and Rl = 10 kΩ . Stability criteria with a serial resistor at Vcc = 5 V. . . . . . . . . . . . . . . . . . . . . . Stability criteria with a serial resistor and a Rload = 10 kΩ at Vcc = 5 V . . . . . . . ADC in differential mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMIRR on pin+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMIRR on pin- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSC212 with input differential voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply monitoring and OCP function . . . . . . . . . . . . . . . . . . . . . . . . . SC70-6 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SC70-6 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 . 7 . 7 . 7 . 7 . 8 . 8 . 8 . 8 . 8 . 8 . 9 . 9 . 9 . 9 . 9 . 9 10 10 10 10 10 10 11 11 11 12 13 13 14 14 15 16 18 19 20 20 21 21 21 21 22 23 23 23 24 25 26 27 28 page 36/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 List of figures Figure 52. Figure 53. Figure 54. DS13237 - Rev 6 QFN10 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 QFN10 detail A package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 QFN10 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 page 37/38 TSC210, TSC211, TSC212, TSC213, TSC214, TSC215 IMPORTANT NOTICE – READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2022 STMicroelectronics – All rights reserved DS13237 - Rev 6 page 38/38
TSC214ICT 价格&库存

很抱歉,暂时无法提供与“TSC214ICT”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TSC214ICT
  •  国内价格
  • 1+13.07880
  • 10+12.81960
  • 30+12.63600

库存:0