TSH300
Ultra Low-Noise High-Speed Operational Amplifier
■
Structure: VFA
■
200 MHz bandwidth
■
Input noise: 0.65 nV/√Hz
■
Stable for gains > 5
■
Slew rate: 230 V/µs
■
Specified on 100Ω load
■
Tested on 5 V power supply
OUT 1
■
Single or dual supply operation
-VCC 2
■
Minimum and maximum limits are tested in full
production
Pin Connections (top view)
5 +VCC
+-
+IN 3
4 -IN
SOT23-5
Description
The TSH300 is a voltage feedback amplifier
featuring ultra-low input voltage and current noise.
This feature, associated with a large bandwidth,
large slew rate and a good linearity, makes the
TSH300 a good choice for high-speed data
acquisition systems where sensitivity and signal
integrity are the main priorities.
The TSH300 is a single operator available in SO8
and the tiny SOT23-5L plastic package, saving
board space as well as providing excellent
thermal performances.
NC 1
Applications
■
■
■
■
■
High speed data acquisition systems
Probe equipment
Communication & video test equipment
Medical instrumentation
ADC drivers
8 NC
-IN 2
_
7 +VCC
+IN 3
+
6
5 NC
-VCC 4
SO8
Order Codes
Part Number
Temperature Range
TSH300ILT
TSH300ID
TSH300IDT
September 2005
-40°C to +85°C
Package
Packing
Marking
SOT23-5L
Tape & Reel
K308
SO-8
Tube
TSH300I
SO-8
Tape & Reel
TSH300I
Rev. 2
1/18
www.st.com
18
Absolute Maximum Ratings
1
TSH300
Absolute Maximum Ratings
Table 1.
Key parameters and their absolute maximum ratings
Symbol
Parameter
Value
Unit
6
V
VCC
Supply Voltage (1)
Vid
Differential Input Voltage(2)
+/-0.5
V
Vin
Input Voltage Range(3)
+/-2.5
V
Toper
Operating Free Air Temperature Range
-40 to +85
°C
Tstg
Storage Temperature
-65 to +150
°C
Maximum Junction Temperature
150
°C
R thja
Thermal Resistance Junction to Ambient
SOT23-5L
SO8
250
150
°C/W
R thjc
Thermal Resistance Junction to Case
SOT23-5L
SO8
80
28
°C/W
Pmax
Maximum Power Dissipation(4) (@Ta=25°C) for Tj=150°C
SOT23-5L
SO8
500
830
mW
1
kV
MM: Machine Model (6) (all packages)
150
V
CDM: Charged Device Model (SO8)
1.5
kV
Latch-up Immunity
200
mA
Tj
HBM: Human Body Model (5) (all packages)
ESD
1. All voltage values are measured with respect to the ground pin.
2. Differential voltage is between the non-inverting input terminal and the inverting input terminal.
3. The magnitude of input and output voltage must never exceed VCC +0.3V.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuits on amplifiers.
5. Human body model, 100pF discharged through a 1.5kΩ resistor into Pmin of device.
6. This is a minimum value. Machine model ESD, a 200pF cap is charged to the specified voltage, then
discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device.
Table 2.
Operating conditions
Symbol
Parameter
VCC
Supply Voltage (1)
Vicm
Common Mode Input Voltage
1. Tested in full production at 5V (±2.5V) supply voltage.
2/18
Value
Unit
4.5 to 5.5
V
-1.5 to +1.6
V
TSH300
2
Electrical Characteristics
Electrical Characteristics
Table 3.
Symbol
Electrical characteristics for VCC = ±2.5V, Tamb = 25°C (unless otherwise specified)
Parameter
Test Condition
Min.
Typ.
Max.
-1.8
0.5
1.8
Unit
DC performance
Vio
Input Offset Voltage
Offset Voltage between both inputs
∆Vio
Tamb
Tmin. < Tamb < Tmax.
0.5
Vio drift vs. Temperature
Tmin. < Tamb < Tmax.
-3.8
Iib+
Non Inverting Input Bias Current
DC current necessary to bias the input +
Tamb
30
Tmin. < Tamb < Tmax.
33
Iib-
Inverting Input Bias Current
DC current necessary to bias the input -
Tamb
-46
Tmin. < Tamb < Tmax.
∆Vic = ±1V
60
88
SVR
Supply Voltage Rejection Ratio
20 log (∆Vcc/∆Vio)
Tmin. < Tamb < Tmax.
74
PSRR
Power Supply Rejection Ratio
20 log (∆Vcc/∆Vout)
Gain = +5, ∆Vcc=±100mV
at 1kHz
76
Positive Supply Current
DC consumption with no input signal
No load
Tmin. < Tamb < Tmax.
dB
83
∆Vcc= 3.5V to 5V
70
77
15
Tmin. < Tamb < Tmax.
µA
µA
-34
Common Mode Rejection Ratio
20 log (∆Vic/∆Vio)
ICC
µV/°C
46
-30
CMR
mV
dB
dB
19.5
15.3
mA
Dynamic performance and output characteristics
AVD
Bw
Open Loop Gain
Output Voltage/Input Voltage Gain in
open loop of a VFA.
RL = 100Ω,Vout = ±1V
Tmin. < Tamb < Tmax.
Bandwidth
Frequency where the gain is 3dB below
the DC gain
Small Signal V out=20mVp-p
RL = 100Ω
Gain = +5
Gain = +20
Gain Flatness @ 0.1dB
Band of frequency where the gain
variation does not exceed 0.1dB
Small Signal V out=20mVp-p
Gain = +5
SR
Slew Rate
Vout = 2Vp-p, Gain = +20,
Maximum output speed of sweep in large
RL = 100Ω
signal
VOH
High Level Output Voltage
VOL
Low Level Output Voltage
Iout
RL = 100Ω
30
67
dB
66
dB
200
43
MHz
160
160
1.39
230
V/µs
1.45
V
Tmin. < Tamb < Tmax.
1.46
RL = 100Ω
-1.45
Tmin. < Tamb < Tmax.
-1.46
Output to GND
Isink
Short-circuit output current entering op-amp. Tmin. < Tamb < Tmax.
Isource
Output current coming out of the op-amp.
65
44
-1.39
V
77
78
Output to GND
-82
Tmin. < Tamb < Tmax.
-78
-44
mA
3/18
Electrical Characteristics
Table 3.
Symbol
TSH300
Electrical characteristics for VCC = ±2.5V, Tamb = 25°C (unless otherwise specified)
Parameter
Test Condition
Min.
Typ.
Max.
Unit
Noise and distortion
eN
Equivalent Input Noise Voltage
see application note on page 13
F = 100kHz
0.65
0.77(1) nV/√Hz
iN
Equivalent Input Noise Current (+)
see application note on page 13
F = 100kHz
3.3
5.5(1)
Spurious Free Dynamic Range
The highest harmonic of the output
spectrum when injecting a filtered sine
wave
Vout = 2Vp-p, Gain = +5,
RL = 100Ω, F = 10MHz
55
SFDR
1. This parameter is guaranteed by design and evaluated using corner lots. This value is not tested in full production.
4/18
pA/√Hz
dBc
Electrical Characteristics
Figure 1.
TSH300
Frequency response
G=+5, SO8
Figure 2.
20
25
15
20
Gain (dB)
Gain (dB)
10
5
0
Vcc=+5V
SO8
Gain=+5 (Rfb=200Ω /Rg=50Ω )
Vin=64mVp-p
Load=100Ω
-5
100k
1M
10M
15
10
5
100M
Vcc=+5V
SO8
Gain=+7.8 (Rfb=680Ω /Rg=100Ω )
Vin=64mVp-p
Load=100Ω
0
100k
1G
Frequency response
G=+7.8, SO8
1M
Frequency (Hz)
Frequency response
G=+10.2, SO8
Figure 4.
25
30
20
25
15
20
Gain (dB)
Gain (dB)
Figure 3.
10
5
Vcc=+5V
SO8
Gain=+10.1 (Rfb=910Ω /Rg=100Ω )
Vin=64mVp-p
Load=100Ω
0
100k
1M
10M
10
100M
1M
15
10
10
Gain (dB)
Gain (dB)
Figure 6.
15
5
Vcc=+5V
SO8
Gain= -5 (Rfb=270Ω //1pF, Rg=43Ω )
Vin=64mVp-p
Load=100Ω
10M
Frequency (Hz)
5/18
10M
1G
100M
1G
Frequency (Hz)
Frequency response
G=-5, SO8
1M
100M
Vcc=+5V
SO8
Gain=+19.9 (Rfb=510Ω /Rg=27Ω )
Vin=64mVp-p
Load=100Ω
5
100k
1G
20
-5
100k
1G
15
20
0
100M
Frequency response
G=+19.9, SO8
Frequency (Hz)
Figure 5.
10M
Frequency (Hz)
5
0
100M
1G
Frequency response
G=-7.8, SO8
-5
100k
Vcc=+5V
SO8
Gain= -7.8 (Rfb=390Ω //1pF, Rg=43Ω )
Vin=64mVp-p
Load=100Ω
1M
10M
Frequency (Hz)
Electrical Characteristics
Frequency response
G=-10.2, SO8
Figure 8.
30
30
25
25
20
20
Gain (dB)
Gain (dB)
Figure 7.
TSH300
15
Vcc=+5V
SO8
Gain= -10.2 (Rfb=510Ω//1pF, Rg=43Ω)
Vin=64mVp-p
Load=100Ω
10
5
100k
1M
10M
100M
15
10
5
100k
1G
Frequency response
G=-19.9, SO8
Vcc=+5V
SO8
Gain= -20 (Rfb=1k Ω //1pF, Rg=47Ω )
Vin=64mVp-p
Load=100Ω
1M
Frequency (Hz)
Frequency response
G=+5, SOT23-5L
20
20
15
15
10
10
5
0
-5
100k
Vcc=+5V
SOT23-5
Gain=+5 (Rfb=200Ω/Rg=50Ω)
Vin=64mVp-p
Load=100Ω
1M
10M
0
100M
-5
100k
1G
1M
20
25
Gain (dB)
Gain (dB)
30
15
10
Vcc=+5V
SOT23-5
Gain=+10.1 (Rfb=910Ω /Rg=100Ω )
Vin=64mVp-p
Load=100Ω
10M
Frequency (Hz)
6/18
10M
1G
100M
1G
Figure 12. Frequency response
G=+19.9, SOT23-5L
25
1M
100M
Vcc=+5V
SOT23-5
Gain=+7.8 (Rfb=680Ω /Rg=100Ω)
Vin=64mVp-p
Load=100Ω
Frequency (Hz)
Figure 11. Frequency response
G=+10.1, SOT23-5L
0
100k
1G
5
Frequency (Hz)
5
100M
Figure 10. Frequency response
G=+7.8, SOT23-5L
Gain (dB)
Gain (dB)
Figure 9.
10M
Frequency (Hz)
20
15
10
100M
1G
5
100k
Vcc=+5V
SOT23-5
Gain=+19.9 (Rfb=510Ω/Rg=27Ω)
Vin=64mVp-p
Load=100Ω
1M
10M
Frequency (Hz)
Electrical Characteristics
TSH300
Figure 14. Gain flatness, G=+7.8, SO8
14,2
18,0
14,0
17,8
Gain (dB)
Gain (dB)
Figure 13. Gain flatness, G=+5, SO8
13,8
13,6
13,4
13,2
100k
Vcc=+5V
SO8
Gain=+5 (Rfb=200Ω /Rg=50Ω )
Vin=64mVp-p
Load=100Ω
1M
10M
17,6
17,4
17,2
100M
17,0
10k
1G
Vcc=+5V
SO8
Gain=+7.8 (Rfb=680Ω /Rg=100Ω )
Vin=64mVp-p
Load=100Ω
100k
20,4
26,2
20,2
26,0
20,0
19,6
10k
1M
100M
25,8
25,6
Vcc=+5V
SO8
Gain=+10.1 (Rfb=910Ω /Rg=100Ω )
Vin=64mVp-p
Load=100Ω
100k
10M
Figure 16. Gain flatness, G=+19.9, SO8
Gain (dB)
Gain (dB)
Figure 15. Gain flatness, G=+10.2, SO8
19,8
1M
Frequency (Hz)
Frequency (Hz)
25,4
10M
10k
100M
Vcc=+5V
SO8
Gain=+19.9 (Rfb=510Ω /Rg=27Ω )
Vin=64mVp-p
Load=100Ω
100k
1M
10M
100M
Frequency (Hz)
Frequency (Hz)
Figure 17. Gain flatness, G=+5, SOT23-5L
Figure 18. Gain flatness, G=+7.8, SOT23-5L
18,0
14,2
17,8
Gain (dB)
Gain (dB)
14,0
13,8
13,6
13,4
100k
Vcc=+5V
SOT23-5
Gain=+5 (Rfb=200Ω /Rg=50Ω )
Vin=64mVp-p
Load=100Ω
1M
10M
Frequency (Hz)
7/18
17,6
17,4
17,2
100M
1G
17,0
10k
Vcc=+5V
SOT23-5
Gain=+7.8 (Rfb=680Ω /Rg=100Ω )
Vin=64mVp-p
Load=100Ω
100k
1M
Frequency (Hz)
10M
100M
Electrical Characteristics
TSH300
Figure 19. Gain flatness, G=+10.1, SOT23-5L
Figure 20. Gain flatness, G=+19.9, SOT23-5L
20,4
26,2
26,0
Gain (dB)
Gain (dB)
20,2
20,0
19,8
19,6
Vcc=+5V
SOT23-5
Gain=+10.1 (Rfb=910Ω /Rg=100Ω )
Vin=64mVp-p
Load=100Ω
10k
100k
1M
25,8
25,6
25,4
10M
100M
Vcc=+5V
SOT23-5
Gain=+19.9 (Rfb=510Ω /Rg=27Ω )
Vin=64mVp-p
Load=100Ω
10k
100k
Frequency (Hz)
Figure 21. Input voltage noise
3,5
3,0
0,7
2,5
2,0
0,5
0,4
0,3
1,0
0,2
0,5
0,1
10k
100k
1M
10M
Typ.
0,6
1,5
1k
Max.
0,8
en (nV/VHz)
en (nV/VHz)
0,9
Gain=26dB
Rg=27Ω
Rfb=510Ω
non-inverting input in short-circuit
Vcc=+5V
4,0
0,0
100
Gain=26dB
Rg=27Ω
Rfb=510Ω
non-inverting input in short-circuit
Vcc=+5V
1k
Figure 23. Input current noise
100k
1M
10M
Figure 24. Input current noise (corner lot)
8
30
28
Gain=26dB
Rg=27Ω
Rfb=510Ω
1000Ω to GND on non-inverting input
Vcc=+5V
26
24
22
20
7
6
18
in (pA/VHz)
in (pA/VHz)
10k
Frequency (Hz)
Frequency (Hz)
16
14
12
10
8
Typ.
4
3
2
4
1
2
1k
10k
100k
Frequency (Hz)
1M
10M
Max.
5
6
8/18
100M
1,0
4,5
0
100
10M
Figure 22. Input voltage noise (corner lot)
5,0
0,0
100
1M
Frequency (Hz)
0
100
Gain=26dB
Rg=27Ω
Rfb=510 Ω
1000Ω to GND on non-inverting input
Vcc=+5V
1k
10k
100k
Frequency (Hz)
1M
10M
Electrical Characteristics
TSH300
Figure 26. Distortion vs. Vout, SOT23-5L
-20
-20
-25
-25
-30
-30
-35
-35
-40
-40
-45
-45
HD2 & HD3 (dBc)
HD2 & HD3 (dBc)
Figure 25. Distortion vs. Vout, SO8
-50
HD2
-55
-60
-65
-70
HD3
-75
Vcc=+5V
Gain=+5, Rfb=200 Ω
S08
F=10MHz
Load=100Ω
-80
-85
-90
-95
-50
-55
HD3
-60
-65
-70
-75
Vcc=+5V
Gain=+5, Rfb=200Ω
SOT23-5
F=10MHz
Load=100 Ω
HD2
-80
-85
-90
-95
-100
-100
0
1
2
3
0
4
1
2
3
4
Output Amplitude (Vp-p)
Output Amplitude (Vp-p)
Figure 27. Slew-rate
Figure 28. Reverse isolation vs. frequency
0
-20
1,5
Isolation (dB)
Output Response (V)
2,0
1,0
0,5
Vcc=+5V
SO8/SOT23-5
Gain=+5 (Rfb=200Ω )
Load=100 Ω
0,0
0
2
4
6
8
10
12
-40
-60
-80
Vcc=+5V
Small Signal
SO8/SOT23-5
Load=100Ω
-100
100k
14
1M
Time (ns)
10M
100M
1G
Frequency (Hz)
Figure 29. Quiescent current vs. Vcc
Figure 30. Vout max vs. Vcc
5
15
Icc(+)
4
Icc (mA)
5
Vcc=+5V
SO8/SOT23-5
Gain=+5 (Rfb=200Ω )
Input to mid-supply (+2.5V)
no load
0
-5
Vout max. (Vp-p)
10
3
2
1
Vcc=+5V
SO8/SOT23
Gain=+5 (Rfb=200Ω )
F=10MHz
Load=100 Ω
0
-10
-1
Icc(-)
-15
0,0
0,5
1,0
1,5
2,0
2,5
Vcc (V)
9/18
3,0
3,5
4,0
4,5
5,0
-2
0
1
2
3
Frequency (Hz)
4
5
Electrical Characteristics
TSH300
Figure 31. Vio vs. temperature
Figure 32. Ibias vs. temperature
40
1,0
0,9
30
Ib(+)
0,8
20
10
0,6
IBIAS (µA)
VIO (mV)
0,7
0,5
0,4
0
-10
0,3
-20
0,2
Ib(-)
-30
0,1
Vcc=+5V
Vcc=+5V
-40
0,0
-40
-20
0
20
40
60
80
100
-40
120
-20
0
20
40
60
80
100
120
80
100
120
80
100
120
Temperature (°C)
Temperature (°C)
Figure 33. Supply current vs. temperature
Figure 34. AVD vs. temperature
20
80
15
78
10
76
5
74
0
72
AVD (dB)
ICC (mA)
Icc(+)
-5
-10
70
68
Icc(-)
-15
-20
-25
66
64
Vcc=+5V
no Load
In+/In- to GND
62
-30
Vcc=+5V
60
-40
-20
0
20
40
60
80
100
120
-40
-20
0
Temperature (°C)
20
40
60
Temperature (°C)
Figure 35. Output rails vs. temperature
Figure 36. Iout vs. temperature
100
2
1
80
60
VOH
20
Iout (mA)
VOH & OL (V)
0
-1
Isource
40
VOL
-2
0
-20
-40
-60
Isink
-80
-3
-100
-4
-5
-40
-120
Vcc=+5V
Load=100Ω
-20
-140
0
20
40
Temperature (°C)
10/18
60
80
Vcc=+5V
Output: short-circuit
-160
-40
-20
0
20
40
60
Temperature (°C)
Electrical Characteristics
TSH300
Figure 38. Bandwidth vs. temperature
100
70
98
65
96
60
94
55
92
50
Bw (MHz)
CMR (dB)
Figure 37. CMR vs. temperature
90
88
45
40
86
35
84
30
82
25
Vcc=+5V
Vcc=+5V
Gain=+20
Load=100Ω
20
80
-40
-20
0
20
40
60
80
100
-40
120
-20
0
20
40
60
80
100
120
Temperature (°C)
Temperature (°C)
Figure 39. Slew-rate vs. temperature
Figure 40. Isink
280
90
80
70
60
SR+
240
Isink (mA)
Slew Rate (V/µs)
260
SR220
50
+2.5V
40
-1V
30
200
-20
V
- 2.5V
RG
Amplifier in open
loop without load
10
180
-40
Isink
_
20
Vcc=+5V
Gain=+20
Load=100 Ω
VOL
without load
+
0
20
40
60
80
100
0
-2,0
120
-1,5
-1,0
Temperature (°C)
-0,5
0,0
1,5
2,0
Vout (V)
Figure 41. SVR vs. temperature
Figure 42. Isource
90
0
85
-10
+2.5V
-20
Isource (mA)
SVR (dB)
80
75
70
65
60
without load
+1V
Isource
_
V
- 2.5V
RG
Amplifier in open
loop without load
-40
-50
-60
-70
55
-80
Vcc=+5V
50
-40
-20
0
20
40
60
Temperature (°C)
11/18
-30
V OH
+
80
100
120
-90
0,0
0,5
1,0
Vout (V)
Power Supply Considerations
3
TSH300
Power Supply Considerations
Correct power supply bypassing is very important for optimizing performance in high-frequency
ranges. Bypass capacitors should be placed as close as possible to the IC pins to improve
high-frequency bypassing. A capacitor greater than 1µF is necessary to minimize the distortion.
For better quality bypassing, a capacitor of 10nF can be added using the same implementation
conditions. Bypass capacitors must be incorporated for both the negative and the positive
supply.
Figure 43. Circuit for power supply bypassing
+VCC
10microF
+
10nF
+
-
10nF
10microF
+
-VCC
12/18
Evaluation Boards
4
TSH300
Evaluation Boards
An evaluation board kit optimized for high-speed operational amplifiers is available (order code:
KITHSEVAL/STDL). The kit includes the following evaluation boards, as well as a CD-ROM
containing datasheets, articles, application notes and a user manual:
●
SOT23_SINGLE_HF BOARD: Board for the evaluation of a single high-speed op-amp in
SOT23-5L package.
●
SO8_SINGLE_HF: Board for the evaluation of a single high-speed op-amp in SO8
package.
●
SO8_DUAL_HF: Board for the evaluation of a dual high-speed op-amp in SO8 package.
●
SO8_S_MULTI: Board for the evaluation of a single high-speed op-amp in SO8 package in
inverting and non-inverting configuration, dual and single supply.
●
SO14_TRIPLE: Board for the evaluation of a triple high-speed op-amp in SO14 package
with video application considerations.
Board material description:
●
2 layers
●
FR4 (ε r=4.6)
●
epoxy 1.6mm
●
copper thickness: 35µm
Figure 44. Evaluation kit for high-speed op-amps
13/18
Noise Measurements
5
TSH300
Noise Measurements
The noise model is shown in Figure 45, where:
●
eN: input voltage noise of the amplifier
●
iNn: negative input current noise of the amplifier
●
iNp: positive input current noise of the amplifier
Figure 45. Noise model
+
iN+
R3
output
HP3577
Input noise:
8nV/√Hz
_
N3
iN-
eN
R2
N2
R1
N1
The thermal noise of a resistance R is:
4kTR ∆ F
where ∆F is the specified bandwidth.
On a 1Hz bandwidth the thermal noise is reduced to
4kTR
where k is the Boltzmann's constant, equal to 1,374.10-23J/°K. T is the temperature (°K).
The output noise eNo is calculated using the Superposition Theorem. However eNo is not the
simple sum of all noise sources, but rather the square root of the sum of the square of each
noise source, as shown in Equation 1:
eNo =
eNo
14/18
2
2
2
2
2
2
2
V1 + V2 + V3 + V4 + V5 + V6
2
2
2
2
2
2
2
= eN × g + iNn × R2 + iNp × R3 × g
R2 2
-)
+ ( ------R1
(Equation 1)
2
× 4kTR1 + 4kTR2 + g × 4kTR3
(Equation 2)
Noise Measurements
TSH300
The input noise of the instrumentation must be extracted from the measured noise value. The
real output noise value of the driver is:
eNo =
2
2
( Measured ) – ( instrumentation )
(Equation 3)
The input noise is called the Equivalent Input Noise as it is not directly measured but is
evaluated from the measurement of the output divided by the closed loop gain (eNo/g).
After simplification of the fourth and the fifth term of Equation 2 we obtain:
eNo
2
2
2
2
2
2
2
2
= eN × g + iNn × R2 + iNp × R3 × g
+ g × 4kTR2 + g2 × 4kTR3
(Equation 4)
Measurement of the input voltage noise eN
If we assume a short-circuit on the non-inverting input (R3=0), from Equation 4 we can derive:
eNo =
2
2
2
2
eN × g + iNn × R2 + g × 4kTR2
(Equation 5)
In order to easily extract the value of eN, the resistance R2 will be chosen to be as low as
possible. In the other hand, the gain must be large enough:
R3=0, gain: g=100
Measurement of the negative input current noise iNn
To measure the negative input current noise iNn, we set R3=0 and use Equation 5. This time
the gain must be lower in order to decrease the thermal noise contribution:
R3=0, gain: g=10
Measurement of the positive input current noise iNp
To extract iNp from Equation 3, a resistance R3 is connected to the non-inverting input. The
value of R3 must be chosen in order to keep its thermal noise contribution as low as possible
against the iNp contribution:
R3=100Ω, gain: g=10
15/18
Package Mechanical Data
6
TSH300
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages.
These packages have a Lead-free second level interconnect. The category of second level
interconnect is marked on the package and on the inner box label, in compliance with JEDEC
Standard JESD97. The maximum ratings related to soldering conditions are also marked on
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com.
6.1
SOT23-5L package
SOT23-5L MECHANICAL DATA
mm.
mils
DIM.
MIN.
MAX.
MIN.
TYP.
MAX.
A
0.90
1.45
35.4
57.1
A1
0.00
0.15
0.0
5.9
A2
0.90
1.30
35.4
51.2
b
0.35
0.50
13.7
19.7
C
0.09
0.20
3.5
7.8
D
2.80
3.00
110.2
118.1
E
2.60
3.00
102.3
118.1
E1
1.50
1.75
59.0
68.8
e
0 .95
37.4
e1
1.9
74.8
L
16/18
TYP
0.35
0.55
13.7
21.6
Package Mechanical Data
6.2
TSH300
SO8 package
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
e
1.27
0.157
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
17/18
Revision History
7
TSH300
Revision History
Date
Revision
Description of Changes
Sept. 2005
1
Release of mature product datasheet
Sept. 2005
2
Update to ESD information in Table 1 on page 2.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
18/18