0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSH341ILT

TSH341ILT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SC-74A

  • 描述:

    IC AMP VIDEO SGL 300MHZ SOT23-5

  • 数据手册
  • 价格&库存
TSH341ILT 数据手册
TSH341 300MHz Single Supply Video Amplifier with Low In/Out Rail ■ ■ ■ ■ ■ ■ ■ ■ ■ Bandwidth: 300MHz Single supply operation down to 3V Low input & output rail Very low harmonic distortion Slew rate: 400V/µs Voltage Input noise: 7nV/√Hz Specified for 150Ω load and 100Ω load Tested on 5V power supply Data min. and max. are tested during production (Table 3) Pin Connections (top view) OUT 1 -VCC 2 +IN 3 SOT23-5 5 +VCC +4 -IN Description The TSH341 is a single supply operational amplifier featuring a large bandwidth of 300MHz at unity gain for only 9.8mA of quiescent current. An advantage of this circuit is its low input and output rail feature which is very close to GND in single supply. This rail is tested and guaranteed during production at 60mV (max.) from GND on a 150Ω load. This allows a good output swing which fits perfectly when driving a video signal on a 75Ω video line. Chapter 5 gives technical support when using the TSH341 as a driver for video DAC output on a video line. In particular, this chapter focuses on applying a video signal DC shift to avoid any clamping of the synchronization tip. The TSH341 is available in the tiny SOT23-5 and SO8 plastic packages. NC 1 -IN 2 +IN 3 -VCC 4 SO8 _ + 8 NC 7 +VCC 6 OUT 5 NC Applications ■ ■ ■ ■ High-end video systems High Definition TV (HDTV) Broadcast video Multimedia products Order Codes Part Number TSH341ILT TSH341ID TSH341IDT Temperature Range -40°C to +85°C Package SOT23-5 SO-8 Packaging Tape & Reel Tube Tape & Reel Marking K307 H341I H341I March 2005 Revision 2 1/13 TSH341 Absolute Maximum Ratings 1 Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol VCC Vid Vin Toper Tstd Tj Rthjc Supply voltage 1 2 Parameter Value 6 +/-0.5 -0.2 to +3 -40 to +85 -65 to +150 150 80 28 250 175 500 715 2 1.5 200 4 Unit V V V °C °C °C °C/W Differential Input Voltage 3 Input Voltage Range Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Case SOT23-5 SO8 Thermal Resistance Junction to Ambient Area SOT23-5 SO8 Maximum Power Dissipation (@Ta=25°C) for Tj=150°C SOT23-5 SO8 CDM: Charged Device Model HBM: Human Body Model MM: Machine Model Output Short Circuit Rthja °C/W Pmax. mW kV kV V ESD 1) 2) 3) 4) All voltage values, except differential voltage are with respect to network terminal. Differential voltage are non-inverting input terminal with respect to the inverting input terminal. The magnitude of input and output voltage must never exceed VCC +0.3V. An output current limitation protects the circuit from transient currents. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuit on amplifiers. Table 2. Operating conditions Symbol VCC Vicm 1) Parameter Power Supply Voltage Common Mode Input Voltage Value 3 to 5.5 -0.4 to 3 1 Unit V V Tested in full production at 0V/5V single power supply 2/13 Electrical Characteristics TSH341 2 Electrical Characteristics Table 3. VCC = +5V, Tamb = 25°C (unless otherwise specified) Symbol DC Performance Vio ∆Vio Iib AVD CMR SVR PSR RIN CIN ICC Input Offset Voltage Vio drift vs. Temperature Input Bias Current Open Loop Gain Common Mode Rejection Ratio 20 log (∆Vicm/∆Vio) Supply Voltage Rejection Ratio 20 log (∆Vcc/∆Vio) Power Supply Rejection Ratio 20 log (∆Vcc/∆Vout) Input Resistance Input Capacitance Total Supply Current No Load, Vicm=0.6V Tamb, Vicm=0.6V -40°C < Tamb < +85°C -40°C < Tamb < +85°C Tamb, Vicm=0.6V -40°C < Tamb < +85°C ∆VOUT=2V, RL=150Ω ∆Vicm = 2V -40°C < Tamb < +85°C ∆Vcc=4V to 5V, Vicm=0.6V -40°C < Tamb < +85°C ∆Vcc=200mVp-p, F=1MHz -60 70 -60 -15 -3 -5 -30 6 7.2 100 -85 -83 -85 -84 -77 8.2 3.5 9.8 12.7 16 15 mV µV/°C µA dB dB dB dB MΩ pF mA Parameter Test Condition Min. Typ. Max. Unit Dynamic Performance and Output Characteristics -3dB Bandwidth Small Signal VOUT=20mVp Vicm=0.6V, RL=150Ω Gain=+1 Gain=+2 Small Signal VOUT=20mVp Gain=+2, Vicm=0.6V, RL=150Ω Vicm=2V, VOUT = 2Vp-p, Gain=1, RL = 150Ω VOUT=2Vp-p, RL=150Ω, Gain=+2, RL = 150Ω RL = 150Ω Tamb -40°C < Tamb < +85°C 70 3.7 70 Bw Gain Flatness @ 0.1dB 90 300 150 65 MHz FPBW SR VOH VOL IOUT Full Power Bandwidth Slew Rate High Level Output Voltage Low Level Output Voltage Output Short Circuit Current 100 400 3.9 40 100 90 60 MHz V/µs V mV mA Noise and Distortion eN iN HD2 HD3 Equivalent Input Noise Voltage Equivalent Input Noise Current (+) 2nd Harmonic Distortion 3rd Harmonic Distortion F = 100kHz F = 100kHz VOUT= 2Vp-p, RL = 150Ω Gain=+2, F= 10MHz, VOUT= 2Vp-p, RL = 150Ω Gain=+2, F= 10MHz, 7 1.5 -57 -63 nV/√Hz pA/√Hz dBc dBc 3/13 TSH341 Figure 1. Frequency response 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 1M Electrical Characteristics Figure 4. Frequency response on capa-load 20 Gain=+4 Frequency Response (dB) C=47pF Riso=10Ω 10 C=10pF Riso=0 Gain (dB) Gain=+2 0 Gain=+1 C=22pF Riso=10Ω -10 Vcc=5V Load=100Ω or 150Ω SO8 and SOT23-5 10M 100M Vcc=5V Gain=+2 Load=Riso + C//1kΩ (to ground) -20 1M 10M C=0 or 10pF Riso=0 100M Frequency (Hz) Frequency (Hz) Figure 2. Gain flatness - SOT23-5L Figure 5. Gain flatness - SO8 6,4 6,2 6,0 5,8 6,4 Load=150Ω 6,2 6,0 5,8 Load=150Ω Gain (dB) Gain (dB) 5,6 5,4 5,2 5,0 4,8 4,6 1M 5,6 5,4 5,2 5,0 Load=100Ω Load=100Ω Vcc=5V Gain=+2 10M 100M 4,8 4,6 1M Vcc=5V 10M 100M Frequency (Hz) Frequency (Hz) Figure 3. Total input noise vs. frequency Figure 6. Positive and negative slew rate 3,0 non-inverting input in short-circuit Vcc=5V 2,5 Vcc=5V G=+2 Load=100Ω or 150Ω Input Noise (nV/VHz) 100 Output Response (V) SR+ 2,0 1,5 SR- 1,0 0,5 10 100 1k 10k 100k 1M 10M 0,0 -5ns -4ns -3ns -2ns -1ns 0s 1ns 2ns 3ns 4ns 5ns Frequency (Hz) Time 4/13 Electrical Characteristics Figure 7. Distortion on 100Ω load -20 -25 -30 -35 HD3 (30MHz) HD2 (30MHz) TSH341 Figure 10. Distortion on 150Ω load -10 -15 -20 -25 HD2 (30MHz) HD2 & HD3 (dBc) -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 0 1 2 3 4 HD3 (10MHz) HD2 (10MHz) HD2 & HD3 (dBc) -40 -30 -35 -40 -45 -50 -55 -60 -65 HD3 (30MHz) HD3 (10MHz) Vcc=5V Load=100Ω -70 -75 -80 0 1 2 HD2 (10MHz) 3 Vcc=5V Load=150Ω 4 Output Amplitude (Vp-p) Output Amplitude (Vp-p) Figure 8. Output lower rail vs. frequency 500 Figure 11. Output voltage swing vs. Vcc 5 Vcc=5V Load=100Ω or 150Ω 400 4 VOL (mV) 300 Vout max (Vp-p) 100k 1M 10M 100M 3 200 2 100 1 F=30MHz Load=100Ω or 150Ω 0 10k 0 3,00 3,25 3,50 3,75 4,00 4,25 4,50 4,75 5,00 Frequency (Hz) Vcc (V) Figure 9. Output voltage swing vs. frequency 5 Figure 12. Quiescent current vs. Vcc 20 no load 4 15 Vout max. (Vp-p) Icc (mA) Vcc=5V Gain=+2 Load=100Ω or Load=150Ω 10M 3 10 2 5 1 0 1M 0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 Frequency (Hz) Vcc (V) 5/13 TSH341 Figure 13. Isource 0 -10 -20 -30 +5V VOH without load Electrical Characteristics Figure 16. Reverse isolation vs. frequency 0 -20 Isource (mA) -40 +3V Isource V 0V -50 -60 -70 -80 -90 -100 -110 -120 0,0 0,5 1,0 Gain (dB) -40 -60 -80 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 -100 1M Small Signal Vcc=5V Load=100Ω 10M 100M 1G V (V) Frequency (Hz) Figure 14. Bandwidth vs. temperature 300 Figure 17. Ibias vs. temperature 11,0 10,5 250 10,0 Bw (MHz) IBIAS (µA) Vcc=5V Gain=+1 Load=150Ω 200 9,5 9,0 150 8,5 Vcc=5V Load=150Ω -20 0 20 40 60 80 100 -40 -20 0 20 40 60 80 8,0 -40 Temperature (°C) Temperature (°C) Figure 15. Input offset vs. temperature Figure 18. Supply current vs. temperature 12 0 11 -1 10 Vio (mV) -2 ICC (mA) 9 -3 -4 8 Vcc=5V Load=150Ω -5 -40 -20 0 20 40 60 80 7 -40 Vcc=5V no Load -20 0 20 40 60 80 Temperature (°C) Temperature (°C) 6/13 Electrical Characteristics Figure 19. Output lower rail vs. temperature 0,10 TSH341 Figure 21. Output higher rail vs. temperature 4,50 0,08 Vcc=5V Gain=+2 Load=150Ω 4,25 VOL (V) VOH (V) 0,06 4,00 0,04 3,75 0,02 Vcc=5V Gain=+2 Load=150Ω -20 0 20 40 60 80 3,50 -40 -20 0 20 40 60 80 0,00 -40 Temperature (°C) Temperature (°C) Figure 20. SVR vs. temperature 86,0 85,8 85,6 Figure 22. CMR vs. temperature 88 86 85,4 85,0 84,8 84,6 CMR (dB) SVR (dB) 85,2 84 82 84,4 84,2 84,0 -40 Vcc=5V -20 0 20 40 60 80 80 -40 Vcc=5V -20 0 20 40 60 80 Temperature (°C) Temperature (°C) 7/13 TSH341 Evaluation Boards 3 Evaluation Boards An evaluation board kit optimized for high speed operational amplifiers is available (order code: KITHSEVAL/STDL). The kit includes the following evaluation boards, as well as a CD-ROM containing datasheets, articles, application notes and a user manual: SOT23_SINGLE_HF BOARD: Board for the evaluation of a single high-speed op-amp in SOT23-5 package. SO8_SINGLE_HF: Board for the evaluation of a single high-speed op-amp in SO8 package. SO8_DUAL_HF: Board for the evaluation of a dual high-speed op-amp in SO8 package. SO8_S_MULTI: Board for the evaluation of a single high-speed op-amp in SO8 package in inverting and non-inverting configuration, dual and signle supply. SO14_TRIPLE: Board for the evaluation of a triple high-speed op-amp in SO14 package with video application considerations. Board material: 2 layers FR4 (εr=4.6) epoxy 1.6mm copper thickness: 35µm Figure 23: Evaluation kit for high speed op-amps 8/13 Power Supply Considerations TSH341 4 Power Supply Considerations Correct power supply bypassing is very important for optimizing performance in high-frequency ranges. Bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency bypassing. A capacitor greater than 10µF is necessary to minimize the distortion. For better quality bypassing, a capacitor of 10nF is added using the same implementation conditions. Bypass capacitors must be incorporated for both the negative and the positive supply. On the SO8_SINGLE_HF board, these capacitors are C8 and C6. Figure 24: Circuit for power supply bypassing +VCC + 10nF + +VCC TSH341 _ GND 10microF 9/13 TSH341 Using the TSH341 to Drive Video Signals 5 Using the TSH341 to Drive Video Signals Figure 25. Implementation of the video driver on output video DACs Volt Video Signal 2.250V Volt 250mV Reconstruction Filtering +5V + _ time Video Signal 1.125V 125mV time Video DAC 1Vpp LPF 75Ω 75Ω Cable 75Ω 2Vpp 1Vpp Rg Rfb VOL(50MHz) = 150mV (Figure 8) To drive the video signal properly, the output of the driver must be at least equal to 250mV (assuming Vio and VOL variations). 1st solution: Set the video DAC 0-IRE output level to 125mV. White Level 100 IRE Image Content Black Level 30 IRE 300mV 1Vp-p 150mV 0V Synchronization Tip 0 IRE 2nd solution: Implementation of a DC component in the input of the driver. Volt Video Signal 2.250V Volt 250mV 33uF Video DAC 1Vpp Reconstruction Filtering +5V + _ time Video Signal 1.125V 125mV time LPF 75Ω 75Ω Cable 1k 75Ω 2Vpp 1Vpp DC component =125mV Rg Rfb 10/13 Package Mechanical Data TSH341 6 Package Mechanical Data 6.1 SO-8 Package SO-8 MECHANICAL DATA DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157 8˚ (max.) 0.04 0016023/C 11/13 TSH341 6.2 SOT23-5L (5-pin) package Package Mechanical Data SOT23-5L MECHANICAL DATA mm. DIM. MIN. A A1 A2 b C D E E1 e e1 L 0.35 0.90 0.00 0.90 0.35 0.09 2.80 2.60 1.50 0 .95 1.9 0.55 13.7 TYP MAX. 1.45 0.15 1.30 0.50 0.20 3.00 3.00 1.75 MIN. 35.4 0.0 35.4 13.7 3.5 110.2 102.3 59.0 37.4 74.8 21.6 TYP. MAX. 57.1 5.9 51.2 19.7 7.8 118.1 118.1 68.8 mils 12/13 TSH341 7 Revision History Date 01 Jan. 2005 23 Mar. 2005 Revision 1 2 Description of Changes First release corresponding to Preliminary Data version of datasheet. Datasheet of mature, full-specification product Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 13/13
TSH341ILT 价格&库存

很抱歉,暂时无法提供与“TSH341ILT”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TSH341ILT
  •  国内价格 香港价格
  • 3000+1014.529273000+122.31250

库存:3000