0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSH82IDT

TSH82IDT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC8_150MIL

  • 描述:

    IC OPAMP GP 65MHZ RRO 8SO

  • 数据手册
  • 价格&库存
TSH82IDT 数据手册
TSH80, TSH81, TSH82, TSH84 Wide-band rail-to-rail operational amplifiers with standby function Datasheet - production data Applications • Video buffers • A/D converter drivers SO8 SOT23-5 • Hi-fi applications Description TSSOP8 TSSOP14 Features • Operating range from 4.5 to 12 V • 3 dB-bandwidth: 100 MHz • Slew rate 100 V/µs • Output current up to 55 mA • Input single supply voltage • Output rail-to-rail • Specified for 150 Ω loads • Low distortion, THD 0.1% • SOT23-5, SO8, and TSSOP packages The TSH8x series offers single, dual and quad operational amplifiers featuring high video performance with large bandwidth, low distortion and excellent supply voltage rejection. These amplifiers also feature large output voltage swings and a high output current capability to drive standard 150 Ω loads. Running at single or dual supply voltages ranging from 4.5 to 12 V, these amplifiers are tested at 5 V (±2.5 V) and 10 V (±5 V) supplies. The TSH81 device also features a standby mode, which provides the operational amplifier with a low power consumption and high output impedance. This function allows power saving or signal switching/multiplexing for high-speed and video applications. For board space and weight saving, the TSH8x series is proposed in SOT23-5, SO8, TSSOP8, and TSSOP14 plastic micropackages. • Automotive qualification July 2014 This is information on a product in full production. DocID009413 Rev 9 1/30 www.st.com 1 Contents TSH80, TSH81, TSH82, TSH84 Contents 1 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 6 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 Layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Video capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 Precautions on asymmetrical supply operation . . . . . . . . . . . . . . . . . 22 6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1 SOT23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2 SO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.3 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.4 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2/30 DocID009413 Rev 9 TSH80, TSH81, TSH82, TSH84 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical characteristics at VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25 °C (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics at VCC+ = +5 V, VCC- = -5 V, Vic = GND, Tamb = 25 °C (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Standby mode - VCC+, VCC-, Tamb = 25 °C (unless otherwise specified). . . . . . . . . . . . . . 12 TSH81 standby control pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Video results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 SO8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 TSSOP8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 TSSOP14 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DocID009413 Rev 9 3/30 List of figures TSH80, TSH81, TSH82, TSH84 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 16. Figure 14. Figure 15. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 31. Figure 29. Figure 30. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. 4/30 Pin connections for each package (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Closed loop gain and phase vs. frequency (gain = +2, VCC = ±2.5 V) . . . . . . . . . . . . . . . . 13 Overshoot vs. output capacitance (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Closed loop gain and phase vs. frequency (gain = -10, VCC = ±2.5 V) . . . . . . . . . . . . . . . 13 Closed loop gain and phase vs. frequency (gain = +11, VCC = ±2.5 V) . . . . . . . . . . . . . . . 13 Large signal measurement – positive slew rate (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . 13 Large signal measurement – negative slew rate (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . 13 Small signal measurement – rise time (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Small signal measurement – fall time (VCC = ±2.5 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Channel separation (crosstalk) vs. frequency schematic (VCC = ±2.5 V) . . . . . . . . . . . . . . 14 Channel separation (crosstalk) vs. frequency (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . 14 Equivalent input noise voltage (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Maximum output swing (VCC = ±2.5 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Group delay (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Standby mode - Ton, Toff (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Third order intermodulation (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Closed loop gain and phase vs. frequency (gain = +2, VCC = ±5 V) . . . . . . . . . . . . . . . . . 16 Overshoot vs. output capacitance (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Closed loop gain and phase vs. frequency (gain = -10, VCC = ±5 V) . . . . . . . . . . . . . . . . . 16 Closed loop gain and phase vs. frequency (gain = +11, VCC = ±5 V) . . . . . . . . . . . . . . . . 16 Large signal measurement - positive slew rate (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . 16 Large signal measurement - negative slew rate (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . 16 Small signal measurement - rise time (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Small signal measurement - fall time (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Channel separation (crosstalk) vs. frequency schematic (VCC = ±5 V) . . . . . . . . . . . . . . . 17 Channel separation (crosstalk) vs. frequency (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . 17 Equivalent input noise voltage (VCC = ±5 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Maximum output swing (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Group delay (VCC = ±5 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Standby mode - Ton, Toff (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Third order intermodulation (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 CCIR330 video line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Measurement on Rohde and Schwarz VSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Asymmetrical supply schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Use of the TSH8x in a gain = -1 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SOT23-5 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 SO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 TSSOP8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 TSSOP14 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DocID009413 Rev 9 TSH80, TSH81, TSH82, TSH84 1 Package pin connections Package pin connections Figure 1. Pin connections for each package (top view) Pin connections TSH80/SOT23-5 Pin connections TSH80/SO8 Pin connections TSH81 SO8/TSSOP8 Pin connections TSH82 SO8/TSSOP8 Pin connections TSH84 TSSOP14 DocID009413 Rev 9 5/30 Absolute maximum ratings and operating conditions 2 TSH80, TSH81, TSH82, TSH84 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol VCC Vid Vi Parameter Value Supply voltage(1) 14 (2) Differential input voltage ±2 (3) Input voltage V ±6 Toper Operating free air temperature range -40 to +85 Tstg Storage temperature -65 to +150 Tj Unit Maximum junction temperature °C 150 junction-to-case(4) Rthjc Thermal resistance SOT23-5 SO8 TSSOP8 TSSOP14 Rthja Thermal resistance junction-to-ambient area SOT23-5 SO8 TSSOP8 TSSOP14 250 157 130 110 ESD HBM: human body model(5) MM: machine model(6) CDM: charged device model(7) 2 0.2 1.5 80 28 37 32 °C/W kV 1. All voltage values, except differential voltage are with respect to the network ground terminal. 2. The differential voltage is the non inverting input terminal with respect to the inverting terminal. 3. The magnitude of input and output must never exceed VCC +0.3 V. 4. Short-circuits can cause excessive heating. 5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. 7. Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to ground through only one pin. This is done for all pins. Table 2. Operating conditions Symbol VCC VIC Standby (pin 8) 6/30 Parameter Value Supply voltage Common mode input voltage range Threshold on pin 8 for TSH81 DocID009413 Rev 9 Unit 4.5 to 12 - VCC to (VCC+ -1.1) (VCC-) to (VCC+) V TSH80, TSH81, TSH82, TSH84 3 Electrical characteristics Electrical characteristics Table 3. Electrical characteristics at VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25 °C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit 10 12 mV Input offset voltage Tamb = 25 °C Tmin < Tamb < Tmax 1.1 Input offset voltage drift vs. temperature Tmin < Tamb < Tmax 3 Iio Input offset current Tamb = 25 °C Tmin < Tamb < Tmax 0.1 3.5 5 Iib Input bias current Tamb = 25 °C Tmin < Tamb < Tmax 6 15 20 Cin Input capacitance ICC Supply current per operator Tamb = 25 °C Tmin < Tamb < Tmax CMR Common mode rejection ratio (ΔVic/ΔVio) +0.1< Vic< 3.9 V and Vout = 2.5 V Tamb = 25 °C Tmin < Tamb < Tmax SVR Supply voltage rejection ratio Tamb = 25 °C (ΔVCC/ΔVio) Tmin < Tamb < Tmax PSR Power supply rejection ratio (ΔVCC/ΔVout) Positive and negative rail Large signal voltage gain RL = 150 Ω connected to 1.5 V and Vout = 1 V to 4 V Tamb = 25 °C Tmin < Tamb < Tmax 75 70 84 |Source| Vid = +1, Vout connected to 1.5 V Tamb = 25 °C Tmin < Tamb < Tmax 35 28 55 Sink Vid = -1, Vout connected to 1.5 V Tamb = 25 °C Tmin < Tamb < Tmax 33 28 55 |Vio| ΔVio/ΔT Avd Io µV/°C 0.3 DocID009413 Rev 9 8.2 72 70 97 68 65 75 75 µA pF 10.5 11.5 mA dB mA 7/30 Electrical characteristics TSH80, TSH81, TSH82, TSH84 Table 3. Electrical characteristics at VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25 °C (unless otherwise specified) (continued) Symbol Voh Vol GBP Bw SR Parameter High-level output voltage Low-level output voltage Gain bandwidth product Test conditions Tamb = 25 °C RL = 150 Ω connected to GND RL = 600 Ω connected to GND RL = 2 kΩ connected to GND RL = 10 kΩ connected to GND RL = 150 Ω connected to 2.5 V RL = 600 Ω connected to 2.5 V RL = 2 kΩ connected to 2.5 V RL = 10 kΩ connected to 2.5 V Tmin < Tamb < Tmax RL = 150 Ω connected to GND RL = 150 Ω connected to 2.5 V Min. Typ. 4.2 4.36 4.85 4.90 4.93 4.66 4.90 4.92 4.93 4.60(1) 4.5 48 54 55 56 220 105 76 61 Slew rate AVCL = +2 RL = 150 Ω // CL to 2.5 V CL = 5 pF CL = 30 pF V 150 400 mV 200 450 F = 10 MHz AVCL= +11 AVCL= -10 AVCL= +1 RL = 150 Ω connected to 2.5 V Unit 4.1 4.4 Tamb = 25 °C RL = 150 Ω connected to GND RL = 600 Ω connected to GND RL = 2 kΩ connected to GND RL = 10 kΩ connected to GND RL = 150 Ω connected to 2.5 V RL = 600 Ω connected to 2.5 V RL = 2 kΩ connected to 2.5 V RL = 10 kΩ connected to 2.5 V Tmin < Tamb < Tmax RL = 150 Ω connected to GND RL = 150 Ω connected to 2.5 V Bandwidth at -3 dB Max. 65 55 MHz 87 60 104 105 V/ms φm Phase margin RL = 150 Ω // 30 pF to 2.5 V 40 Degree en Equivalent input noise voltage F = 100 kHz 11 nV/√ Hz THD Total harmonic distortion AVCL= +2, F = 4 MHz RL = 150 Ω // 30 pF to 2.5 V Vout = 1Vpp Vout = 2Vpp -61 -54 IM2 AVCL = +2, Vout = 2 Vpp Second order intermodulation RL = 150 Ω connected to 2.5 V product Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurement at 100 kHz 8/30 DocID009413 Rev 9 -76 dB dBc TSH80, TSH81, TSH82, TSH84 Electrical characteristics Table 3. Electrical characteristics at VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25 °C (unless otherwise specified) (continued) Symbol Parameter Test conditions Min. Typ. Max. Unit IM3 Third order intermodulation product AVCL = +2, Vout = 2 Vpp RL = 150 Ω to 2.5 V Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurement at 400 kHz ΔG Differential gain AVCL = +2, RL = 150 Ω to 2.5 V F = 4.5 MHz, Vout = 2 Vpp 0.5 % Df Differential phase AVCL = +2, RL = 150 Ω to 2.5 V F = 4.5 MHz, Vout = 2 Vpp 0.5 Degree Gf Gain flatness F = DC to 6 MHz, AVCL = +2 0.2 F = 1 MHz to 10 MHz 65 Vo1/Vo2 Channel separation -68 dBc dB 1. Tested on the TSH80ILT device only. DocID009413 Rev 9 9/30 Electrical characteristics TSH80, TSH81, TSH82, TSH84 Table 4. Electrical characteristics at VCC+ = +5 V, VCC- = -5 V, Vic = GND, Tamb = 25 °C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit 10 12 mV Input offset voltage Tamb = 25 °C Tmin < Tamb < Tmax 0.8 Input offset voltage drift vs. temperature Tmin < Tamb < Tmax 2 Iio Input offset current Tamb = 25 °C Tmin < Tamb < Tmax 0.1 3.5 5 Iib Input bias current Tamb = 25 °C Tmin < Tamb < Tmax 6 15 20 Cin Input capacitance ICC Supply current per operator Tamb = 25 °C Tmin < Tamb < Tmax CMR Common mode rejection ratio (ΔVic/ΔVio) -4.9 < Vic < 3.9 V and Vout = GND Tamb = 25 °C Tmin < Tamb < Tmax 81 72 106 SVR Supply voltage rejection ratio (ΔVCC/ΔVio) Tamb = 25 °C Tmin < Tamb < Tmax 71 65 77 PSR Power supply rejection ratio (ΔVCC/ΔVout) Positive and negative rail Large signal voltage gain RL = 150 Ω connected to GND and Vout = -4 to +4 Tamb = 25 °C Tmin < Tamb < Tmax 75 70 86 |Source| Vid = +1, Vout connected to 1.5 V Tamb = 25 °C Tmin < Tamb < Tmax 35 28 55 Sink Vid = -1, Vout connected to 1.5 V Tamb = 25 °C Tmin < Tamb < Tmax 30 28 55 4.2 High-level output voltage Tamb = 25 °C RL = 150 Ω connected to GND RL = 600 Ω connected to GND RL = 2 kΩ connected to GND RL = 10 kΩ connected to GND Tmin < Tamb < Tmax RL = 150 Ω connected to GND 4.36 4.85 4.9 4.93 |Vio| ΔVio/ΔT Avd Io Voh Vol 10/30 Low-level output voltage µV/°C 0.7 9.8 µA pF 12.3 13.4 mA dB Tamb = 25 °C RL = 150 Ω connected to GND RL = 600 Ω connected to GND RL = 2 kΩ connected to GND RL = 10 kΩ connected to GND Tmin < Tamb < Tmax RL = 150 Ω connected to GND DocID009413 Rev 9 75 mA V 4.1 -4.63 -4.86 -4.9 -4.93 -4.4 mV -4.3 TSH80, TSH81, TSH82, TSH84 Electrical characteristics Table 4. Electrical characteristics at VCC+ = +5 V, VCC- = -5 V, Vic = GND, Tamb = 25 °C (unless otherwise specified) (continued) Symbol GBP Bw SR Parameter Gain bandwidth product Test conditions Min. F = 10 MHz AVCL = +11 AVCL = -10 Bandwidth at -3 dB AVCL = +1 RL = 150 Ω // 30 pF to GND Slew rate AVCL = +2 RL = 150 Ω // CL to GND CL = 5 pF CL = 30 pF RL = 150 Ω connected to GND fm Phase margin en Equivalent input noise voltage F = 100 kHz AVCL = +2, F = 4 MHz RL = 150 Ω // 30 pF to GND Vout = 1 Vpp Vout = 2 Vpp Typ. 65 55 Max. Unit MHz 100 68 117 118 V/µs 40 Degree 11 nV/√ Hz THD Total harmonic distortion IM2 AVCL = +2, Vout = 2 Vpp Second order intermodulation RL = 150 Ω to GND product Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurement at 100 kHz -76 IM3 Third order intermodulation product AVCL = +2, Vout = 2 Vpp RL = 150 Ω to GND Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurement at 400 kHz -68 ΔG Differential gain AVCL = +2, RL = 150 Ω to GND F = 4.5 MHz, Vout = 2 Vpp 0.5 % Df Differential phase AVCL = +2, RL = 150 Ω to GND F = 4.5 MHz, Vout = 2 Vpp 0.5 Degree Gf Gain flatness F = DC to 6 MHz, AVCL = +2 0.2 Channel separation F = 1 MHz to 10 MHz 65 Vo1/Vo2 DocID009413 Rev 9 -61 -54 dB dBc dB 11/30 Electrical characteristics TSH80, TSH81, TSH82, TSH84 Table 5. Standby mode - VCC+, VCC-, Tamb = 25 °C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Vlow Standby low level VCC- (VCC- +0.8) Vhigh Standby high level (VCC- +2) (VCC+) Current consumption per operator when standby is active Pin 8 (TSH81) to VCC- 20 Zout Output impedance (Rout//Cout) Rout Cout 10 17 Ton Time from standby mode to active mode Toff Time from active mode to standby mode ICC-STBY V µA MΩ pF 2 µs Down to ICC-STBY = 10 µA 10 Table 6. TSH81 standby control pin status 12/30 55 Unit TSH81 standby control pin 8 (STANDBY) Operator status Vlow Standby Vhigh Active DocID009413 Rev 9 TSH80, TSH81, TSH82, TSH84 Electrical characteristics Figure 2. Closed loop gain and phase vs. frequency (gain = +2, VCC = ±2.5 V) RL = 150 Ω, Tamb = 25 °C Figure 3. Overshoot vs. output capacitance (VCC = ±2.5 V) Gain = +2, Tamb = 25 °C 10 200 10 150Ω//33pF 150 Ω // 33 pF 150Ω//22pF 150 Ω // 22 pF 5 Gain 100 150Ω//10pF 150 Ω // 10 pF Ph ase (°) 0 -5 Phase 150 Ω 150Ω Gain (dB) Gain (dB) 5 0 0 -100 -10 -15 -200 1E+4 1E+5 1E+6 1E+7 1E+8 -5 1E+9 1E+6 Frequency (Hz) 1E+7 1E+8 1E+9 Freq uen cy (Hz) Figure 4. Closed loop gain and phase vs. frequency (gain = -10, VCC = ±2.5 V) Figure 5. Closed loop gain and phase vs. frequency (gain = +11, VCC = ±2.5 V) RL = 150 Ω, Tamb = 25 °C RL = 150 Ω , Tamb = 25 °C 30 200 30 Phase 0 Ph as e Phase 150 20 20 Phase (°) 50 Gain (dB) 10 -50 Gain Gain Phase (°) Gain (dB) 100 Gain 10 -100 0 0 0 -50 - 10 -10 1E+4 1E+5 1E+7 1E+6 1E+8 -150 1E+4 -100 1E+9 1E+5 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) Frequency (Hz) Figure 6. Large signal measurement – positive Figure 7. Large signal measurement – negative slew rate (VCC = ±2.5 V) slew rate (VCC = ±2.5 V) Gain = +2, ZL = 150 Ω //5.6 pF, Vin = 400 mVpk Gain = +2, ZL = 150 Ω //5.6 pF, Vin = 400 mVpk 3 2 2 1 1 Vout (V ) Vout (V) 3 0 -1 0 -1 -2 -2 -3 0 10 20 30 40 50 60 70 80 -3 Ti me (ns) 0 10 20 30 40 50 60 70 Time (ns) DocID009413 Rev 9 13/30 Electrical characteristics TSH80, TSH81, TSH82, TSH84 Figure 9. Small signal measurement – fall time (VCC = ±2.5 V) Gain = +2, RL = 150 Ω, Vin = 400 mVpk Gain = +2, RL = 150 Ω , Vin = 400 mVpk 0.06 0.06 0.04 0.04 0.02 0.02 0 Vout Vin -0.02 Vin ,Vout (V) Vin, Vout (V) Figure 8. Small signal measurement – rise time (VCC = ±2.5 V) Vout Vin 0 - 0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 60 0 10 20 Time (ns) 30 40 50 60 Time (ns) Figure 10. Channel separation (crosstalk) vs. frequency schematic (VCC = ±2.5 V) Figure 11. Channel separation (crosstalk) vs. frequency (VCC = ±2.5 V) Measurement configuration: crosstalk = 20 log (V0/V1) Gain = +11, ZL = 150 Ω //27 pF -20 -30 -40 4/1 output 4/1output Xtalk (dB) -50 3/1 output 3/1output -60 -70 -80 2/1output 2/1 output -90 -100 -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Figure 12. Equivalent input noise voltage (VCC = ±2.5 V) Figure 13. Maximum output swing (VCC = ±2.5 V) Gain = +100, no load Gain = +11, RL = 150 Ω 30 3 2 + _ Vin,Vout (V) en (nV/ Hz) 25 20 15 10 Vin 0 -1 -2 5 0.1 1 10 100 1000 -3 0.0E+0 5.0E-2 1. 0E-1 Time (ms) Frequency (kHz) 14/30 Vout 1 DocID009413 Rev 9 1.5 E- 1 2.0E-1 TSH80, TSH81, TSH82, TSH84 Electrical characteristics Figure 14. Standby mode - Ton, Toff (VCC = ±2.5 V) Open loop Figure 15. Third order intermodulation (VCC = ±2.5 V)(1) Gain = +2, ZL = 150 Ω //27 pF, Tamb = 25 °C 0 3 -10 -20 2 0 Vout -1 -40 IM3 (dBc) V in, Vout (V) -30 1 7 40kHz 740 kHz -50 80kHz 80 kHz -60 -70 -2 -80 -3 Ton 0 2 E-6 Standby 4E-6 -90 Toff 6E-6 8 E-6 1E-5 640kHz 640 kHz 380kHz 380 kHz -100 0 time (s) 1 2 3 4 Vout peak(V) 1. The IFR2026 synthesizer generates a two-tone signal (F1 = 180 kHz, F2 = 280 kHz), each tone having the same amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The generator and the spectrum analyzer are phase locked for better accuracy. Figure 16. Group delay (VCC = ±2.5 V) Gain = +2, ZL = 150 Ω //27 pF, Tamb = 25 °C DocID009413 Rev 9 15/30 Electrical characteristics TSH80, TSH81, TSH82, TSH84 Figure 17. Closed loop gain and phase vs. frequency (gain = +2, VCC = ±5 V) Figure 18. Overshoot vs. output capacitance (VCC = ±5 V) Gain = +2, Tamb = 25 °C RL = 150 Ω , Tamb = 25 °C 10 20 200 150Ω//33pF 150 W // 33 pF 5 10 Gain 150Ω//22p 150 Ω // F22 pF 100 150Ω//10pF 150 Ω // 10 pF 0 Phase -10 Gain (dB) -5 Phase (°) Gain (dB) 0 0 150 Ω 150Ω -10 -100 -20 -15 -20 1E+4 1E+5 1E+6 1E+7 1E+8 -200 1E+9 -30 1E+4 1E+5 Frequency (Hz) 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) Figure 19. Closed loop gain and phase vs. frequency (gain = -10, VCC = ±5 V) Figure 20. Closed loop gain and phase vs. frequency (gain = +11, VCC = ±5 V) RL = 150 Ω , Tamb = 25 °C RL = 150 Ω , Tamb = 25 °C 20 0 30 30 0 Phase Phase Phase 15 0 10 50 -50 Gain Phase (°) 10 0 Gain Gain Gain (dB) 20 Phase (°) Gain (dB) 20 10 -100 0 0 0 - 10 -10 1E+4 -5 0 1E+4 1E+5 1 E+6 1E+7 1 E+8 1E+9 1E+5 1E+6 1E+7 1E+8 -150 1E+9 Frequency (Hz) Frequency (Hz) Figure 21. Large signal measurement - positive Figure 22. Large signal measurement - negative slew rate (VCC = ±5 V) slew rate (VCC = ±5 V) Gain = +2, ZL = 150 Ω //5.6 pF, Vin = 400 mVpk 5 5 4 4 3 3 2 2 1 Vout (V) Vout (V) Gain = +2, ZL = 150 Ω //5.6 pF, Vin = 400 mVpk 0 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 0 20 40 60 80 100 0 20 40 60 Time (ns) Time (ns) 16/30 1 0 DocID009413 Rev 9 80 100 TSH80, TSH81, TSH82, TSH84 Electrical characteristics Figure 23. Small signal measurement - rise time Figure 24. Small signal measurement - fall time (VCC = ±5 V) (VCC = ±5 V) Gain = +2, RL = 150 Ω , Vin = 400 mVpk 0.0 6 0.06 0.0 4 0.04 0.0 2 0.02 0 Vin, Vout ( V) Vin, Vout ( V) Gain = +2, RL = 150 Ω , Vin = 400 mVpk Vout V in - 0 .02 Vout Vin 0 -0.02 -0.04 - 0 .04 -0.06 - 0 .06 0 10 20 30 40 50 0 60 10 20 30 40 50 60 Time (ns) Ti m e (ns) Figure 25. Channel separation (crosstalk) vs. frequency schematic (VCC = ±5 V) Figure 26. Channel separation (crosstalk) vs. frequency (VCC = ±5 V) Gain = +11, ZL = 150 Ω //27 pF Measurement configuration: crosstalk = 20 log (V0/V1) -2 0 -3 0  -4 0 output 4/14/1output -5 0 3/1output 3/1 output   Xtalk (dB)  -6 0 -7 0 -8 0 2/1out put 2/1 output -9 0 -1 00   -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Figure 27. Equivalent input noise voltage (VCC = ±5 V) Figure 28. Maximum output swing (VCC = ±5 V) Gain = +11, RL = 150 Ω Gain = +100, no load 5 30 4 25 3 + _ Vout Vin, Vout (V) en (nV / Hz) 2 20 15 10 1 Vin 0 -1 -2 -3 -4 5 0.1 1 10 100 1000 -5 0.0E+0 Frequency (kHz) 5.0E-2 1.0E-1 1.5E-1 20 . E-1 Time (ms) DocID009413 Rev 9 17/30 Electrical characteristics TSH80, TSH81, TSH82, TSH84 Figure 29. Standby mode - Ton, Toff (VCC = ±5 V) Figure 30. Third order intermodulation (VCC = ±5 V)(1) Open loop Gain = +2, ZL = 150 Ω //27 pF, Tamb = 25 °C 0 -10 5 -20 -40 IM3 (dBc) Vin, Vout (V) -30 Vout 0 80kHz 80 kHz -50 740740kHz kHz -60 -70 -80 -5 Ton -90 Toff Standby 0 2E-6 4E-6 6E- 6 8E-6 380kHz 380 kHz 640kHz 640 kHz -10 0 0 1 2 3 4 Vout peak(V) time (s) 1. The IFR2026 synthesizer generates a two-tone signal (F1 = 180 kHz, F2 = 280 kHz), each tone having the same amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The generator and the spectrum analyzer are phase locked for better accuracy. Figure 31. Group delay (VCC = ±5 V) Gain = +2, ZL = 150 Ω //27 pF, Tamb = 25 °C 18/30 DocID009413 Rev 9 TSH80, TSH81, TSH82, TSH84 4 Test conditions 4.1 Layout precautions Test conditions To make the best use of the TSH8x circuits at high frequencies, some precautions have to be taken with regard to the power supplies. • In high-speed circuit applications, the implementation of a proper ground plane on both sides of the PCB is mandatory to ensure low inductance and low resistance common return. • Power supply bypass capacitors (4.7 µF and ceramic 100 pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and positive pins. • All inputs and outputs must be properly terminated with output resistors. Thus, the amplifier load is resistive only and the stability of the amplifier is improved. All leads must be wide and must be as short as possible, especially for op-amp inputs and outputs, in order to decrease parasitic capacitance and inductance. • Time constants result from parasitic capacitance. To reduce time constants in lowergain applications, use a low feedback resistance (under 1 kΩ). • Choose the smallest component size possible (SMD). • On the output, the load capacitance must be negligible to maintain good stability. Place ca serial resistance as close as possible to the output pin to minimize the effect of the load capacitance. Figure 32. CCIR330 video line DocID009413 Rev 9 19/30 Test conditions 4.2 TSH80, TSH81, TSH82, TSH84 Video capabilities To characterize the differential phase and differential gain, a CCIR330 video line is used. The video line contains of five (flat) levels of luminance onto which the chrominance signal is superimposed. The luminance gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the color of the signal. Differential phase (or differential gain) distortion is present if a signal chrominance phase (gain) is affected by the luminance level. The differential phase and gain represent the ability to uniformly process the high frequency information at all luminance levels. When a differential gain is present, color saturation is not correctly reproduced. The input generator is the Rohde & Schwarz CCVS. The output measurement is made by the Rohde and Schwarz VSA. Figure 33. Measurement on Rohde and Schwarz VSA 20/30 DocID009413 Rev 9 TSH80, TSH81, TSH82, TSH84 Test conditions Table 7. Video results Parameter Value (VCC = ±2.5 V) Value (VCC = ±5 V) Lum NL 0.1 0.3 Lum NL Step1 100 100 Lum NL Step2 100 99.9 Lum NL Step3 99.9 99.8 Lum NL Step4 99.9 99.9 Lum NL Step5 99.9 99.7 Diff Gain pos 0 0 Diff Gain neg -0.7 -0.6 Diff Gain pp 0.7 0.6 Diff Gain Step1 -0.5 -0.3 Diff Gain Step2 -0.7 -0.6 Diff Gain Step3 -0.3 -0.5 Diff Gain Step4 -0.1 -0.3 Diff Gain Step5 -0.4 -0.5 Diff Phase pos 0 0.1 Diff Phase neg -0.2 -0.4 Diff Phase pp 0.2 0.5 Diff Phase Step1 -0.2 -0.4 Diff Phase Step2 -0.1 -0.4 Diff Phase Step3 -0.1 -0.3 Diff Phase Step4 0 0.1 Diff Phase Step5 -0.2 -0.1 DocID009413 Rev 9 Unit % Degree 21/30 Precautions on asymmetrical supply operation 5 TSH80, TSH81, TSH82, TSH84 Precautions on asymmetrical supply operation The TSH8x device can be used with either a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+VCC/2). This bias network must be carefully designed so as to reject any noise present on the supply rail. As the bias current is 15 µA, use a high resistance R1 (approximately 10 kΩ) to avoid introducing an offset mismatch at the amplifier’s inputs. Figure 34. Asymmetrical supply schematic diagram IN Cin Cout OUT + Vcc+ - R1 R5 R2 R3 C3 RL Cf C1 C2 R4 AM00845 C1, C2, C3 are bypass capacitors intended to filter perturbations from VCC. The following capacitor values are appropriate: C1 = 100 nF and C2 = C3 = 100 µF R2 and R3 are such that the current running through them must be superior to 100 times the bias current. Therefore, use the following resistance values: R2 = R3 = 4.7 kΩ Cin and Cout are chosen to filter the DC signal by the low-pass filters (R1, Cin) and (Rout, Cout). With R1 = 10 kΩ, Rout = RL = 150 Ω, and Cin = 2 µF, Cout = 220 µF the cutoff frequency obtained is lower than 10 Hz. Figure 35. Use of the TSH8x in a gain = -1 configuration IN - OUT + R1 R2 R3 C3 C1 C2 AM00846 22/30 DocID009413 Rev 9 TSH80, TSH81, TSH82, TSH84 6 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DocID009413 Rev 9 23/30 Package information 6.1 TSH80, TSH81, TSH82, TSH84 SOT23-5 package information Figure 36. SOT23-5 package outline Table 8. SOT23-5 package mechanical data Dimensions Symbol A Millimeters Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 24/30 Inches 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.013 0.015 0.019 C 0.09 0.15 0.20 0.003 0.006 0.008 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.013 0.023 K 0° 10° DocID009413 Rev 9 TSH80, TSH81, TSH82, TSH84 6.2 Package information SO8 package information Figure 37. SO8 package outline 62 Table 9. SO8 package mechanical data Dimensions Symbol Millimeters Min. Typ. A Inches Max. Min. Typ. 1.75 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.25 Max. 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 L1 k ccc 1.04 1° 0.040 8° 0.10 DocID009413 Rev 9 1° 8° 0.004 25/30 Package information 6.3 TSH80, TSH81, TSH82, TSH84 TSSOP8 package information Figure 38. TSSOP8 package outline 76623 Table 10. TSSOP8 package mechanical data Dimensions Symbol Millimeters Min. Typ. A Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0° L 0.45 aaa 1.00 0.65 k L1 26/30 Inches 0.60 0.006 0.039 0.041 0.0256 8° 0° 0.75 0.018 1 8° 0.024 0.030 0.039 0.10 DocID009413 Rev 9 0.004 TSH80, TSH81, TSH82, TSH84 6.4 Package information TSSOP14 package information Figure 39. TSSOP14 package outline 76623 Table 11. TSSOP14 package mechanical data Dimensions Symbol Millimeters Min. Typ. A Inches Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.90 5.00 5.10 0.193 0.197 0.201 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.176 e L 0.65 0.45 L1 k aaa 1.00 0.60 0.0256 0.75 0.018 1.00 0° 0.024 0.030 0.039 8° 0.10 DocID009413 Rev 9 0° 8° 0.004 27/30 Ordering information 7 TSH80, TSH81, TSH82, TSH84 Ordering information Table 12. Order codes Type Temperature range TSH80ILT Package Packaging SOT23-5 K303 TSH80IYLT(1) SOT23-5 (automotive grade level) K310 TSH80IYDT(1) SO8 (automotive grade level) TSH81IPT TSH82IDT TSH82IYDT(1) -40 to +85 °C Tape and reel SH80IY TSSOP8 SO8 SH81I Tape and reel SO8 (automotive grade level) TSH82IPT TSSOP8 TSH84IPT TSSOP14 DocID009413 Rev 9 TSH82I TSH82IY Tape and reel 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent. 28/30 Marking SH82I SH84I TSH80, TSH81, TSH82, TSH84 8 Revision history Revision history Table 13. Document revision history Date Revision 1-Feb-2003 1 First release. 2-Aug-2005 2 PPAP references inserted in the datasheet, see Table 12: Order codes on page 28. 12-Apr-2007 3 Corrected temperature range for TSH80IYD/IYDT and TSH82IYD/IYDT order codes in Table 12: Order codes on page 28. 24-Oct-2007 4 TSH81IYPT PPAP references inserted in the datasheet, see Table 12: Order codes on page 28. 19-May-2009 5 Added data relating to the quad TSH84 device. Removed TSH81IYPT, TSH81IYD-IYDT, TSH82IYPT and TSH82IYD-IYDT order codes in Table 12: Order codes. 6 Added TSSOP14 package to figure on page 1, updated titles of Figure 2 to Figure 31, updated Section 6: Package information, removed TSH80ID-IDT, TSH80IYD, TSH81ID-IDT and TSH82ID order codes from Table 12: Order codes. Modified note 1 below Table 12: Order codes, minor corrections throughout document. 7 Updated TSH80IYLT order code (status qualified) in Table 12. Removed TSH80IYD, TSH80IYDT, TSH80ID/DT, TSH81ID/DT, and TSH82ID order code from Table 12. Replaced TSH82DT by TSH82IDT order code in Table 12. Minor corrections throughout document. 30-Apr-2013 8 Updated Features: added automotive qualification Figure 1: Pin connections for each package (top view): updated pin connections of SO8/TSSOP8 packages for TSH81 device. Replaced Figure 36: SOT23-5 package outline Table 12: Order codes: added automotive order code TSH82IYDT 03-Jul-2014 9 Updated CDM to 1.5 kV in Table 1: Absolute maximum ratings Table 12: Order codes: added automotive order code TSH80IYDT and removed shipping option in tubes from TSH82IDT 24-Jul-2012 13-Sep-2012 Changes DocID009413 Rev 9 29/30 TSH80, TSH81, TSH82, TSH84 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 30/30 DocID009413 Rev 9
TSH82IDT 价格&库存

很抱歉,暂时无法提供与“TSH82IDT”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TSH82IDT
  •  国内价格 香港价格
  • 1+12.501761+1.51766
  • 15+11.3325315+1.37572
  • 75+10.6130075+1.28837
  • 250+10.07336250+1.22286
  • 1250+9.353841250+1.13551

库存:0