0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSH94IYD

TSH94IYD

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    TSH94IYD - High speed low power quad operational amplifier with standby position - STMicroelectronic...

  • 数据手册
  • 价格&库存
TSH94IYD 数据手册
TSH94 High speed low power quad operational amplifier with standby position Features ■ ■ ■ ■ ■ ■ ■ ■ ■ Two separate standby functions: low consumption and high impedance outputs Low supply current: 4.5mA High speed: 150MHz - 110V/µs Unity gain stability Low offset voltage: 3mV Low noise 4.2 nV/√ Hz Low cost Specified for 600Ω and 150Ω loads High video performance: – Differential gain: 0.03% – Differential phase: 0.07° – Gain flatness: 6MHz, 0.1dB max @ 10dB gain High audio performance Pin connections (top view) Output 1 Inverting Input 1 Non-inverting Input 1 VCC + 1 2 3 4 5 6 7 + + + + 16 Output 4 15 Inverting Input 4 14 Non-inverting Input 4 13 VCC 12 Non-inverting Input 3 11 Inverting Input 3 10 Output 3 9 Standby 2 D SO-16 (Plastic micropackage) ■ Description The TSH94 is a quad low power high frequency op-amp, designed for high quality video signal processing. The device offers an excellent speed consumption ratio with 4.5mA per amplifier for 150MHz bandwidth. High slew rate and low noise also make it suitable for high quality audio applications. The TSH94 offers 2 separate complementary STANDBY functions: ■ ■ Non-inverting Input 2 Inverting Input 2 Output 2 Standby 1 8 STANDBY 1 acting on the n° 2 operator STANDBY 2 acting on the n° 3 operator These functions reduce the consumption of the corresponding operator and put the output in a high impedance state. November 2007 Rev 3 1/19 www.st.com 19 Schematic diagram TSH94 1 Schematic diagram Figure 1. Schematic diagram V CC+ stdby stdby non inverting input Internal Vref inverting input output Cc stdby stdby VCC- 2/19 TSH94 Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 1. Symbol VCC Vid Vi Toper Tstg ESD Supply voltage (1) Differential input voltage Input voltage (3) (2) Absolute maximum ratings (AMR) Parameter Value 14 ±5 -0.3 to 12 -40 to +125 -65 to +150 (4) Unit V V V °C °C kV kV V Operating free-air temperature range Storage temperature range CDM: charged device model HBM: human body model(5) MM: machine model(6) 1.5 2 200 1. All voltage values, except differential voltage are with respect to network ground terminal 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal 3. The magnitude of input and output voltages must never exceed VCC+ +0.3V 4. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. 5. Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 6. Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating Table 2. Symbol VCC Vicm Operating conditions Parameter Supply voltage Common mode input voltage range VCCValue 7 to 12 +2 to VCC+ -1 Unit V V 3/19 Electrical characteristics TSH94 3 Table 3. Symbol Vio Iio Iib ICC CMR SVR Avd Electrical characteristics VCC+ = 5V, VCC- = -5V, pin 8 connected to 0V, pin 9 connected to VCC+, Tamb = 25°C (unless otherwise specified) Parameter Input offset voltage Vic = Vo = 0V Tmin ≤ Tamb ≤ Tmax Input offset current Tmin ≤ Tamb ≤ Tmax Input bias current Tmin ≤ Tamb ≤ Tmax Supply current (per amplifier, no load) Tmin ≤ Tamb ≤ Tmax Common mode rejection ratio Vic = -3V to +4V, Vo = 0V Tmin ≤ Tamb ≤ Tmax Supply voltage rejection ratio VCC = ±5V to ±3V Tmin ≤ Tamb ≤ Tmax Large signal voltage gain RL = 10kΩ, Vo = ±2.5V Tmin ≤ Tamb ≤ Tmax High level output voltage Vid = 1V RL = 600Ω RL = 150Ω RL = 150Ω Tmin ≤ Tamb ≤ Tmax. Low level output voltage Vid = 11V RL = 600Ω RL = 150Ω RL = 150Ω Tmin ≤ Tamb ≤ Tmax. Output short-circuit current Vid = ±1V Source Sink Source Tmin ≤ Tamb ≤ Tmax. Sink Gain bandwidth product , AVCL = 100, RL = 600Ω CL = 15pF, f = 7.5MHz Transition frequency Slew rate Vin = -2 to +2V, AVCL = +1, RL = 600Ω, CL = 15pF Equivalent input voltage noise Rs = 50Ω f = 1kHz , Phase margin AVM = +1 70 20 20 15 15 90 80 70 60 50 57 54 3 2.5 2.4 1 5 4.5 100 75 70 Min. Typ. Max. 3 5 2 5 15 20 6 8 Unit mV μA μA mA dB dB dB VOH 3.5 3 V VOL -3.5 -2.8 -3 -2.5 -2.4 V Io 36 40 mA GBP fT SR en φm 150 90 110 4.2 35 65 0.1 0.01 MHz MHz V/μs nV/√ Hz Degrees dB dB % VO1/VO2 Channel separation f = 1MHz to 10MHz Gf THD Gain flatness f = DC to 6MHz, AVCL = 10dB Total harmonic distortion f = 1kHz, Vo = ±2.5V, RL = 600Ω 4/19 TSH94 Table 3. Symbol ΔG Δϕ Electrical characteristics VCC+ = 5V, VCC- = -5V, pin 8 connected to 0V, pin 9 connected to VCC+, Tamb = 25°C (unless otherwise specified) (continued) Parameter Differential gain f = 3.58MHz, AVCL = +2, RL = 150Ω Differential phase f = 3.58MHz, AVCL = +2, RL = 150Ω Min. Typ. 0.03 0.07 Max. Unit % Degree Standby mode Table 4. Symbol VSTBY VCC+ = 5V, VCC- = -5V, Tamb = 25°C (unless otherwise specified) Parameter Pin 8/9 threshold voltage for STANDBY mode Min. Typ. Max. Unit V VCC+ -2.2 VCC+ -1.6 VCC+ -1.0 Total consumption Standby 1 & 2 = 0 ICC-STBY Standby 1 & 2 = 1 Standby 1 = 1, Standby 2 = 0 Isol ton toff ID IOL IIL Input/output isolation (f = 1MHz to 10MHz) Time from standby mode to active mode Time from active mode to standby mode Standby driving current Output leakage current Input leakage current 13.7 13.7 9.4 70 200 200 2 20 20 mA dB ns ns pA pA pA Table 5. Standby control pin status Logic input Status Standby 2 0 1 0 1 Op-amp 2 Enable Enable Standby Standby Op-amp 3 Standby Enable Standby Enable Op-amps 1 & 4 Enable Enable Enable Enable Standby 1 0 0 1 1 5/19 Electrical characteristics Figure 2. Standby position VCC standby TSH94 VCC To put the device in standby, just apply a logic level on the standby MOS input. Because ground is a virtual level for the device, the threshold voltage is to VCC+ (VCC+- 1.6V typ, see Table 4). 6/19 TSH94 Electrical characteristics Figure 3. Closed loop frequency response Figure 4. Gain flatness and phase shift versus frequency Figure 5. Open loop frequency response and Figure 6. phase shift Static open loop voltage gain Figure 7. Audio bandwidth frequency response and phase shift (TSH94 vs standard 15MHz audio op-amp) Figure 8. Large signal follower response 7/19 Electrical characteristics TSH94 Figure 9. Small signal follower response Figure 10. Crosstalk isolation versus frequency (SO-16 package) Figure 11. Crosstalk isolation versus frequency (SO-16 package) Figure 12. Input/output isolation in standby mode (SO-16 package) Figure 13. Standby switching Figure 14. Signal multiplexing (see Figure 18) 8/19 TSH94 Electrical characteristics Figure 15. Common input impedance versus frequency 4.5 4.0 Figure 16. Differential input impedance versus frequency 120 100 3.5 Zin-com (MW) 3.0 Zin-diff (kW) 2.5 2.0 1.5 1.0 0.5 1k 10k 100k 1M Frequency (Hz) 10M 100M 80 60 40 20 1k 10k 100k 1M Frequency (Hz) 10M 100M Figure 17. Input offset voltage drift versus temperature 9/19 Application information TSH94 4 Application information Figure 18. Signal multiplexing Figure 19. Sample and hold 10/19 TSH94 Figure 20. Video line transceiver with remote control Application information Printed circuit layout recommendations As for any high frequency device, a few rules must be observed when designing the PCB to get the best performance from this high-speed op-amp. Some recommendations are listed below, from the most important to the least important: ● ● ● ● ● ● By-pass each power supply lead to ground with a 10μF capacitor and a 10nF ceramic capacitor very close to the device. To provide low inductance and low resistance common return, use a ground plane or common point return for power and signal. Make sure all leads are wide and as short as possible, especially for op-amp inputs. This is to decrease parasitic capacitance and inductance. Use small resistor values to decrease the time constant with parasitic capacitance. Choose component sizes as small as possible (SMD). On the output, keep the capacitor load as low as possible to avoid oscillation which would degrade the circuit stability. You can also add a serial resistor in order to minimise the effect of the capacitor load. 11/19 Macromodel information TSH94 5 5.1 Macromodel information TSH94I without standby The macromodel information provided in this section applies to TSH94I (model without standby). ** Standard Linear Ics Macromodels, 1996. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TSH94 1 3 2 4 5 (analog) ******************************************************** .MODEL MDTH D IS=1E-8 KF=1.809064E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E-01 RIN 15 16 2.600000E-01 RIS 11 15 3.645298E-01 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 1314DC 0 IPOL 13 5 1.000000E-03 CPS 11 15 2.986990E-10 DINN 17 13 MDTH 400E-12 VIN 17 5 2.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.000000E+00 FCP 4 5 VOFP 3.500000E+00 FCN 5 4 VOFN 3.500000E+00 FIBP 2 5 VOFP 1.000000E-02 FIBN 5 1 VOFN 1.000000E-02 * AMPLIFYING STAGE FIP 5 19 VOFP 2.530000E+02 FIN 5 19 VOFN 2.530000E+02 RG1 19 5 3.160721E+03 RG2 19 4 3.160721E+03 CC 19 5 2.00000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 1.504000E+03 VIPM 28 4 5.000000E+01 HONM 21 27 VOUT 1.400000E+03 12/19 TSH94 VINM 5 27 5.000000E+01 *********************** RZP1 5 80 1E+06 RZP2 4 80 1E+06 GZP 5 82 19 80 2.5E-05 RZP2H 83 4 10000 RZP1H 83 82 80000 RZP2B 84 5 10000 RZP1B 82 84 80000 LZPH 4 83 3.535e-02 LZPB 84 5 3.535e-02 EOUT 26 23 82 5 1 VOUT 23 5 0 ROUT 26 3 35 COUT 3 5 30.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.361965E+00 DON 24 19 MDTH 400E-12 VON 24 5 2.361965E+00 .ENDS Table 6. Symbol Vio Avd ICC Vicm VOH VOL Isink Isource GBP SR φm RL = 600Ω RL = 600Ω Vo = 0V Vo = 0V , RL = 600Ω CL = 15pF RL = 600Ω CL = 15pF , , RL = 600Ω CL = 15pF RL = 600Ω No load / amp Macromodel information Electrical characteristics with VCC = ±5V, Tamb = 25°C (unless otherwise specified) Conditions Value 0 3.2 5.2 -3 to 4 +3.6 -3.6 40 40 147 110 42 Unit mV V/mV mA V V V mA mA MHz V/μs Degrees 5.2 TSH94I with standby The macromodel information provided in this section applies to TSH94I (model with standby). * * * * * 1 2 3 4 5 INVERTING INPUT NON-INVERTING INPUT OUTPUT POSITIVE POWER SUPPLY NEGATIVE POWER SUPPLY 13/19 Macromodel information * 6 STANDBY .SUBCKT TSH94 1 3 2 4 5 6 (analog) ******************************************************** **************** switch ******************* .SUBCKT SWITCH20 10 IN OUT COM .MODEL DIDEAL D N=0.1 IS=1E-08 DP IN 1 DIDEAL 400E-12 DN OUT 2 DIDEAL 400E-12 EP 1 OUT COM 10 2 EN 2 IN COM 10 2 RFUIT1 IN 1 1E+09 RFUIT2 OUT 2 1E+09 RCOM COM 0 1E+12 .ENDS SWITCH **************** inverter ***************** .SUBCKT INV 20 10 IN OUT .MODEL DIDEAL D N=0.1 IS=1E-08 RP1 20 15 1E+09 RN1 15 10 1E+09 RIN IN 10 1E+12 RIP IN 20 1E+12 DPINV OUT 20 DIDEAL 400E-12 DNINV 10 OUT DIDEAL 400E-12 GINV 0 OUT IN 15 -6.7E-7 CINV 0 OUT 210f .ENDS INV ***************** AOP ********************** .MODEL MDTH D IS=1E-8 KF=1.809064E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E-01 RIN 15 16 2.600000E-01 RIS 11 15 3.645298E-01 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 1314DC 0 FPOL 13 5 VSTB 1E+03 CPS 11 15 2.986990E-10 DINN 17 13 MDTH 400E-12 VIN 17 5 2.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.000000E+00 FCP 4 5 VOFP 3.500000E+00 FCN 5 4 VOFN 3.500000E+00 ISTB0 4 5 130UA FIBP 2 5 VOFP 1.000000E-02 FIBN 5 1 VOFN 1.000000E-02 TSH94 14/19 TSH94 * AMPLIFYING STAGE FIP 5 19 VOFP 2.530000E+02 FIN 5 19 VOFN 2.530000E+02 RG1 19 120 3.160721E+03 XCOM1 4 0 120 5 COM SWITCH RG2 19 121 3.160721E+03 XCOM2 4 0 4 121 COM SWITCH CC 19 5 2.00000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 1.504000E+03 VIPM 28 4 5.000000E+01 HONM 21 27 VOUT 1.400000E+03 VINM 5 27 5.000000E+01 *********** ZP ********** RZP1 5 80 1E+06 RZP2 4 80 1E+06 GZP 5 82 19 80 2.5E-05 RZP2H 83 4 10000 RZP1H 83 82 80000 RZP2B 84 5 10000 RZP1B 82 84 80000 LZPH 4 83 3.535e-02 LZPB 84 5 3.535e-02 ************************** EOUT 26 23 82 5 1 VOUT 23 5 0 ROUT 26 103 35 COUT 103 5 30.000000E-12 XCOM 4 0 103 3 COM SWITCH DOP 19 25 MDTH 400E-12 VOP 4 25 2.361965E+00 DON 24 19 MDTH 400E-12 VON 24 5 2.361965E+00 ********** STAND BY ******** RMI1 4 111 1E+7 RMI2 0 111 2E+7 RONOFF 6 60 1K CONOGG 60 0 10p RSTBIN 60 0 1E+12 ESTBIN 106 0 6 0 1 ESTBREF 106 107 111 0 1 DSTB1 107 108 MDTH 400E-12 VSTB 108 109 0 ISTB 109 0 1U RSTB 109 110 1 DSTB2 0 110 MDTH 400E-12 XINV 4 0 6 COM INV .ENDS Macromodel information 15/19 Package information TSH94 6 Package information In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com. 16/19 TSH94 Package information Figure 21. SO-16 package mechanical drawing (16-pin plastic micropackage) Table 7. Dim. SO-16 package mechanical data Millimeters Min. Typ. Max. 1.75 0.25 1.25 0.31 0.17 0.5 45° (typ.) 9.8 5.8 1.27 8.89 3.8 4.6 0.4 4.0 5.3 1.27 0.62 8° (max.) 0.150 0.181 0.016 10 6.2 0.386 0.228 0.050 0.350 0.157 0.209 0.050 0.024 0.394 0.244 0.51 0.25 0.049 0.012 0.007 0.020 0.02 0.010 Min. Inches Typ. Max. 0.069 0.01 A a1 a2 b b1 C c1 D E e e3 F G L M S 17/19 Ordering information TSH94 7 Ordering information Table 8. Order codes Temperature range Package Packing Tube or Tape & reel Tube or Tape & reel Marking Part number TSH94ID TSH94IDT SO-16 -40°C to +125°C SO-16 (Automotive grade) TSH94I TSH94Y TSH94IYD TSH94IYDT(1) 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. 8 Revision history Table 9. Date 5-Oct-2000 6-Jun-2007 Document revision history Revision 1 2 Initial release. Table 8: Order codes updated and moved to Section 7: Ordering information. Automotive grade order codes added. Format update. Corrected unit in feature list on cover page from 110V/ms to 110V/µs. Added ESD parameters in Table 1: Absolute maximum ratings (AMR). Updated footnote in Table 8: Order codes. Changes 27-Nov-2007 3 18/19 TSH94 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 19/19
TSH94IYD 价格&库存

很抱歉,暂时无法提供与“TSH94IYD”相匹配的价格&库存,您可以联系我们找货

免费人工找货