TSV521, TSV522, TSV524,
TSV521A, TSV522A, TSV524A
High merit factor (1.15 MHz for 45 μA) CMOS op amps
Datasheet - production data
Related products
• See TSV631, TSV632, TSV634 series for
lower minimum supply voltage (1.5 V)
• See LMV821, LMV822, LMV824 series for
higher gain bandwidth products (5.5 MHz)
SC70-5
Applications
• Battery powered applications
• Portable devices
• Automotive signal conditioning
DFN8 2x2
• Active filtering
MiniSO8
• Medical instrumentation
Description
QFN16 3x3
The TSV52x and TSV52xA series of operational
amplifiers offer low voltage operation and rail-torail input and output. The TSV521 device is the
single version, the TSV522 device the dual
version, and the TSV524 device the quad version,
with pinouts compatible with industry standards.
TSSOP14
Features
• Gain bandwidth product: 1.15 MHz typ. at 5 V
• Low power consumption: 45 µA typ. at 5 V
• Rail-to-rail input and output
The TSV52x and TSV52xA series offer an
outstanding speed/power consumption ratio,
1.15 MHz gain bandwidth product while
consuming only 45 µA at 5 V. The devices are
housed in the smallest industrial packages.
These features make the TSV52x, TSV52xA
family ideal for sensor interfaces, battery supplied
and portable applications. The wide temperature
range and high ESD tolerance facilitate their use
in harsh automotive applications.
• Low input bias current: 1 pA typ.
• Supply voltage: 2.7 to 5.5 V
• Low offset voltage: 800 µV max.
• Unity gain stable on 100 pF capacitor
Table 1. Device summary
• Automotive grade
Benefits
• Increased lifetime in battery powered
applications
• Easy interfacing with high impedance sensors
April 2017
This is information on a product in full production.
Standard Vio
Enhanced Vio
Single
TSV521
TSV521A
Dual
TSV522
TSV522A
Quad
TSV524
TSV524A
DocID022743 Rev 3
1/27
www.st.com
Contents
TSV52x, TSV52xA
Contents
1
Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
4.1
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2
Common-mode voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3
Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4
Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5
Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6
Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7
Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.8
PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.9
Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1
SC705 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2
DFN8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3
MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4
QFN16 3x3 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5
TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2/27
DocID022743 Rev 3
TSV52x, TSV52xA
Package pin connections
Figure 1. Pin connections for each package (top view)
IN+
1
VCC-
2
IN-
3
5
VCC+
4
OUT
TSV521
SC70-5
OUT1
1
IN1-
2
8
VCC+
OUT1
1
8
VCC+
7
OUT2
IN1-
2
7
OUT2
NC
IN1+
3
6
IN2-
IN1+
3
6
IN2IN2
VCC-
4
5
IN2+
VCC
VCC-
4
5
IN2
IN2+
TSV522
MiniSO8
IN1+
1
VCC
VCC+
2
IN1-
OUT1
OUT4
IN4-
TSV522
DFN8
16
15
14
13
12
IN4+
11
VCC
VCC-
NC
NC
IN2+
4
9
IN3+
5
6
7
8
IN3-
10
OUT3
3
OUT2
NC
IN2-
1
Package pin connections
TSV524
TSSOP14
TSV524
QFN16
1. The exposed pads of the DFN8 (2x2) and QFN16 (3x3) can be connected to VCC- or left floating.
DocID022743 Rev 3
3/27
27
Absolute maximum ratings and operating conditions
2
TSV52x, TSV52xA
Absolute maximum ratings and operating conditions
Table 2. Absolute maximum ratings (AMR)
Symbol
VCC
Vid
Vin
Iin
Tstg
Rthja
Tj
Parameter
Supply voltage
(2)
±VCC
V
(3)
VCC- - 0.2 to VCC++ 0.2
(4)
10
mA
-65 to +150
°C
Input voltage
Storage temperature
Thermal resistance junction-to-ambient
SC70-5
DFN8 2x2
QFN16 3x3
MiniSO8
TSSOP14
(5)(6)
205
57
45
190
100
Maximum junction temperature
HBM: human body
MM: machine
ESD
Unit
6
Differential input voltage
Input current
Value
(1)
model(7)
model(8)
model(9)
°C/W
150
°C
4
kV
300
V
CDM: charged device
(all packages except SC70-5 and DFN8)
1.5
CDM: charged device model (SC70-5 and DFN8)(9)
1.3
Latch-up immunity
200
kV
mA
1. All voltage values, except differential voltages are with respect to network ground terminal.
2. Differential voltages are the non inverting input terminal with respect to the inverting input terminal.
3. VCC - Vin must not exceed 6 V, Vin must not exceed 6 V.
4. Input current must be limited by a resistor in series with the inputs.
5. Short-circuits can cause excessive heating and destructive dissipation.
6. Rth are typical values.
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for
all couples of pin combinations with other pins floating.
8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two
pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin
combinations with other pins floating.
9. Charged device model: all pins plus package are charged together to the specified voltage and then
discharged directly to ground.
Table 3. Operating conditions
Symbol
4/27
Parameter
VCC
Supply voltage
Vicm
Common-mode input voltage range
Toper
Operating free air temperature range
Value
2.7 to 5.5
DocID022743 Rev 3
VCC- - 0.1 to VCC+ + 0.1
-40 to +125
Unit
V
°C
TSV52x, TSV52xA
3
Electrical characteristics
Electrical characteristics
Table 4. Electrical characteristics at VCC+ = +2.7 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and
RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
TSV52xA, T = 25 °C
800
TSV52xA, -40 °C < T < 125 °C
2600
µV
Vio
Offset voltage
TSV52x, T = 25 °C
1.5
TSV52x, -40 °C < T < 125 °C
3.3
mV
Input offset voltage drift
-40 °C < T < 125 °C(1)
3
18
Input offset current
(Vout = VCC/2)
T = 25 °C
1
10(3)
Iio
-40° C < T < 125 °C
1
100(3)
T = 25 °C
1
10(3)
Iib
Input bias current
(Vout = VCC/2)
-40 °C < T < 125 °C
1
100(3)
ΔVio/ΔT
Common-mode rejection
ratio 20 log (ΔVic/ΔVio)
Vic = -0.1 V to VCC+0.1V,
Vout = VCC/2, RL = 1 MΩ
T = 25 °C
50
-40 °C < T < 125 °C
46
Large signal voltage gain
Vout = 0.5 V to (VCC - 0.5V),
RL = 1 MΩ
T = 25 °C
90
Avd
-40 °C < T < 125 °C
60
VOH
High level output voltage
T = 25 °C
-40 °C < T < 125 °C
3
35
50
Low level output voltage
T = 25 °C
-40 °C < T < 125 °C
6
35
50
CMR
µV/°C
pA
72
dB
105
mV
VOL
Isink
Iout
Isource
ICC
Vout = VCC, T = 25 °C
12
Vout = VCC, -40 °C < T < 125 °C
8
Vout = 0 V, T = 25 °C
12
Vout = 0 V, -40 °C < T < 125 °C
8
22
mA
Supply current (per channel) T = 25 °C
Vout = VCC/2, RL > 1 MΩ
-40 °C < T < 125 °C
18
30
51
30
51
µA
AC performance
GBP
Gain bandwidth product
Fu
Unity gain frequency
Φm
Phase margin
Gm
Gain margin
SR
Slew rate
0.62
RL = 10 kΩ, CL = 100 pF
RL = 10 kΩ, CL = 100 pF,
Vout = 0.5 V to VCC - 0.5 V
DocID022743 Rev 3
1
MHz
900
kHz
55
degrees
7
dB
0.74
V/µs
5/27
27
Electrical characteristics
TSV52x, TSV52xA
Table 4. Electrical characteristics at VCC+ = +2.7 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and
RL = 10 kΩ connected to VCC/2 (unless otherwise specified) (continued)
Symbol
en
THD+N
Parameter
Conditions
Equivalent input noise
voltage
f = 1 kHz
f = 10 kHz
Total harmonic distortion +
noise
Follower configuration, fin = 1 kHz,
RL = 100 kΩ, Vicm = VCC/2,
BW = 22 kHz, Vout = 1 Vpp
Min.
Typ.
Max.
Unit
61
43
nV
-----------Hz
0.003
%
Table 5. Electrical characteristics at VCC+ = +3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and
RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
TSV52xA, T = 25 °C
600
TSV52xA, -40 °C < T < 125 °C
2400
µV
Vio
Offset voltage
TSV52x, T = 25 °C
1.3
TSV52x, -40 °C < T < 125 °C
3.1
mV
Input offset voltage drift
-40 °C < T < 125 °C(1)
Long term input offset
voltage drift
T = 25 °C(2)
Input offset current
(Vout = VCC/2)
T = 25 °C
1
10(3)
Iio
-40 °C < T < 125 °C
1
100(3)
T = 25 °C
1
10(3)
Iib
Input bias current
(Vout = VCC/2)
-40 °C < T < 125 °C
1
100(3)
ΔVio/ΔT
ΔVio
CMR
Common-mode rejection
ratio 20 log (ΔVic/ΔVio)
Vic = -0.1 V to VCC +0.1 V,
Vout = VCC/2, RL = 1 MΩ
3
18
μV
---------------------------
0.3
T = 25 °C
51
-40 °C < T < 125 °C
47
µV/°C
month
pA
73
dB
Avd
Large signal voltage gain
T = 25 °C
Vout = 0.5 V to (VCC - 0.5 V),
-40 °C < T < 125 °C
RL = 1 MΩ
VOH
High level output voltage
T = 25 °C
-40 °C < T < 125 °C
3
35
50
Low level output voltage
T = 25 °C
-40 °C < T < 125 °C
7
35
50
91
106
63
mV
VOL
Isink
Iout
Isource
ICC
6/27
Vout = VCC, T = 25 °C
20
Vout = VCC, -40 °C < T < 125 °C
17
Vout = 0 V, T = 25 °C
19
Vout = 0 V, -40 °C < T < 125 °C
17
Supply current (per channel) T = 25 °C
Vout = VCC/2, RL > 1 MΩ
-40 °C < T < 125 °C
DocID022743 Rev 3
31
mA
27
32
55
32
55
µA
TSV52x, TSV52xA
Electrical characteristics
Table 5. Electrical characteristics at VCC+ = +3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and
RL = 10 kΩ connected to VCC/2 (unless otherwise specified) (continued)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
0.64
1
MHz
900
kHz
55
degrees
7
dB
0.75
V/μs
60
42
nV
-----------Hz
0.003
%
AC performance
GBP
Gain bandwidth product
Fu
Unity gain frequency
Φm
Phase margin
Gm
Gain margin
SR
Slew rate
RL = 10 kΩ, CL = 100 pF,
Vout = 0.5 V to VCC - 0.5 V
en
Equivalent input noise
voltage
f = 1 kHz
f = 10 kHz
Total harmonic distortion +
noise
Follower configuration, fin = 1 kHz,
RL = 100 kΩ, Vicm = VCC/2,
BW = 22 kHz, Vout = 1 Vpp
THD+N
RL = 10 kΩ, CL = 100 pF
Table 6. Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C,
and RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
TSV52xA, T = 25 °C
600
TSV52xA, -40 °C < T < 125 °C
2400
µV
Vio
Offset voltage
TSV52x, T = 25 °C
1
mV
TSV52x, -40 °C < T < 125 °C
ΔVio/ΔT
ΔVio
Input offset voltage drift
-40 °C < T < 125 °C(1)
Long term input offset
voltage drift
T = 25 °C(2)
Iio
Input offset current
(Vout = VCC/2)
Iib
Input bias current
(Vout = VCC/2)
CMR1
CMR2
2.8
3
18
μV
---------------------------
0.7
month
(3)
T = 25 °C
1
10
-40 °C < T < 125 °C
1
100(3)
T = 25 °C
1
10(3)
-40 °C < T < 125 °C
1
100(3)
Common-mode rejection
ratio 20 log (ΔVic/ΔVio)
Vic = -0.1 V to VCC +0.1 V,
Vout = VCC/2, RL = 1 MΩ
T = 25 °C
54
-40 °C < T < 125 °C
50
Common-mode rejection
ratio 20 log (ΔVic/ΔVio)
Vic = 1 V to VCC -1 V,
Vout = VCC/2, RL = 1 MΩ
T = 25 °C
63
-40 °C < T < 125 °C
58
µV/°C
pA
76
dB
DocID022743 Rev 3
84
7/27
27
Electrical characteristics
TSV52x, TSV52xA
Table 6. Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C,
and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) (continued)
Symbol
SVR
Parameter
Supply voltage rejection
ratio 20 log (ΔVCC/ΔVio)
VCC = 2.7 V to 5.5 V,
Vout = VCC/2
Conditions
Min.
Typ.
T = 25 °C
65
87
-40 °C < T < 125 °C
60
Max.
Unit
dB
Avd
T = 25 °C
Large signal voltage gain
Vout = 0.5 V to (VCC - 0.5 V),
-40 °C < T < 125 °C
RL = 1 MΩ
94
109
VOH
High level output voltage
T = 25 °C
-40 °C < T < 125 °C
5
35
50
Low level output voltage
T = 25 °C
-40 °C < T < 125 °C
9
35
50
68
mV
VOL
Isink
Iout
Isource
ICC
Vout = VCC, T = 25 °C
36
Vout = VCC, -40 °C < T < 125 °C
27
Vout = 0 V, T = 25 °C
36
Vout = 0 V, -40 °C < T < 125 °C
27
55
mA
Supply current (per channel) T = 25 °C
Vout = VCC/2, RL > 1 MΩ
-40 °C < T < 125 °C
55
45
60
45
60
µA
AC performance
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
1.15
MHz
Fu
Unity gain frequency
RL = 10 kΩ, CL = 100 pF
900
kHz
Φm
Phase margin
RL = 10 kΩ, CL = 100 pF
55
degrees
Gm
Gain margin
RL = 10 kΩ, CL = 100 pF
7
dB
SR
Slew rate
RL = 10 kΩ, CL = 100 pF,
Vout = 0.5 V to VCC - 0.5V
0.89
V/μs
en
Low-frequency peak-topeak input noise
Bandwidth: f = 0.1 to 10 Hz
14
µVpp
en
Equivalent input noise
voltage
f = 1 kHz
f = 10 kHz
57
39
nV
-----------Hz
Total harmonic distortion +
noise
Follower configuration, fin = 1 kHz,
RL = 100 kΩ, Vicm = VCC/2,
BW = 22 kHz, Vout = 1 Vpp
0.002
%
GBP
THD+N
0.73
1. See Section 4.6: Input offset voltage drift over temperature.
2. Typical value is based on the Vio drift observed after 1000 h at 125 °C extrapolated to 25 °C using the Arrhenius law and
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.
3. Guaranteed by design.
8/27
DocID022743 Rev 3
TSV52x, TSV52xA
Electrical characteristics
Figure 2. Supply current vs. supply voltage at
Vicm = VCC/2
Figure 3. Input offset voltage distribution at
VCC = 5 V, Vicm = 2.5 V
9LRGLVWULEXWLRQDW7 &IRU9&& 99LFP 9
3RSXODWLRQ
$0
Figure 4. Input offset voltage temperature
coefficient distribution
Figure 5. Input offset voltage vs. input
Common-mode voltage at VCC = 5 V
9LFP 9&&
9&& 9
3RSXODWLRQ
7 &
7 &
7 &
9&& 9
$0
Figure 7. Output current vs. output voltage at
VCC = 2.7 V
/LPLWIRU769[$
7 &
7 &
2XWSXWFXUUHQWP$
/LPLWIRU769;
7 &
7 &
7 &
9&& 99LFP 9
9LFP9
$0
Figure 6. Input offset voltage vs. temperature at
VCC = 5 V
7 &
$0
DocID022743 Rev 3
9&& 9
2XWSXWYROWDJH9
$0
9/27
27
Electrical characteristics
TSV52x, TSV52xA
Figure 8. Output current vs. output voltage at
VCC = 5.5 V
7 &
7 &
7 &
*DLQG%
7 & 7 &
*DLQ
9&& 99LFP 9*
&/ S)9UO 9&&
3KDVH
9&& 9
7 &
7 &
7 &
7 &
2XWSXWYROWDJH9
)UHTXHQF\N+]
$0
$0
Figure 10. Bode diagram at VCC = 2.7 V,
RL = 2 k Ω
Figure 11. Bode diagram at VCC = 5.5 V,
RL = 10 kΩ
7 &
7 &
*DLQ
3KDVH
9&& 99LFP 9*
&/ S)9UO 9&&
*DLQG%
3KDVH
3KDVH
7 &
*DLQ
7 &
7 &
7 &
*DLQG%
9&& 99LFP 9*
&/ S)9UO 9&&
)UHTXHQF\N+]
)UHTXHQF\N+]
$0
$0
Figure 12. Bode diagram at VCC = 5.5 V,
RL = 2 k Ω
Figure 13. Noise vs. frequency
7 &
7 &
*DLQ
3KDVH
3KDVH
*DLQG%
9&& 99LFP 9*
&/ S)9UO 9&&
)UHTXHQF\N+]
)UHTXHQF\+]
$0
10/27
9&& 99LFP 9
7DPE &
7 &
3KDVH
2XWSXWFXUUHQWP$
3KDVH
Figure 9. Bode diagram at VCC = 2.7 V,
RL = 10 kΩ
DocID022743 Rev 3
$0
TSV52x, TSV52xA
Electrical characteristics
Figure 14. Positive slew rate vs. supply voltage Figure 15. Negative slew rate vs. supply voltage
&/ S)
9LQIURP9WR9&&9
65FDOFXODWHGIURPWR
7 &
7 &
7 &
6XSSO\YROWDJH9
$0
Figure 16. THD+N vs. frequency at VCC = 2.7 V
Figure 17. THD+N vs. frequency at VCC = 5.5 V
9LQ 9SS
*DLQ
9LFP 9&&
7+'1
7+'1
9LQ 9SS
*DLQ
9LFP 9&&
(
(
)UHTXHQF\+]
$0
$0
Figure 19. THD+N vs. output voltage at
VCC = 5.5 V
7+'1
7+'1
Figure 18. THD+N vs. output voltage at
VCC = 2.7 V
(
I N+]
*DLQ
%: N+]
9LFP 9&&
)UHTXHQF\+]
I N+]
*DLQ
%: N+]
9LFP 9&&
(
2XWSXWYROWDJH9SS
2XWSXWYROWDJH9SS
$0
DocID022743 Rev 3
$0
11/27
27
Electrical characteristics
TSV52x, TSV52xA
Figure 20. Output impedance versus frequency in closed-loop configuration
9&& 9WR9
2VFOHYHO 9506
*
7 &
2XWSXWLPSHGDQFH
)UHTXHQF\N+]
$0
Figure 21. Response to a 100 mV input step for Figure 22. Response to a 100 mV input step for
gain = 1 at VCC = 5.5 V rising edge
gain = 1 at VCC = 5.5 V falling edge
VCC = 5.5 V, Vicm = 2.75 V
RL = 10 kΩ, CL = 100 pF
0.5 µs/div., 20 mV/div.
VCC = 5.5 V, Vicm = 2.75 V
RL = 10 kΩ, CL = 100 pF
0.5 µs/div., 20 mV/div.
Figure 23. PSRR vs. frequency at VCC = 2.7 V
Figure 24. PSRR vs. frequency at VCC = 5.5 V
3655G%
3655G%
9&& 99LFP 9*
&/ S)9ULSSOH P9SS
9&& 99LFP 9*
&/ S)9ULSSOH P9SS
)UHTXHQF\+]
)UHTXHQF\+]
$0
12/27
DocID022743 Rev 3
$0
TSV52x, TSV52xA
Application information
4
Application information
4.1
Operating voltages
The amplifiers of the TSV52x, TSV52xA series can operate from 2.7 V to 5.5 V. Their
parameters are fully specified for 2.7 V, 3.3 V and 5 V power supplies. However, the
parameters are very stable in the full VCC range and several characterization curves show
the TSV52x, TSV52xA device characteristics at 2.7 V. Additionally, the main specifications
are guaranteed in extended temperature ranges from -40 to +125 °C.
4.2
Common-mode voltage range
The TSV52x, TSV52xA devices are built with two complementary PMOS and NMOS input
differential pairs. The devices have a rail-to-rail input and the input Common-mode range is
extended from VCC- - 0.1 V to VCC+ + 0.1 V.
The N channel pair is active for input voltage close to the positive rail typically (VCC+ - 0.7 V)
to 100 mv above the positive rail.
The P channel pair is active for input voltage close to the negative rail typically 100 mV
below the negative rail to VCC- + 0.7 V.
And between VCC- + 0.7 V and VCC+ - 0.7 V the both N and P pairs are active.
When the both pairs work together it allows to increase the speed of the TSV52x, TSV52xA
devices. This architecture improves the merit factor of the whole device. In the transition
region, the performance of CMR, SVR, Vio (Figure 25 and Figure 26) and THD is slightly
degraded.
Figure 25. Input offset voltage vs. input
common-mode at VCC = 2.7 V
Figure 26. Input offset voltage vs. input
common-mode at VCC = 5.5 V
9LRP9
9LRP9
9LFP9
9LFP9
$0
DocID022743 Rev 3
$0
13/27
27
Application information
4.3
TSV52x, TSV52xA
Rail-to-rail input
The TSV52x, TSV52xA series are guaranteed without phase reversal as shown in
Figure 28.
It is extremely important that the current flowing in the input pin does not exceed 10 mA. In
order to limit this current, a serial resistor can be added on the Vin path.
Figure 27. Phase reversal test schematic
Figure 28. No phase reversal
9
B
9&&
9RXW
9&&
9RXW9
9LQS
9
9&& 9
9LQQ 9
9LQS9
$0
4.4
$0
Rail-to-rail output
The operational amplifier output levels can go close to the rails: 35 mV maximum above and
below the rail when connected to a 10 kΩ resistive load to VCC/2.
4.5
Driving resistive and capacitive loads
To drive high capacitive loads, adding an in series resistor at the output can improve the
stability of the device (see Figure 29 for the recommended in series value). Once the in
series resistor has been selected, the stability of the circuit should be tested on the bench
and simulated with simulation models. The Rload is placed in parallel with the capacitive
load. The Rload and the in series resistor create a voltage divider which introduces an error
proportional to the ratio Rs/Rload. By keeping Rs as low as possible, this error is generally
negligible.
14/27
DocID022743 Rev 3
TSV52x, TSV52xA
Application information
Figure 29. In series resistor versus capacitive load
6WDEOH
8QVWDEOH
9&& 99LFP 97 &5ORDG
0LQLPXPVHULDOUHVLVWRUWREHDGGHGWRDJLYHQ
FDSDFLWLYHORDGLQRUGHUWRHQVXUHVWDELOLW\
&DSDFLWLYHORDGQ)
$0
4.6
Input offset voltage drift over temperature
The maximum input voltage drift over the temperature variation is defined as the offset
variation related to offset value measured at 25 °C. The operational amplifier is one of the
main circuits of the signal conditioning chain, and the amplifier input offset is a major
contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated
during production at application level. The maximum input voltage drift over temperature
enables the system designer to anticipate the effect of temperature variations.
The maximum input voltage drift over temperature is computed using Equation 1.
Equation 1
ΔV io
V io ( T ) – V io ( 25°C )
------------ = max ------------------------------------------------ΔT
T – 25°C
with T = -40 °C and 125 °C.
The datasheet maximum value is guaranteed by a measurement on a representative
sample size ensuring a Cpk (process capability index) greater than 1.33.
DocID022743 Rev 3
15/27
27
Application information
4.7
TSV52x, TSV52xA
Long term input offset voltage drift
To evaluate product reliability, two types of stress acceleration are used:
•
Voltage acceleration, by changing the applied voltage
•
Temperature acceleration, by changing the die temperature (below the maximum
junction temperature allowed by the technology) with the ambient temperature.
The voltage acceleration has been defined based on JEDEC results, and is defined using
Equation 2.
Equation 2
A FV = e
β ⋅ ( VS – VU )
Where:
AFV is the voltage acceleration factor
β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)
VS is the stress voltage used for the accelerated test
VU is the voltage used for the application
The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.
Equation 3
A FT = e
Ea 1
1
------ ⋅ ------ – ------
k T U T S
Where:
AFT is the temperature acceleration factor
Ea is the activation energy of the technology based on the failure rate
k is the Boltzmann constant (8.6173 x 10-5 eV.K-1)
TU is the temperature of the die when VU is used (K)
TS is the temperature of the die under temperature stress (K)
The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and
the temperature acceleration factor (Equation 4).
Equation 4
A F = A FT × A FV
AF is calculated using the temperature and voltage defined in the mission profile of the
product. The AF value can then be used in Equation 5 to calculate the number of months of
use equivalent to 1000 hours of reliable stress duration.
16/27
DocID022743 Rev 3
TSV52x, TSV52xA
Application information
Equation 5
Months = A F × 1000 h × 12 months ⁄ ( 24 h × 365.25 days )
To evaluate the op-amp reliability, a follower stress condition is used where VCC is defined
as a function of the maximum operating voltage and the absolute maximum rating (as
recommended by JEDEC rules).
The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at
different measurement conditions (see Equation 6).
Equation 6
V CC = maxV op with V icm = V CC ⁄ 2
The long term drift parameter (ΔVio), estimating the reliability performance of the product, is
obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the
calculated number of months (Equation 7).
Equation 7
V io drift
ΔV io = -----------------------------( months )
where Vio drift is the measured drift value in the specified test conditions after 1000 h stress
duration.
4.8
PCB layouts
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible
to the power supply pins.
4.9
Macromodel
Accurate macromodels of the TSV52x, TSV52xA devices are available on
STMicroelectronics™ website at www.st.com. These models are a trade-off between
accuracy and complexity (that is, time simulation) of the TSV52x, TSV52xA operational
amplifiers. They emulate the nominal performance of a typical device within the specified
operating conditions mentioned in the datasheet. They also help to validate a design
approach and to select the appropriate operational amplifier, but they do not replace onboard measurements.
DocID022743 Rev 3
17/27
27
Package information
5
TSV52x, TSV52xA
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
18/27
DocID022743 Rev 3
TSV52x, TSV52xA
5.1
Package information
SC705 package information
Figure 30. SC70-5 package outline
SIDE VIEW
DIMENSIONS IN MM
GAUGE PLANE
COPLANAR LEADS
SEATING PLANE
TOP VIEW
Table 7. SC70-5 package mechanical data
Dimensions
Ref
Millimeters
Min.
Typ.
Inches
Max.
Min.
0.032
A
0.80
1.10
A1
0
0.10
A2
0.80
b
0.90
Typ.
Max.
0.043
0.004
1.00
0.032
0.035
0.15
0.30
0.006
0.012
c
0.10
0.22
0.004
0.009
D
1.80
2.00
2.20
0.071
0.079
0.087
E
1.80
2.10
2.40
0.071
0.083
0.094
E1
1.15
1.25
1.35
0.045
0.049
0.053
e
0.65
0.025
e1
1.30
0.051
L
0.26
<
0°
0.36
0.46
0.010
0.014
0.039
0.018
8°
DocID022743 Rev 3
19/27
27
Package information
5.2
TSV52x, TSV52xA
DFN8 2x2 package information
Figure 31. DFN8 2x2x0.6, 8 pitch, 0.5 mm package outline
Table 8. DFN8 2x2x0.6, 8 pitch, 0.5 mm package mechanical data
Dimensions
Ref.
A
Millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
0.51
0.55
0.60
0.020
0.022
0.024
A1
0.05
A3
0.002
0.15
0.006
b
0.18
0.25
0.30
0.007
0.010
0.012
D
1.85
2.00
2.15
0.073
0.079
0.085
D2
1.45
1.60
1.70
0.057
0.063
0.067
E
1.85
2.00
2.15
0.073
0.079
0.085
E2
0.75
0.90
1.00
0.030
0.035
0.039
e
20/27
Inches
0.50
0.020
L
0.425
0.017
ddd
0.08
0.003
DocID022743 Rev 3
TSV52x, TSV52xA
Package information
Figure 32. DFN8 2x2x0.6, 8 pitch, 0.5 mm footprint recommendation
DocID022743 Rev 3
21/27
27
Package information
5.3
TSV52x, TSV52xA
MiniSO8 package information
Figure 33. MiniSO8 package outline
0LQL62/
Table 9. MiniSO8 package mechanical data
Dimensions
Symbol
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.10
A1
0
A2
0.75
b
Max.
0.043
0.15
0
0.95
0.030
0.22
0.40
0.009
0.016
c
0.08
0.23
0.003
0.009
D
2.80
3.00
3.20
0.11
0.118
0.126
E
4.65
4.90
5.15
0.183
0.193
0.203
E1
2.80
3.00
3.10
0.11
0.118
0.122
e
L
0.85
0.65
0.40
0.60
0.006
0.033
0.80
0.016
0.024
0.95
0.037
L2
0.25
0.010
ccc
0°
0.037
0.026
L1
k
22/27
Inches
8°
0.10
DocID022743 Rev 3
0°
0.031
8°
0.004
TSV52x, TSV52xA
5.4
Package information
QFN16 3x3 package information
Figure 34. QFN16 3x3x0.9 mm, pad 1.7 package outline
9)431/
DocID022743 Rev 3
23/27
27
Package information
TSV52x, TSV52xA
Table 10. QFN16 3x3x0.9 mm, pad 1.7 package mechanical data
Dimensions
Symbol
A
Millimeters
Nom.
Min.
Max.
Nom.
Min.
Max.
0.90
0.80
1.00
0.035
0.032
0.039
0.00
0.05
0.000
0.002
0.007
0.012
0.114
0.122
0.061
0.071
0.114
0.122
0.061
0.071
0.012
0.020
A1
A3
0.20
b
D
3.00
D2
E
3.00
E2
e
L
Inches
0.008
0.18
0.30
2.90
3.10
1.50
1.80
2.90
3.10
1.50
1.80
0.50
0.118
0.118
0.020
0.30
0.50
Figure 35. QFN16 3x3x0.9 mm, pad 1.7 footprint recommendation
4)1)3
24/27
DocID022743 Rev 3
TSV52x, TSV52xA
5.5
Package information
TSSOP14 package information
Figure 36. TSSOP14 body 4.40 mm, lead pitch 0.65 mm package outline
DDD
Table 11. TSSOP14 body 4.40 mm, lead pitch 0.65 mm package mechanical data
Dimensions
Symbol
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.20
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0089
D
4.90
5.00
5.10
0.193
0.197
0.201
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.176
e
L
0.65
0.45
L1
k
aaa
1.00
0.60
0.0256 BSC
0.75
1.00
0°
8°
0°
0.10
0.018
DocID022743 Rev 3
8°
0.024
0.030
25/27
27
Ordering information
6
TSV52x, TSV52xA
Ordering information
Table 12. Order codes
Order code
Temperature range
Package
TSV521ICT
TSV522IQ2T
TSV522IST
-40 to 125 °C
TSV524IQ4T
TSV524IPT
TSV522IYST
TSV524IYPT
-40 to 125 °C
Automotive grade(1)
Packing
Marking
SC70-5
K1G
DFN8 2 x 2
K1G
MiniSO8
K1G
QFN16 3 x 3
K1G
TSSOP14
TSV524
MiniSO8
K1H
TSSOP14
TSV524Y
Tape and reel
TSV521AICT
TSV522AIQ2T
TSV522AIST
-40 to 125 °C
TSV524AIQ4T
TSV524AIPT
TSV522AIYST
TSV524AIYPT
-40 to 125 °C
Automotive grade(1)
SC70-5
K1K
DFN8 2 x 2
K1K
MiniSO8
K1K
QFN16 3 x 3
K1K
TSSOP14
TSV524A
MiniSO8
K1L
TSSOP14
TSV524AY
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC
Q001 and Q 002 or equivalent.
7
Revision history
Table 13. Document revision history
Date
Revision
19-Jun-2012
1
Initial release.
31-Jan-2014
2
Updated information of “Related products”
“Figure 1: Pin connections for each package (top view)”: added footnote 1.
“Section 4: Application information”: updated text to make it more readable
“Table 12”: updated automotive footnotes.
12-Apr-2017
3
Updated Table 8: “L” dimension changed from 0.5 mm to 0.425 mm.
26/27
Changes
DocID022743 Rev 3
TSV52x, TSV52xA
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved
DocID022743 Rev 3
27/27
27