0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSV620AICT

TSV620AICT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TSSOP6

  • 描述:

    IC OPAMP GP 1 CIRCUIT SC70-6

  • 数据手册
  • 价格&库存
TSV620AICT 数据手册
TSV620, TSV620A, TSV621, TSV621A Rail-to-rail input/output 29 µA 420 kHz CMOS operational amplifiers Datasheet - production data Description 5 VCC In+ 1 VDD 2 The TSV620, TSV620A, TSV621, and TSV621A are single operational amplifiers offering low voltage, low power operation, and rail-to-rail input and output. + _ In- 3 4 Out TSV621ICT/ILT SC70-5/SOT23-5 In+ 1 VCC- 2 + _ In- 3 With a very low input bias current and low offset voltage (800 µV maximum for the A version), the TSV62x is ideal for applications requiring precision. The device can operate at a power supply ranging from 1.5 to 5.5 V, and therefore suit battery-powered devices and extend their battery life. 6 VCC+ 5 SHDN 4 Out TSV620ICT/ILT SC70-6/SOT23-6 This product features an excellent speed/power consumption ratio, offering a 420 kHz gain bandwidth while consuming only 29 µA at a 5 V supply voltage. Features These operational amplifiers are unity gain stable for capacitive loads up to 100 pF. • Low supply voltage: 1.5 V–5.5 V • Rail-to-rail input and output The device is internally adjusted to provide very narrow dispersion of AC and DC parameters, especially power consumption, product gain bandwidth, and slew rate. • Low input offset voltage: 800 µV max (A version) • Low power consumption: 29 µA typ • Low power shutdown mode: 5 nA typ (TSV620) • Gain bandwidth product: 420 kHz typ • Unity gain stability • Micropackages: SC70-5/6, SOT23-5/6 • Low input bias current: 1 pA typ • Extended temperature range: -40 to 125 °C • 4 kV HBM Applications The TSV62x present high tolerance to ESD, sustaining 4 kV for the human body model. The device is offered in macropackages, SC70-6 and SOT23-6 for the TSV620 and SC70-5 and SOT23-5 for the TSV621. They are guaranteed for industrial temperature ranges from -40 °C to 125 °C. All these features make the TSV620, TSV620A, TSV621, and TSV621A ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering. • Battery-powered applications • Portable device • Signal conditioning • Active filtering • Medical instrumentation May 2017 This is information on a product in full production. DocID14912 Rev 3 1/24 www.st.com Contents Document header RPN(s) Contents 1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 3.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Shutdown function (TSV620) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 Optimization of DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.8 Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 SOT23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 SOT23-6 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 SC70-5 (or SOT323-5) package information . . . . . . . . . . . . . . . . . . . . . . 19 4.4 SC70-6 (or SOT323-6) package information . . . . . . . . . . . . . . . . . . . . . . 20 5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2/24 DocID14912 Rev 3 Document header RPN(s) 1 Absolute maximum ratings and operating conditions Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol VCC Vid Vin Iin SHDN Parameter Supply voltage Value (1) 6 Differential input voltage Input voltage (3) Input current (4) Unit (2) V ±VCC (VCC-) - 0.2 to (VCC+) + 0.2 (5) Shutdown voltage 10 mA (VCC-) - 0.2 to (VCC+) + 0.2 V -65 to 150 °C Tstg Storage temperature Rthja Thermal resistance junction to ambient (6) (7) SC70-5 SOT23-5 SOT23-6 SC70-6 205 250 240 232 Maximum junction temperature 150 °C 4 kV 300 V 1.5 kV 200 mA Tj (8) HBM: human body model ESD MM: machine model (9) CDM: charged device model (10) Latch-up immunity °C/W 1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. Vcc-Vin must not exceed 6 V. 4. Input current must be limited by a resistor in series with the inputs. 5. Vcc-SHDN must not exceed 6 V. 6. Short-circuits can cause excessive heating and destructive dissipation. 7. Rth are typical values. 8. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 9. Machine mode: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating. 10. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground. Table 2. Operating conditions Symbol Parameter VCC Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Value 1.5 to 5.5 DocID14912 Rev 3 (VCC-) - 0.1 to (VCC+) + 0.1 -40 to +125 Unit V °C 3/24 24 Electrical characteristics 2 Document header RPN(s) Electrical characteristics Table 3. Electrical characteristics at VCC+ = 1.8 V with VDD = 0 V, Vicm = VCC/2, Top = 25 °C, and RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Offset voltage TSV62x TSV62xA 4 0.8 Tmin < Top < Tmax TSV62x TSV62xA 6 2.8 mV ∆Vio/∆T Input offset voltage drift Iio Input offset current (Vout = VCC/2) Iib Input bias current (Vout = VCC/2) CMR Common mode rejection ratio 20 log (ΔVic/ΔVio) Avd Large signal voltage gain VOH High level output voltage (VOH = VCC - Vout) VOL Low level output voltage Isink Iout Isource ICC Supply current (per operator) 2 1 Tmin < Top < Tmax Tmin < Top < Tmax 0 V to 1.8 V, Vout = 0.9 V 53 Tmin < Top < Tmax 51 RL= 10 kΩ, Vout= 0.5 V to 1.3 V 78 Tmin < Top < Tmax 73 RL = 10 kΩ µV/°C 10 (1) 1 100 1 10 (1) 1 100 74 dB 95 5 Tmin < Top < Tmax 35 50 RL = 10 kΩ pA 4 Tmin < Top < Tmax 35 mV 50 Vo = 1.8 V 6 Tmin < Top < Tmax 4 Vo = 0 V 6 Tmin < Top < Tmax 4 No load, Vout = VCC/2 12 mA 10 25 Tmin < Top < Tmax 31 33 µA AC performance GBP Gain bandwidth product Fu Unity gain frequency φm Phase margin Gm Gain margin SR Slew rate RL = 10 kΩ, CL = 100 pF, f = 100 kHz 340 kHz 280 RL = 10 kΩ, CL = 100 pF RL = 10 kΩ, CL = 100 pF, Av = 1 1. Guaranteed by design. 4/24 275 DocID14912 Rev 3 0.084 45 Degrees 9 dB 0.11 0.14 V/µs Document header RPN(s) Electrical characteristics Table 4. Shutdown characteristics VCC = 1.8 V Symbol Parameter Conditions Min. Typ. Max. 2.5 50 Unit DC performance ICC Supply current in shutdown mode (all operators) SHDN = VCCTmin < Top < 85° C 200 Tmin < Top < 125° C 1.5 ton Amplifier turn-on time RL = 2 kΩ, Vout = (VCC-) to VCC + 0.2 300 toff Amplifier turn-off time RL = 2 kΩ, Vout = (VCC+) - 0.5 to (VCC+) + 0.7 30 VIH SHDN logic high VIL SHDN logic low IIH SHDN current high SHDN = VCC+ 10 IIL SHDN current low SHDN = VCC- 10 Output leakage in shutdown mode SHDN = VCC- 50 Tmin < Top < 125 °C 1 IOLeak µA ns 1.3 0.5 DocID14912 Rev 3 nA V pA nA 5/24 24 Electrical characteristics Document header RPN(s) Table 5. VCC+ = 3.3 V, VCC- = 0 V, Vicm = VCC/2, Top = 25° C, RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance TSV62x TSV62xA Vio Offset voltage 4 0.8 mV Tmin < Top < Tmax TSV62x TSV62xA 6 2.8 ∆Vio/∆T Input offset voltage drift Iio Iib CMR Input offset current Input bias current Common mode rejection ratio 20 log (ΔVic/ΔVio) Avd Large signal voltage gain VOH High level output voltage (VOH = VCC - Vout) VOL Low level output voltage Isink Iout Isource ICC Supply current (per operator) 2 Tmin < Top < Tmax Tmin < Top < Tmax 0 V to 3.3 V, Vout = 1.75 V 57 Tmin < Top < Tmax 53 RL=10 kΩ, Vout = 0.5 V to 2.8 V 81 Tmin < Top < Tmax 76 RL = 10 kΩ µV/°C 1 10 (1) 1 100 1 10 (1) 1 100 79 dB 98 5 Tmin < Top < Tmax 35 50 RL = 10 kΩ pA 4 Tmin < Top < Tmax 35 mV 50 Vo = 5 V 30 Tmin < Top < Tmax 25 Vo = 0 V 30 Tmin < Top < Tmax 25 No load, Vout = 2.5 V 45 mA 38 26 Tmin < Top < Tmax 33 35 µA AC performance GBP Gain bandwidth product Fu Unity gain frequency φm Phase margin Gm Gain margin SR Slew rate RL = 10 kΩ, CL = 100 pF, f = 100 kHz 380 kHz 310 RL = 10 kΩ, CL = 100 pF RL = 10 kΩ, CL = 100 pF, AV = 1 1. Guaranteed by design. 6/24 310 DocID14912 Rev 3 0.094 45 Degrees 9 dB 0.12 V/µs Document header RPN(s) Electrical characteristics Table 6. VCC+ = 5 V, VCC- = 0 V, Vicm = VCC/2, Top = 25° C, RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit DC performance TSV62x TSV62xA Vio Offset voltage 4 0.8 mV Tmin < Top < Tmax TSV62x TSV62xA 6 2.8 ∆Vio/∆T Input offset voltage drift Iio Iib Input offset current Input bias current 2 Tmin < Top < Tmax Tmin < Top < Tmax 0 V to 5 V, Vout = 2.5 V 60 Tmin < Top < Tmax 55 SVR Supply voltage rejection ratio 20 VCC = 1.8 to 5 V log (ΔVCC/ΔVio) Tmin < Top < Tmax 75 Avd Large signal voltage gain VOH High level output voltage (VOH = VCC - Vout) CMR Common mode rejection ratio 20 log (ΔVic/ΔVio) VOL Low level output voltage Isink Iout Isource ICC Supply current (per operator) µV/°C 1 10 (1) 1 100 1 10 (1) 1 100 80 102 dB 73 RL=10 kΩ, Vout = 0.5 V to 4.5 V 85 Tmin < Top < Tmax 80 RL = 10 kΩ 98 7 Tmin < Top < Tmax 35 50 RL = 10 kΩ pA 6 Tmin < Top < Tmax 35 mV 50 Vo = 5 V 40 69 Tmin < Top < Tmax 35 65 Vo = 0 V 40 74 Tmin < Top < Tmax 35 68 No load, Vout = 2.5 V 29 Tmin < Top < Tmax mA 36 38 µA AC performance GBP Gain bandwidth product Fu Unity gain frequency φm Phase margin Gm Gain margin SR Slew rate RL = 10 kΩ, CL = 100 pF, f = 100 kHz 350 420 kHz 360 RL = 10 kΩ, CL = 100 pF RL = 10 kΩ, CL = 100 pF, AV = 1 DocID14912 Rev 3 0.108 45 Degrees 9 dB 0.14 V/µs 7/24 24 Electrical characteristics Document header RPN(s) Table 6. VCC+ = 5 V, VCC- = 0 V, Vicm = VCC/2, Top = 25° C, RL connected to VCC/2 (unless otherwise specified) (continued) Symbol en THD Parameter Min. Equivalent input noise voltage f = 1 kHz Total harmonic distortion Av = 1, f = 1 kHz, RL= 100 kΩ, Vicm = Vcc/2, Vout = 2 Vpp Typ. Max. Unit 70 nV -----------Hz 0.004 % 1. Guaranteed by design. Table 7. Shutdown characteristics VCC = 5 V Symbol Parameter Conditions Min. Typ. Max. 5 50 Unit DC performance ICC SHDN = VCCTmin < Top < 85 °C 200 Tmin < Top < 125 °C 1.5 ton Amplifier turn-on time RL = 2 kΩ, Vout = (VCC-) to (VCC-) + 0.2 300 toff Amplifier turn-off time RL = 2 kΩ, Vout = (VCC+) - 0.5 to (VCC+) + 0.7 30 VIH SHDN logic high VIL SHDN logic low IIH SHDN current high SHDN = VCC+ 10 IIL SHDN current low SHDN = VCC- 10 Output leakage in shutdown mode SHDN = VCC- 50 Tmin < Top < 125 °C 1 IOLeak 8/24 Supply current in shutdown mode (all operators) µA ns 4.5 0.5 DocID14912 Rev 3 nA V pA nA Document header RPN(s) Electrical characteristics Figure 1. Input offset voltage vs input common Figure 2. Input offset voltage vs input common mode at VCC+ = 1.5 V mode at VCC+ = 5 V 0.5 0.4 0.3 Input Offset Voltage (mV) Input Offset Voltage (mV) 0.4 0.2 0.1 0.0 -0.1 -0.2 -0.3 0.0 -0.2 -0.4 -0.4 -0.5 -0.2 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Input Common Mode Voltage (V) 0.0 1.6 1.0 2.0 3.0 4.0 Input Common Mode Voltage (V) 5.0 Figure 5. Output current vs. output voltage at VCC+ = 5 V Figure 6. Voltage gain and phase vs. frequency at VCC+ = 1.5 V Phase (°) Gain (dB) DocID14912 Rev 3 Phase (°) Figure 4. Output current vs. output voltage at VCC += 1.5 V Gain (dB) Figure 3. Supply current vs. supply voltage at Vicm = VCC/2 9/24 24 Electrical characteristics Document header RPN(s) Figure 7. Voltage gain and phase vs. frequency at VCC+ = 5 V Figure 8. Phase margin vs. output current at VCC+ = 1.5 V and VCC+ = 5 V 90 80 Vcc=5V 70 Phase (°) Gain (dB) 60 Vcc=1.5V 50 40 30 20 Vicm=Vcc/2, Cl=100pF Rl=4.7kohms, T=25 C 10 0 -1.5 -0.5 0.0 0.5 1.0 1.5 Figure 10. Slew rate vs. supply voltage Slew rate (V/ s) Figure 9. Slew rate vs. supply voltage -1.0 Supply voltage (V) 10µV/div Figure 11. Distortion + noise vs. output voltage Figure 12. Distortion + noise vs. frequency 1 Vcc=1.5V Rl=10kΩ THD + N (%) THD + N (%) Vcc=1.5V Rl=10kohms Vcc=1.5V Rl=100kohms f=1kHz Gain=1 BW=22kHz Vicm=Vcc/2 Vcc=1.5V Rl=100kΩ 0.1 Vcc=5.5V Rl=10kohms Vcc=5.5V Rl=100kohms Ω 0.01 Ω 10 Output Voltage (Vpp) 10/24 DocID14912 Rev 3 100 1000 10000 Document header RPN(s) Electrical characteristics Input equivalent noise density (nV/VHz) Figure 13. Noise vs. frequency Vicm=4.5V Vicm=2.5V Vcc=5V T=25 C Frequency (Hz) DocID14912 Rev 3 11/24 24 Application information Document header RPN(s) 3 Application information 3.1 Operating voltages The TSV620, TSV620A, TSV621, and TSV621A can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8, 3.3, and 5 V power supplies. However, the parameters are very stable in the full VCC range and several characterization curves show the TSV62x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 °C to 125 °C. 3.2 Rail-to-rail input The TSV62x is built with two complementary PMOS and NMOS input differential pairs. The device has a rail-to-rail input and the input common mode range is extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V. The transition between the two pairs appears at VCC - 0.7 V. In the transition region, the performances of CMRR, PSRR, Vio and THD are slightly degraded (as shown in Figure 14 and Figure 15 for Vio vs. Vicm). Figure 14. Input offset voltage vs input common Figure 15. Input offset voltage vs input common mode at VCC+ = 1.5 V mode at VCC+ = 5 V 0.5 0.4 0.3 Input Offset Voltage (mV) Input Offset Voltage (mV) 0.4 0.2 0.1 0.0 -0.1 -0.2 -0.3 0.0 -0.2 -0.4 -0.4 -0.5 -0.2 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Input Common Mode Voltage (V) 1.6 0.0 1.0 2.0 3.0 4.0 Input Common Mode Voltage (V) 5.0 The device is guaranteed without phase reversal. 3.3 Rail-to-rail output The operational amplifier’s output level can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 kΩ resistive load to VCC/2. 12/24 DocID14912 Rev 3 Document header RPN(s) 3.4 Application information Shutdown function (TSV620) The operational amplifier is enabled when the SHDN pin is pulled high. To disable the amplifier, the SHDN pin must be pulled down to VCC-. When in shutdown mode, the amplifier output is in a high impedance state. The SHDN pin must never be left floating but tied to VCC+ or VCC-. The turn-on and turn-off times are calculated for an output variation of ±200 mV (Figure 16 and Figure 17 show the test configurations). Vcc-0.5V + DUT - +Vcc GND 2KO +Vcc Figure 17. Test configuration for turn-off time (Vout pulled down) Vcc-0.5V GND GND Figure 18. Turn-on time, VCC = 5 V, Vout pulled down, T = 25 °C Figure 19. Turn-off time, VCC = 5 V, Vout pulled down, T = 25 °C Shutdown pulse Vout Shutdown pulse Vcc = 5V T = 25°C Output voltage (V) Voltage (V) + DUT - GND 2KO Figure 16. Test configuration for turn-on time (Vout pulled down) Vout Vcc = 5V T = 25°C Time( s) Time( s) DocID14912 Rev 3 13/24 24 Application information 3.5 Document header RPN(s) Optimization of DC and AC parameters This device uses an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of current consumption (29 µA typical, min/max at ±17 %). Parameters linked to the current consumption value, such as GBP, SR and AVd benefit from this narrow dispersion. All parts present a similar speed and the same behavior in terms of stability. In addition, the minimum values of GBP and SR are guaranteed (GBP = 350 kHz min, SR = 0.15 V/µs min). 3.6 Driving resistive and capacitive loads These products are micro-power, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 5 kΩ. For lower resistive loads, the THD level may significantly increase. In a follower configuration, these operational amplifiers can drive capacitive loads up to 100 pF with no oscillations. When driving larger capacitive loads, adding a small in-series resistor at the output can improve the stability of the device (see Figure 20 for recommended in-series resistor values). Once the in-series resistor value has been selected, the stability of the circuit should be tested on bench and simulated with the simulation model. In-series resistor (Ω) Figure 20. In-series resistor vs. capacitive load 3.7 PCB layouts For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins. 14/24 DocID14912 Rev 3 Document header RPN(s) 3.8 Application information Macromodel An accurate macromodel of the TSV620, TSV620A, TSV621, and TSV621A is available on STMicroelectronics’ web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV62x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements. DocID14912 Rev 3 15/24 24 Package information 4 Document header RPN(s) Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 16/24 DocID14912 Rev 3 Document header RPN(s) 4.1 Package information SOT23-5 package information Figure 21. SOT23-5 package outline Table 8. SOT23-5 mechanical data Dimensions Ref. A Millimeters Inches Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.013 0.015 0.019 C 0.09 0.15 0.20 0.003 0.006 0.008 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.013 0.023 K 0° 10° DocID14912 Rev 3 17/24 24 Package information 4.2 Document header RPN(s) SOT23-6 package information Figure 22. SOT23-6 package outline Table 9. SOT23-6 mechanical data Dimensions Ref. Millimeters Min. A Typ. 0.90 A1 Max. Min. 1.45 0.035 Typ. Max. 0.057 0.10 0.004 A2 0.90 1.30 0.035 0.051 b 0.35 0.50 0.013 0.019 c 0.09 0.20 0.003 0.008 D 2.80 3.05 0.110 0.120 E 1.50 1.75 0.060 0.069 e 18/24 Inches 0.95 0.037 H 2.60 3.00 0.102 0.118 L 0.10 0.60 0.004 0.024 ° 0 10° DocID14912 Rev 3 Document header RPN(s) 4.3 Package information SC70-5 (or SOT323-5) package information Figure 23. SC70-5 (or SOT323-5) package outline SIDE VIEW DIMENSIONS IN MM GAUGE PLANE COPLANAR LEADS SEATING PLANE TOP VIEW Table 10. SC70-5 (or SOT323-5) mechanical data Dimensions Ref Millimeters Min A Typ 0.80 A1 Inches Max Min 1.10 0.315 Typ 0.043 0.10 A2 0.80 b 0.90 Max 0.004 1.00 0.315 0.035 0.15 0.30 0.006 0.012 c 0.10 0.22 0.004 0.009 D 1.80 2.00 2.20 0.071 0.079 0.087 E 1.80 2.10 2.40 0.071 0.083 0.094 E1 1.15 1.25 1.35 0.045 0.049 0.053 e 0.65 0.025 e1 1.30 0.051 L 0.26 < 0° 0.36 0.46 0.010 0.014 0.039 0.018 8° DocID14912 Rev 3 19/24 24 Package information 4.4 Document header RPN(s) SC70-6 (or SOT323-6) package information Figure 24. SC70-6 (or SOT323-6) package outline Table 11. SC70-6 (or SOT323-6) mechanical data Dimensions Ref Millimeters Min. A Typ. 0.80 A1 Max. Min. 1.10 0.031 Typ. Max. 0.043 0.10 0.004 A2 0.80 1.00 0.031 0.039 b 0.15 0.30 0.006 0.012 c 0.10 0.18 0.004 0.007 D 1.80 2.20 0.071 0.086 E 1.15 1.35 0.045 0.053 e 20/24 Inches 0.65 0.026 HE 1.80 2.40 0.071 0.094 L 0.10 0.40 0.004 0.016 Q1 0.10 0.40 0.004 0.016 DocID14912 Rev 3 Document header RPN(s) Package information Figure 25. SC70-6 (or SOT323-6) recommended footprint DocID14912 Rev 3 21/24 24 Ordering information 5 Document header RPN(s) Ordering information Table 12. Order codes Part number Package Packing Marking TSV620ILT SOT23-6 K107 TSV620ICT SC70-6 K14 TSV620AILT SOT23-6 K110 TSV620AICT TSV621ILT 22/24 Temperature range -40 °C to 125 °C SC70-6 SOT23-5 Tape and reel K15 K106 TSV621ICT SC70-5 K16 TSV621AILT SOT23-5 K139 TSV621AICT SC70-5 K39 DocID14912 Rev 3 Document header RPN(s) 6 Revision history Revision history Table 13. Document revision history Date Revision 12-Jan-2009 1 Initial release. 2 Added TSV620 device (version with shutdown function). Added Table 4: Shutdown characteristics VCC = 1.8 V. Added Table 7: Shutdown characteristics VCC = 5 V. Added Section 3.4: Shutdown function (TSV620) on page 13. Added Section 4.2: SOT23-6 package mechanical data. Added Section 4.4: SC70-6 (or SOT323-6) package mechanical data. Added order codes in Table 12. 3 Table 3, Table 5, and Table 6: changed “DVio to ∆Vio/∆T, updated VOH parameter information, changed min. values for VOH parameter to max. values. Figure 21, Figure 22, Table 8, and Table 9: removed “L” from titles 19-Oct-2009 10-May-2017 Changes DocID14912 Rev 3 23/24 24 Document header RPN(s) IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved 24/24 DocID14912 Rev 3
TSV620AICT 价格&库存

很抱歉,暂时无法提供与“TSV620AICT”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TSV620AICT
  •  国内价格 香港价格
  • 1+10.179571+1.26277
  • 10+7.3388610+0.91039
  • 25+6.6323825+0.82275
  • 100+5.85793100+0.72668
  • 250+5.48909250+0.68092
  • 500+5.26673500+0.65334
  • 1000+5.083651000+0.63063

库存:2850

TSV620AICT
  •  国内价格 香港价格
  • 3000+4.857513000+0.60258

库存:2850