TSV620, TSV620A, TSV621,
TSV621A
Rail-to-rail input/output 29 µA 420 kHz CMOS operational amplifiers
Datasheet - production data
Description
5 VCC
In+ 1
VDD 2
The TSV620, TSV620A, TSV621, and TSV621A
are single operational amplifiers offering low
voltage, low power operation, and rail-to-rail input
and output.
+
_
In- 3
4 Out
TSV621ICT/ILT
SC70-5/SOT23-5
In+ 1
VCC- 2
+
_
In- 3
With a very low input bias current and low offset
voltage (800 µV maximum for the A version), the
TSV62x is ideal for applications requiring
precision. The device can operate at a power
supply ranging from 1.5 to 5.5 V, and therefore
suit battery-powered devices and extend their
battery life.
6 VCC+
5 SHDN
4 Out
TSV620ICT/ILT
SC70-6/SOT23-6
This product features an excellent speed/power
consumption ratio, offering a 420 kHz gain
bandwidth while consuming only 29 µA at a
5 V supply voltage.
Features
These operational amplifiers are unity gain stable
for capacitive loads up to 100 pF.
• Low supply voltage: 1.5 V–5.5 V
• Rail-to-rail input and output
The device is internally adjusted to provide very
narrow dispersion of AC and DC parameters,
especially power consumption, product gain
bandwidth, and slew rate.
• Low input offset voltage: 800 µV max
(A version)
• Low power consumption: 29 µA typ
• Low power shutdown mode: 5 nA typ (TSV620)
• Gain bandwidth product: 420 kHz typ
• Unity gain stability
• Micropackages: SC70-5/6, SOT23-5/6
• Low input bias current: 1 pA typ
• Extended temperature range: -40 to 125 °C
• 4 kV HBM
Applications
The TSV62x present high tolerance to ESD,
sustaining 4 kV for the human body model.
The device is offered in macropackages, SC70-6
and SOT23-6 for the TSV620 and
SC70-5 and SOT23-5 for the TSV621. They are
guaranteed for industrial temperature ranges from
-40 °C to 125 °C.
All these features make the TSV620, TSV620A,
TSV621, and TSV621A ideal for sensor
interfaces, battery-supplied and portable
applications, as well as active filtering.
• Battery-powered applications
• Portable device
• Signal conditioning
• Active filtering
• Medical instrumentation
May 2017
This is information on a product in full production.
DocID14912 Rev 3
1/24
www.st.com
Contents
Document header RPN(s)
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
3.1
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2
Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3
Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4
Shutdown function (TSV620) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5
Optimization of DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6
Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7
PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.8
Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1
SOT23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2
SOT23-6 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3
SC70-5 (or SOT323-5) package information . . . . . . . . . . . . . . . . . . . . . . 19
4.4
SC70-6 (or SOT323-6) package information . . . . . . . . . . . . . . . . . . . . . . 20
5
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/24
DocID14912 Rev 3
Document header RPN(s)
1
Absolute maximum ratings and operating conditions
Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings (AMR)
Symbol
VCC
Vid
Vin
Iin
SHDN
Parameter
Supply voltage
Value
(1)
6
Differential input voltage
Input voltage
(3)
Input current
(4)
Unit
(2)
V
±VCC
(VCC-) - 0.2 to (VCC+) + 0.2
(5)
Shutdown voltage
10
mA
(VCC-) - 0.2 to (VCC+) + 0.2
V
-65 to 150
°C
Tstg
Storage temperature
Rthja
Thermal resistance junction to ambient (6) (7)
SC70-5
SOT23-5
SOT23-6
SC70-6
205
250
240
232
Maximum junction temperature
150
°C
4
kV
300
V
1.5
kV
200
mA
Tj
(8)
HBM: human body model
ESD
MM: machine model
(9)
CDM: charged device model
(10)
Latch-up immunity
°C/W
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. Vcc-Vin must not exceed 6 V.
4. Input current must be limited by a resistor in series with the inputs.
5. Vcc-SHDN must not exceed 6 V.
6. Short-circuits can cause excessive heating and destructive dissipation.
7. Rth are typical values.
8. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for
all couples of pin combinations with other pins floating.
9. Machine mode: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin
combinations with other pins floating.
10. Charged device model: all pins plus package are charged together to the specified voltage and then
discharged directly to the ground.
Table 2. Operating conditions
Symbol
Parameter
VCC
Supply voltage
Vicm
Common mode input voltage range
Toper
Operating free air temperature range
Value
1.5 to 5.5
DocID14912 Rev 3
(VCC-) - 0.1 to (VCC+) + 0.1
-40 to +125
Unit
V
°C
3/24
24
Electrical characteristics
2
Document header RPN(s)
Electrical characteristics
Table 3. Electrical characteristics at VCC+ = 1.8 V with VDD = 0 V, Vicm = VCC/2, Top = 25 °C, and RL
connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
Vio
Offset voltage
TSV62x
TSV62xA
4
0.8
Tmin < Top < Tmax
TSV62x
TSV62xA
6
2.8
mV
∆Vio/∆T Input offset voltage drift
Iio
Input offset current
(Vout = VCC/2)
Iib
Input bias current
(Vout = VCC/2)
CMR
Common mode rejection ratio
20 log (ΔVic/ΔVio)
Avd
Large signal voltage gain
VOH
High level output voltage
(VOH = VCC - Vout)
VOL
Low level output voltage
Isink
Iout
Isource
ICC
Supply current (per operator)
2
1
Tmin < Top < Tmax
Tmin < Top < Tmax
0 V to 1.8 V, Vout = 0.9 V
53
Tmin < Top < Tmax
51
RL= 10 kΩ, Vout= 0.5 V to 1.3 V
78
Tmin < Top < Tmax
73
RL = 10 kΩ
µV/°C
10
(1)
1
100
1
10 (1)
1
100
74
dB
95
5
Tmin < Top < Tmax
35
50
RL = 10 kΩ
pA
4
Tmin < Top < Tmax
35
mV
50
Vo = 1.8 V
6
Tmin < Top < Tmax
4
Vo = 0 V
6
Tmin < Top < Tmax
4
No load, Vout = VCC/2
12
mA
10
25
Tmin < Top < Tmax
31
33
µA
AC performance
GBP
Gain bandwidth product
Fu
Unity gain frequency
φm
Phase margin
Gm
Gain margin
SR
Slew rate
RL = 10 kΩ, CL = 100 pF,
f = 100 kHz
340
kHz
280
RL = 10 kΩ, CL = 100 pF
RL = 10 kΩ, CL = 100 pF, Av = 1
1. Guaranteed by design.
4/24
275
DocID14912 Rev 3
0.084
45
Degrees
9
dB
0.11
0.14
V/µs
Document header RPN(s)
Electrical characteristics
Table 4. Shutdown characteristics VCC = 1.8 V
Symbol
Parameter
Conditions
Min.
Typ.
Max.
2.5
50
Unit
DC performance
ICC
Supply current in shutdown
mode (all operators)
SHDN = VCCTmin < Top < 85° C
200
Tmin < Top < 125° C
1.5
ton
Amplifier turn-on time
RL = 2 kΩ,
Vout = (VCC-) to VCC + 0.2
300
toff
Amplifier turn-off time
RL = 2 kΩ,
Vout = (VCC+) - 0.5 to (VCC+) + 0.7
30
VIH
SHDN logic high
VIL
SHDN logic low
IIH
SHDN current high
SHDN = VCC+
10
IIL
SHDN current low
SHDN = VCC-
10
Output leakage in shutdown
mode
SHDN = VCC-
50
Tmin < Top < 125 °C
1
IOLeak
µA
ns
1.3
0.5
DocID14912 Rev 3
nA
V
pA
nA
5/24
24
Electrical characteristics
Document header RPN(s)
Table 5. VCC+ = 3.3 V, VCC- = 0 V, Vicm = VCC/2, Top = 25° C, RL connected to VCC/2
(unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
TSV62x
TSV62xA
Vio
Offset voltage
4
0.8
mV
Tmin < Top < Tmax
TSV62x
TSV62xA
6
2.8
∆Vio/∆T Input offset voltage drift
Iio
Iib
CMR
Input offset current
Input bias current
Common mode rejection ratio
20 log (ΔVic/ΔVio)
Avd
Large signal voltage gain
VOH
High level output voltage
(VOH = VCC - Vout)
VOL
Low level output voltage
Isink
Iout
Isource
ICC
Supply current (per operator)
2
Tmin < Top < Tmax
Tmin < Top < Tmax
0 V to 3.3 V, Vout = 1.75 V
57
Tmin < Top < Tmax
53
RL=10 kΩ, Vout = 0.5 V to 2.8 V
81
Tmin < Top < Tmax
76
RL = 10 kΩ
µV/°C
1
10 (1)
1
100
1
10 (1)
1
100
79
dB
98
5
Tmin < Top < Tmax
35
50
RL = 10 kΩ
pA
4
Tmin < Top < Tmax
35
mV
50
Vo = 5 V
30
Tmin < Top < Tmax
25
Vo = 0 V
30
Tmin < Top < Tmax
25
No load, Vout = 2.5 V
45
mA
38
26
Tmin < Top < Tmax
33
35
µA
AC performance
GBP
Gain bandwidth product
Fu
Unity gain frequency
φm
Phase margin
Gm
Gain margin
SR
Slew rate
RL = 10 kΩ, CL = 100 pF,
f = 100 kHz
380
kHz
310
RL = 10 kΩ, CL = 100 pF
RL = 10 kΩ, CL = 100 pF, AV = 1
1. Guaranteed by design.
6/24
310
DocID14912 Rev 3
0.094
45
Degrees
9
dB
0.12
V/µs
Document header RPN(s)
Electrical characteristics
Table 6. VCC+ = 5 V, VCC- = 0 V, Vicm = VCC/2, Top = 25° C, RL connected to VCC/2
(unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
DC performance
TSV62x
TSV62xA
Vio
Offset voltage
4
0.8
mV
Tmin < Top < Tmax
TSV62x
TSV62xA
6
2.8
∆Vio/∆T Input offset voltage drift
Iio
Iib
Input offset current
Input bias current
2
Tmin < Top < Tmax
Tmin < Top < Tmax
0 V to 5 V, Vout = 2.5 V
60
Tmin < Top < Tmax
55
SVR
Supply voltage rejection ratio 20 VCC = 1.8 to 5 V
log (ΔVCC/ΔVio)
Tmin < Top < Tmax
75
Avd
Large signal voltage gain
VOH
High level output voltage
(VOH = VCC - Vout)
CMR
Common mode rejection ratio
20 log (ΔVic/ΔVio)
VOL
Low level output voltage
Isink
Iout
Isource
ICC
Supply current (per operator)
µV/°C
1
10 (1)
1
100
1
10 (1)
1
100
80
102
dB
73
RL=10 kΩ, Vout = 0.5 V to 4.5 V
85
Tmin < Top < Tmax
80
RL = 10 kΩ
98
7
Tmin < Top < Tmax
35
50
RL = 10 kΩ
pA
6
Tmin < Top < Tmax
35
mV
50
Vo = 5 V
40
69
Tmin < Top < Tmax
35
65
Vo = 0 V
40
74
Tmin < Top < Tmax
35
68
No load, Vout = 2.5 V
29
Tmin < Top < Tmax
mA
36
38
µA
AC performance
GBP
Gain bandwidth product
Fu
Unity gain frequency
φm
Phase margin
Gm
Gain margin
SR
Slew rate
RL = 10 kΩ, CL = 100 pF,
f = 100 kHz
350
420
kHz
360
RL = 10 kΩ, CL = 100 pF
RL = 10 kΩ, CL = 100 pF, AV = 1
DocID14912 Rev 3
0.108
45
Degrees
9
dB
0.14
V/µs
7/24
24
Electrical characteristics
Document header RPN(s)
Table 6. VCC+ = 5 V, VCC- = 0 V, Vicm = VCC/2, Top = 25° C, RL connected to VCC/2
(unless otherwise specified) (continued)
Symbol
en
THD
Parameter
Min.
Equivalent input noise voltage
f = 1 kHz
Total harmonic distortion
Av = 1, f = 1 kHz, RL= 100 kΩ,
Vicm = Vcc/2, Vout = 2 Vpp
Typ.
Max.
Unit
70
nV
-----------Hz
0.004
%
1. Guaranteed by design.
Table 7. Shutdown characteristics VCC = 5 V
Symbol
Parameter
Conditions
Min.
Typ.
Max.
5
50
Unit
DC performance
ICC
SHDN = VCCTmin < Top < 85 °C
200
Tmin < Top < 125 °C
1.5
ton
Amplifier turn-on time
RL = 2 kΩ, Vout = (VCC-) to (VCC-)
+ 0.2
300
toff
Amplifier turn-off time
RL = 2 kΩ, Vout = (VCC+) - 0.5 to
(VCC+) + 0.7
30
VIH
SHDN logic high
VIL
SHDN logic low
IIH
SHDN current high
SHDN = VCC+
10
IIL
SHDN current low
SHDN = VCC-
10
Output leakage in shutdown
mode
SHDN = VCC-
50
Tmin < Top < 125 °C
1
IOLeak
8/24
Supply current in shutdown
mode (all operators)
µA
ns
4.5
0.5
DocID14912 Rev 3
nA
V
pA
nA
Document header RPN(s)
Electrical characteristics
Figure 1. Input offset voltage vs input common Figure 2. Input offset voltage vs input common
mode at VCC+ = 1.5 V
mode at VCC+ = 5 V
0.5
0.4
0.3
Input Offset Voltage (mV)
Input Offset Voltage (mV)
0.4
0.2
0.1
0.0
-0.1
-0.2
-0.3
0.0
-0.2
-0.4
-0.4
-0.5
-0.2
0.2
0.0
0.2 0.4 0.6 0.8 1.0 1.2 1.4
Input Common Mode Voltage (V)
0.0
1.6
1.0
2.0
3.0
4.0
Input Common Mode Voltage (V)
5.0
Figure 5. Output current vs. output voltage at
VCC+ = 5 V
Figure 6. Voltage gain and phase vs. frequency
at VCC+ = 1.5 V
Phase (°)
Gain (dB)
DocID14912 Rev 3
Phase (°)
Figure 4. Output current vs. output voltage at
VCC += 1.5 V
Gain (dB)
Figure 3. Supply current vs. supply voltage at
Vicm = VCC/2
9/24
24
Electrical characteristics
Document header RPN(s)
Figure 7. Voltage gain and phase vs. frequency
at VCC+ = 5 V
Figure 8. Phase margin vs. output current at
VCC+ = 1.5 V and VCC+ = 5 V
90
80
Vcc=5V
70
Phase (°)
Gain (dB)
60
Vcc=1.5V
50
40
30
20
Vicm=Vcc/2, Cl=100pF
Rl=4.7kohms, T=25 C
10
0
-1.5
-0.5
0.0
0.5
1.0
1.5
Figure 10. Slew rate vs. supply voltage
Slew rate (V/ s)
Figure 9. Slew rate vs. supply voltage
-1.0
Supply voltage (V)
10µV/div
Figure 11. Distortion + noise vs. output voltage
Figure 12. Distortion + noise vs. frequency
1
Vcc=1.5V
Rl=10kΩ
THD + N (%)
THD + N (%)
Vcc=1.5V
Rl=10kohms
Vcc=1.5V
Rl=100kohms
f=1kHz
Gain=1
BW=22kHz
Vicm=Vcc/2
Vcc=1.5V
Rl=100kΩ
0.1
Vcc=5.5V
Rl=10kohms
Vcc=5.5V
Rl=100kohms
Ω
0.01
Ω
10
Output Voltage (Vpp)
10/24
DocID14912 Rev 3
100
1000
10000
Document header RPN(s)
Electrical characteristics
Input equivalent noise density (nV/VHz)
Figure 13. Noise vs. frequency
Vicm=4.5V
Vicm=2.5V
Vcc=5V
T=25 C
Frequency (Hz)
DocID14912 Rev 3
11/24
24
Application information
Document header RPN(s)
3
Application information
3.1
Operating voltages
The TSV620, TSV620A, TSV621, and TSV621A can operate from 1.5 to 5.5 V. Their
parameters are fully specified for 1.8, 3.3, and 5 V power supplies. However, the parameters
are very stable in the full VCC range and several characterization curves show the TSV62x
characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended
temperature ranges from -40 °C to 125 °C.
3.2
Rail-to-rail input
The TSV62x is built with two complementary PMOS and NMOS input differential pairs. The
device has a rail-to-rail input and the input common mode range is extended from
(VCC-) - 0.1 V to (VCC+) + 0.1 V. The transition between the two pairs appears at VCC - 0.7 V.
In the transition region, the performances of CMRR, PSRR, Vio and THD are slightly
degraded (as shown in Figure 14 and Figure 15 for Vio vs. Vicm).
Figure 14. Input offset voltage vs input common Figure 15. Input offset voltage vs input common
mode at VCC+ = 1.5 V
mode at VCC+ = 5 V
0.5
0.4
0.3
Input Offset Voltage (mV)
Input Offset Voltage (mV)
0.4
0.2
0.1
0.0
-0.1
-0.2
-0.3
0.0
-0.2
-0.4
-0.4
-0.5
-0.2
0.2
0.0
0.2 0.4 0.6 0.8 1.0 1.2 1.4
Input Common Mode Voltage (V)
1.6
0.0
1.0
2.0
3.0
4.0
Input Common Mode Voltage (V)
5.0
The device is guaranteed without phase reversal.
3.3
Rail-to-rail output
The operational amplifier’s output level can go close to the rails: 35 mV maximum above
and below the rail when connected to a 10 kΩ resistive load to VCC/2.
12/24
DocID14912 Rev 3
Document header RPN(s)
3.4
Application information
Shutdown function (TSV620)
The operational amplifier is enabled when the SHDN pin is pulled high. To disable the
amplifier, the SHDN pin must be pulled down to VCC-. When in shutdown mode, the
amplifier output is in a high impedance state. The SHDN pin must never be left floating but
tied to VCC+ or VCC-.
The turn-on and turn-off times are calculated for an output variation of ±200 mV (Figure 16
and Figure 17 show the test configurations).
Vcc-0.5V
+
DUT
-
+Vcc
GND
2KO
+Vcc
Figure 17. Test configuration for turn-off time
(Vout pulled down)
Vcc-0.5V
GND
GND
Figure 18. Turn-on time, VCC = 5 V,
Vout pulled down, T = 25 °C
Figure 19. Turn-off time, VCC = 5 V,
Vout pulled down, T = 25 °C
Shutdown pulse
Vout
Shutdown pulse
Vcc = 5V
T = 25°C
Output voltage (V)
Voltage (V)
+
DUT
-
GND
2KO
Figure 16. Test configuration for turn-on time
(Vout pulled down)
Vout
Vcc = 5V
T = 25°C
Time( s)
Time( s)
DocID14912 Rev 3
13/24
24
Application information
3.5
Document header RPN(s)
Optimization of DC and AC parameters
This device uses an innovative approach to reduce the spread of the main DC and AC
parameters. An internal adjustment achieves a very narrow spread of current consumption
(29 µA typical, min/max at ±17 %). Parameters linked to the current consumption value,
such as GBP, SR and AVd benefit from this narrow dispersion. All parts present a similar
speed and the same behavior in terms of stability. In addition, the minimum values of GBP
and SR are guaranteed (GBP = 350 kHz min, SR = 0.15 V/µs min).
3.6
Driving resistive and capacitive loads
These products are micro-power, low-voltage operational amplifiers optimized to drive
rather large resistive loads, above 5 kΩ. For lower resistive loads, the THD level may
significantly increase.
In a follower configuration, these operational amplifiers can drive capacitive loads up to
100 pF with no oscillations. When driving larger capacitive loads, adding a small in-series
resistor at the output can improve the stability of the device (see Figure 20 for
recommended in-series resistor values). Once the in-series resistor value has been
selected, the stability of the circuit should be tested on bench and simulated with the
simulation model.
In-series resistor (Ω)
Figure 20. In-series resistor vs. capacitive load
3.7
PCB layouts
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible
to the power supply pins.
14/24
DocID14912 Rev 3
Document header RPN(s)
3.8
Application information
Macromodel
An accurate macromodel of the TSV620, TSV620A, TSV621, and TSV621A is available on
STMicroelectronics’ web site at www.st.com. This model is a trade-off between accuracy
and complexity (that is, time simulation) of the TSV62x operational amplifiers. It emulates
the nominal performances of a typical device within the specified operating conditions
mentioned in the datasheet. It helps to validate a design approach and to select the right
operational amplifier, but it does not replace on-board measurements.
DocID14912 Rev 3
15/24
24
Package information
4
Document header RPN(s)
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
16/24
DocID14912 Rev 3
Document header RPN(s)
4.1
Package information
SOT23-5 package information
Figure 21. SOT23-5 package outline
Table 8. SOT23-5 mechanical data
Dimensions
Ref.
A
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
0.90
1.20
1.45
0.035
0.047
0.057
A1
0.15
0.006
A2
0.90
1.05
1.30
0.035
0.041
0.051
B
0.35
0.40
0.50
0.013
0.015
0.019
C
0.09
0.15
0.20
0.003
0.006
0.008
D
2.80
2.90
3.00
0.110
0.114
0.118
D1
1.90
0.075
e
0.95
0.037
E
2.60
2.80
3.00
0.102
0.110
0.118
F
1.50
1.60
1.75
0.059
0.063
0.069
L
0.10
0.35
0.60
0.004
0.013
0.023
K
0°
10°
DocID14912 Rev 3
17/24
24
Package information
4.2
Document header RPN(s)
SOT23-6 package information
Figure 22. SOT23-6 package outline
Table 9. SOT23-6 mechanical data
Dimensions
Ref.
Millimeters
Min.
A
Typ.
0.90
A1
Max.
Min.
1.45
0.035
Typ.
Max.
0.057
0.10
0.004
A2
0.90
1.30
0.035
0.051
b
0.35
0.50
0.013
0.019
c
0.09
0.20
0.003
0.008
D
2.80
3.05
0.110
0.120
E
1.50
1.75
0.060
0.069
e
18/24
Inches
0.95
0.037
H
2.60
3.00
0.102
0.118
L
0.10
0.60
0.004
0.024
°
0
10°
DocID14912 Rev 3
Document header RPN(s)
4.3
Package information
SC70-5 (or SOT323-5) package information
Figure 23. SC70-5 (or SOT323-5) package outline
SIDE VIEW
DIMENSIONS IN MM
GAUGE PLANE
COPLANAR LEADS
SEATING PLANE
TOP VIEW
Table 10. SC70-5 (or SOT323-5) mechanical data
Dimensions
Ref
Millimeters
Min
A
Typ
0.80
A1
Inches
Max
Min
1.10
0.315
Typ
0.043
0.10
A2
0.80
b
0.90
Max
0.004
1.00
0.315
0.035
0.15
0.30
0.006
0.012
c
0.10
0.22
0.004
0.009
D
1.80
2.00
2.20
0.071
0.079
0.087
E
1.80
2.10
2.40
0.071
0.083
0.094
E1
1.15
1.25
1.35
0.045
0.049
0.053
e
0.65
0.025
e1
1.30
0.051
L
0.26
<
0°
0.36
0.46
0.010
0.014
0.039
0.018
8°
DocID14912 Rev 3
19/24
24
Package information
4.4
Document header RPN(s)
SC70-6 (or SOT323-6) package information
Figure 24. SC70-6 (or SOT323-6) package outline
Table 11. SC70-6 (or SOT323-6) mechanical data
Dimensions
Ref
Millimeters
Min.
A
Typ.
0.80
A1
Max.
Min.
1.10
0.031
Typ.
Max.
0.043
0.10
0.004
A2
0.80
1.00
0.031
0.039
b
0.15
0.30
0.006
0.012
c
0.10
0.18
0.004
0.007
D
1.80
2.20
0.071
0.086
E
1.15
1.35
0.045
0.053
e
20/24
Inches
0.65
0.026
HE
1.80
2.40
0.071
0.094
L
0.10
0.40
0.004
0.016
Q1
0.10
0.40
0.004
0.016
DocID14912 Rev 3
Document header RPN(s)
Package information
Figure 25. SC70-6 (or SOT323-6) recommended footprint
DocID14912 Rev 3
21/24
24
Ordering information
5
Document header RPN(s)
Ordering information
Table 12. Order codes
Part number
Package
Packing
Marking
TSV620ILT
SOT23-6
K107
TSV620ICT
SC70-6
K14
TSV620AILT
SOT23-6
K110
TSV620AICT
TSV621ILT
22/24
Temperature
range
-40 °C to 125 °C
SC70-6
SOT23-5
Tape and reel
K15
K106
TSV621ICT
SC70-5
K16
TSV621AILT
SOT23-5
K139
TSV621AICT
SC70-5
K39
DocID14912 Rev 3
Document header RPN(s)
6
Revision history
Revision history
Table 13. Document revision history
Date
Revision
12-Jan-2009
1
Initial release.
2
Added TSV620 device (version with shutdown function).
Added Table 4: Shutdown characteristics VCC = 1.8 V.
Added Table 7: Shutdown characteristics VCC = 5 V.
Added Section 3.4: Shutdown function (TSV620) on page 13.
Added Section 4.2: SOT23-6 package mechanical data.
Added Section 4.4: SC70-6 (or SOT323-6) package mechanical
data.
Added order codes in Table 12.
3
Table 3, Table 5, and Table 6: changed “DVio to ∆Vio/∆T, updated
VOH parameter information, changed min. values for VOH parameter
to max. values.
Figure 21, Figure 22, Table 8, and Table 9: removed “L” from titles
19-Oct-2009
10-May-2017
Changes
DocID14912 Rev 3
23/24
24
Document header RPN(s)
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved
24/24
DocID14912 Rev 3