TSV62x, TSV62xA
Rail-to-rail input/output, 29 µA, 420 kHz CMOS operational
amplifiers
Datasheet - production data
Applications
• Battery-powered applications
• Portable devices
• Signal conditioning
SO8
• Active filtering
• Medical instrumentation
Description
MiniSO8/MiniSO10
TSSOP14
The TSV622, TSV622A, TSV623, TSV623A,
TSV624, TSV624A, TSV625, and TSV625A dual
and quad operational amplifiers offer low voltage,
low power operation, and rail-to-rail input and
output.
The TSV62x/TSV62xA series feature an excellent
speed/power consumption ratio, offering a
420 kHz gain bandwidth product while consuming
only 29 µA at 5 V supply voltage.
TSSOP16
Features
• Rail-to-rail input and output
• Low power consumption: 29 µA typ, 36 µA
max
• Low supply voltage: 1.5 – 5.5 V
These op-amps are unity gain stable for
capacitive loads up to 100 pF. They also feature
an ultra-low input bias current and low input offset
voltage. TSV623 (dual) and TSV625 (quad) have
two shutdown pins to reduce power consumption.
These features make the TSV62x/TSV62xA
family ideal for sensor interfaces, battery-supplied
and portable applications, and active filtering.
• Gain bandwidth product: 420 kHz typ
• Unity gain stable on 100 pF capacitor
• Low power shutdown mode: 5 nA typ
Table 1.
• Good accuracy: 800 µV max (A version)
• Low input bias current: 1 pA typ
Device summary
Dual version
Quad version
• EMI hardened operational amplifiers
Reference
Related products
TSV62x
TSV622
TSV623
TSV624
TSV625
TSV62xA
TSV622A
TSV623A
TSV624A
TSV625A
• See the TSV61x series for more power savings
(120 kHz for 9 μA)
Without
With
Without
With
standby standby standby standby
• See the TSV63x series for higher gain
bandwidth (880 kHz for 60 μA)
May 2017
This is information on a product in full production.
DocID15689 Rev 6
1/24
www.st.com
Contents
TSV62x, TSV62xA
Contents
1
Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
4.1
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2
Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3
Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4
Optimization of DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5
Shutdown function (TSV623, TSV625) . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6
Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7
PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.8
Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1
SO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2
MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3
MiniSO10 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4
TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.5
TSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/24
DocID15689 Rev 6
TSV62x, TSV62xA
1
Package pin connections
Package pin connections
Figure 1. Pin connections for each package (top view)
Out1
1
In1-
2
_
In1+
3
+
VCC-
4
Out1
1
10 VCC+
8
VCC+
In1-
2
_
7
Out2
In1+
3
+
_
6
In2-
4
+
VCC-
5
In2+
SHDN1
5
Out1
14 Out4
Out1
1
In1-
2
_
_
13 In4-
In1+
3
+
+
12 In4+
VCC+
4
_
8
In2-
+
7
In2+
6
SHDN2
In2+
5
In2-
6
Out2
7
2
_
15 In4-
In1+
3
+
+
14 In4+
VCC+
4
In2+
5
In2-
6
Out2
7
10 Out3
SHDN1/2
8
9
In1-
10 In3+
9
In3-
8
Out3
16 Out4
1
_
11 VCC+
_
Out2
TSV623
MiniSO10
TSV622
SO8/MiniSO8
+
_
9
13 VCC+
_
+
_
12 In3+
11 In3-
SHDN3/4
TSV625
TSSOP16
TSV624
TSSOP14
DocID15689 Rev 6
3/24
24
Absolute maximum ratings and operating conditions
2
TSV62x, TSV62xA
Absolute maximum ratings and operating conditions
Table 2. Absolute maximum ratings (AMR)
Symbol
VCC
Vid
Vin
Iin
SHDN
Tstg
Rthja
Tj
Parameter
Supply voltage
Differential input voltage
Input voltage
(3)
Input current
(4)
Unit
6
(2)
±VCC
V
(VCC-) - 0.2 to (VCC+) + 0.2
Shutdown voltage
(3)
10
mA
(VCC-) - 0.2 to (VCC+) + 0.2
V
-65 to 150
°C
Storage temperature
Thermal resistance junction to ambient
MiniSO8
SO8
MiniSO10
TSSOP14
TSSOP16
(5) (6)
190
125
113
100
95
Maximum junction temperature
HBM: human body model
ESD
Value
(1)
MM: machine model
(7)
(8)
CDM: charged device model
(9)
Latch-up immunity
°C/W
150
°C
4
kV
200
V
1.5
kV
200
mA
1. All voltage values, except differential voltages are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. VCC-Vin must not exceed 6 V, Vin must not exceed 6V.
4. Input current must be limited by a resistor in series with the inputs.
5. Short-circuits can cause excessive heating and destructive dissipation.
6. Rth are typical values.
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for
all couples of pin combinations with other pins floating.
8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin
combinations with other pins floating.
9. Charged device model: all pins plus package are charged together to the specified voltage and then
discharged directly to ground.
Table 3. Operating conditions
Symbol
4/24
Parameter
VCC
Supply voltage
Vicm
Common mode input voltage range
Toper
Operating free air temperature range
Value
1.5 to 5.5
DocID15689 Rev 6
(VCC-) - 0.1 to (VCC+) + 0.1
-40 to 125
Unit
V
°C
TSV62x, TSV62xA
Electrical characteristics
3
Electrical characteristics
Table 4.
Electrical characteristics at VCC+ = 1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C,
and RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
Vio
ΔVio/ΔT
Offset voltage
4
0.8
1
TSV62x -Tmin < Top < Tmax
TSV62xA - Tmin < Top < Tmax
TSV623AIST - Tmin < Top < Tmax
6
2
2.2
Input offset voltage drift
Iio
Input offset current
(Vout = VCC/2)
Iib
Input bias current
(Vout = VCC/2)
CMR
TSV62x
TSV62xA
TSV623AIST - MiniSO10
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
μV/°C
2
1
Tmin < Top < Tmax
Tmin < Top < Tmax
0 V to 1.8 V, Vout = 0.9 V
53
Tmin < Top < Tmax
51
RL= 10 kΩ, Vout= 0.5 V to 1.3 V
78
Tmin < Top < Tmax
73
10
(1)
1
100
1
10 (1)
1
100
dB
95
Large signal voltage gain
VOH
High level output voltage
(VOH = VCC - Vout)
RL = 10 kΩ
Tmin < Top < Tmax
5
35
50
Low level output voltage
RL = 10 kΩ
Tmin < Top < Tmax
4
35
50
Isink
Iout
Isource
ICC
Supply current (per operator)
Vout = 1.8 V
6
Tmin < Top < Tmax
4
Vout = 0 V
6
Tmin < Top < Tmax
4
No load, Vout =VCC/2
pA
74
Avd
VOL
mV
mV
12
mA
10
25
Tmin < Top < Tmax
31
33
µA
AC performance
GBP
Gain bandwidth product
Fu
Unity gain frequency
φm
Phase margin
Gm
Gain margin
SR
Slew rate
RL = 10 kΩ, CL = 100 pF, f = 100 kHz
275
340
280
RL = 10 kΩ, CL = 100 pF,
RL = 10 kΩ, CL = 100 pF, Av=1
0.1
kHz
41
Degrees
8
dB
0.155
V/μs
1. Guaranteed by design.
DocID15689 Rev 6
5/24
24
Electrical characteristics
TSV62x, TSV62xA
Table 5. Shutdown characteristics VCC = 1.8 V (TSV623, TSV625)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
2.5
50
Unit
DC performance
ICC
Supply current in shutdown
mode (all operators)
SHDN = VCCTmin < Top < 85 °C
200
Tmin < Top < 125° C
1.5
ton
Amplifier turn-on time
RL = 5 k, Vout = (VCC-) to (VCC-) + 0.2 V
200
toff
Amplifier turn-off time
RL = 2 k, Vout = (VCC+) - 0.5 V to
(VCC+) - 0.7 V
20
VIH
SHDN logic high
VIL
SHDN logic low
IIH
SHDN current high
SHDN = VCC+
10
IIL
SHDN current low
SHDN = VCC-
10
Output leakage in shutdown
mode
SHDN = VCC-
50
Tmin < Top < 125 °C
1
IOLeak
6/24
µA
ns
1.35
0.6
DocID15689 Rev 6
nA
V
pA
nA
TSV62x, TSV62xA
Electrical characteristics
Table 6. Electrical characteristics at VCC+ = 3.3 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C, and
RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
Vio
ΔVio/ΔT
Iio
Iib
CMR
Offset voltage
TSV62x
TSV62xA
TSV623AIST - MiniSO10
4
0.8
1
TSV62x -Tmin < Top < Tmax
TSV62xA - Tmin < Top < Tmax
TSV623AIST - Tmin < Top < Tmax
6
2
2.2
Input offset voltage drift
1
Tmin < Top < Tmax
Input bias current
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
μV/°C
2
Input offset current
Tmin < Top < Tmax
0 V to 3.3 V, Vout = 1.65 V
57
Tmin < Top < Tmax
53
RL=10 kΩ, Vout = 0.5 V to 2.8 V
81
Tmin < Top < Tmax
76
10
(1)
1
100
1
10 (1)
1
100
dB
98
Large signal voltage gain
VOH
High level output voltage
(VOH = VCC - Vout)
RL = 10 kΩ
Tmin < Top < Tmax
5
35
50
VOL
Low level output voltage
RL = 10 kΩ
Tmin < Top < Tmax
4
35
50
Iout
Isource
ICC
Supply current (per
operator)
Vo = 5 V
23
Tmin < Top < Tmax
20
Vo = 0 V
23
Tmin < Top < Tmax
20
No load, Vout = 2.5 V
pA
79
Avd
Isink
mV
mV
45
mA
38
26
Tmin < Top < Tmax
33
35
µA
AC performance
GBP
Gain bandwidth product
Fu
Unity gain frequency
φm
Phase margin
Gm
Gain margin
SR
Slew rate
RL = 10 kΩ, CL = 100 pF, f = 100 kHz
310
380
310
RL = 10 kΩ, CL = 100 pF
RL = 10 kΩ, CL = 100 pF, AV = 1
0.11
kHz
41
Degrees
8
dB
0.175
V/μs
1. Guaranteed by design.
DocID15689 Rev 6
7/24
24
Electrical characteristics
TSV62x, TSV62xA
Table 7. Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C, and
RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
Vio
ΔVio/ΔT
Iio
Iib
Offset voltage
Input offset current
Input bias current
1
Tmin < Top < Tmax
Tmin < Top < Tmax
55
RL=10 kΩ, Vout = 0.5 V to 4.5 V
85
Tmin < Top < Tmax
80
Supply voltage rejection ratio VCC = 1.8 to 5 V
20 log (ΔVCC/ΔVio)
Tmin < Top < Tmax
75
SVR
EMI rejection ratio
EMIRR = -20 log
(VRFpeak/ΔVio)
High level output voltage
(VOH = VCC - Vout)
Low level output voltage
Isink
Iout
Isource
Supply current (per operator)
10
(1)
1
100
1
10 (1)
1
100
pA
80
98
102
dB
73
VRF = 100 mVrms, f = 400 MHz
61
VRF = 100 mVrms, f = 900 MHz
85
VRF = 100 mVrms, f = 1800 MHz
92
VRF = 100 mVrms, f = 2400 MHz
83
RL = 10 kΩ
7
Tmin < Top < Tmax
35
50
RL = 10 kΩ
mV
μV/°C
2
Tmin < Top < Tmax
Large signal voltage gain
ICC
6
2
2.2
60
Avd
VOL
TSV62x - Tmin < Top < Tmax
TSV62xA - Tmin < Top < Tmax
TSV62xA - Tmin < Top < Tmax
0 V to 5 V, Vout = 2.5 V
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
VOH
4
0.8
1
Input offset voltage drift
CMR
EMIRR
TSV62x
TSV62xA
TSV623AIST - MiniSO10
6
Tmin < Top < Tmax
35
mV
50
Vo = 5 V
40
Tmin < Top < Tmax
35
Vo = 0 V
40
Tmin < Top < Tmax
35
No load, Vout = 2.5 V
69
mA
74
29
Tmin < Top < Tmax
36
38
µA
AC performance
GBP
Fu
8/24
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF, f = 100 kHz
Unity gain frequency
RL = 10 kΩ, CL = 100 pF
DocID15689 Rev 6
350
420
360
kHz
TSV62x, TSV62xA
Electrical characteristics
Table 7. Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C, and
RL connected to VCC/2 (unless otherwise specified) (continued)
Symbol
Parameter
Conditions
φm
Phase margin
Gm
Gain margin
SR
Slew rate
RL = 10 kΩ, CL = 100 pF, AV = 1
en
Equivalent input noise
voltage
f = 1 kHz
Total harmonic distortion +
noise
Av = 1, f = 1 kHz, RL= 100 kΩ,
Vicm = Vcc/2, Vout = 2 Vpp
THD+en
Min.
RL = 10 kΩ, CL = 100 pF
0.12
Typ.
Max.
Unit
40
Degrees
8
dB
0.19
V/μs
77
nV
-----------Hz
0.002
%
1. Guaranteed by design.
Table 8. Shutdown characteristics at VCC = 5 V (TSV623, TSV625)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
5
50
Unit
DC performance
ICC
Supply current in shutdown
mode (all operators)
SHDN = VIL
Tmin < Top < 85 °C
200
Tmin < Top < 125 °C
1.5
Amplifier turn-on time
RL = 5 kΩ, Vout = (VCC-) to (VCC-) +
0.2 V
200
toff
Amplifier turn-off time
RL = 5 kΩ, Vout = (VCC+) - 0.5 V to
(VCC+) - 0.7 V
20
VIH
SHDN logic high
VIL
SHDN logic low
IIH
SHDN current high
SHDN = VCC+
10
IIL
SHDN current low
SHDN = VCC-
10
ton
IOLeak
0.8
DocID15689 Rev 6
µA
ns
2
Output leakage in shutdown SHDN = VCCmode
Tmin < Top < 125 °C
nA
V
pA
50
1
nA
9/24
24
Electrical characteristics
TSV62x, TSV62xA
Figure 2. Supply current vs. supply voltage at
Vicm = VCC/2
Figure 3. Output current vs. output voltage at
VCC = 1.5 V
Figure 4. Output current vs. output voltage at
VCC = 5 V
Figure 5. Voltage gain and phase vs. frequency
at Vcc = 1.5 V
Ω
Figure 6. Voltage gain and phase vs. frequency
at VCC = 5 V
Figure 7. Phase margin vs. output current at
VCC = 1.5 V and VCC = 5 V
Ω
10/24
DocID15689 Rev 6
TSV62x, TSV62xA
Electrical characteristics
Figure 8. Positive slew rate vs. time
Figure 9. Negative slew rate vs. time
Figure 10. Positive slew rate vs. supply voltage Figure 11. Negative slew rate vs. supply voltage
Ω
Figure 13. Distortion + noise vs. frequency
1
Vcc=1.5V
Rl=10kΩ
Vicm=2.5V
THD + N (%)
Input equivalent noise density (nV/VHz)
Figure 12. Noise vs. frequency
Vicm=4.5V
Vcc=1.5V
Rl=100kΩ
0.1
0.01
Ω
Ω
Vcc=5V
T=25 C
1E-3
10
100
1000
10000
100000
Frequency (Hz)
DocID15689 Rev 6
11/24
24
Electrical characteristics
TSV62x, TSV62xA
Figure 14. Distortion + noise vs. output voltage
Figure 15. EMIRR vs. frequency at VCC = 5 V,
T = 25 °C
120
f=1kHz
Gain=1
BW=22kHz
Vicm=Vcc/2
100
EMIRR Vpeak (dB)
THD + N (%)
Vcc=1.5V
Rl=10kohms Vcc=1.5V
Rl=100kohms
80
60
40
Vcc=5.5V
Rl=10kohms
Vcc=5.5V
Rl=100kohms
20
0
1
10
Output Voltage (Vpp)
12/24
DocID15689 Rev 6
2
10
3
10
TSV62x, TSV62xA
Application information
4
Application information
4.1
Operating voltages
The TSV62x/TSV62xA can operate from 1.5 to 5.5 V. Parameters are fully specified for 1.8, 3.3-, and 5-V power supplies. However, the parameters are very stable in the full VCC
range and several characterization curves show the TSV62x/TSV62xA characteristics at
1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges
from -40 °C to 125 °C.
4.2
Rail-to-rail input
The TSV62x/TSV62xA is built with two complementary PMOS and NMOS input differential
pairs. The device has a rail-to-rail input, and the input common mode range is extended
from (VCC-) - 0.1 V to (VCC+) + 0.1 V. The transition between the two pairs appears at
(VCC+) - 0.7 V. In the transition region, the performance of CMRR, PSRR, Vio (Figure 16 and
Figure 17) and THD is slightly degraded.
Figure 16. Input offset voltage vs input common Figure 17. Input offset voltage vs input common
mode at VCC = 1.5 V
mode at VCC = 5 V
The devices are guaranteed without phase reversal.
4.3
Rail-to-rail output
The operational amplifier’s output level can go close to the rails: 35 mV maximum above
and below the rail when connected to a 10 kΩ resistive load to VCC/2.
DocID15689 Rev 6
13/24
24
Application information
4.4
TSV62x, TSV62xA
Optimization of DC and AC parameters
These operational amplifiers use an innovative approach to reduce the spread of the main
DC and AC parameters. An internal adjustment achieves a very narrow spread of current
consumption (29 µA typical, min/max at ±17%). Parameters linked to the current
consumption value, such as GBP, SR and AVd benefit from this narrow dispersion. All parts
present a similar speed and the same behavior in terms of stability. In addition, the minimum
values of GBP and SR are guaranteed (GBP = 350 kHz min, SR = 0.12 V/µs min).
4.5
Shutdown function (TSV623, TSV625)
The operational amplifier is enabled when the SHDN pin is pulled high. To disable the
amplifier, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifier
output is in a high impedance state. The SHDN pin must never be left floating but tied to
VCC+ or VCC-. The turn-on and turn-off times are calculated for an output variation of
±200 mV (Figure 18 and Figure 19 show the test configurations). Figure 20 and Figure 21
show output voltage behavior when the SHDN pin is toggled.
Figure 18. Test configuration for turn-on time
(Vout pulled down)
9
Figure 19. Test configuration for turn-off time
(Vout pulled down)
9
*1'
*1'
N
N
9
9
'87
'87
9
9
*$06&%
*$06&%
Figure 20. Turn-on time, VCC = ±2.5 V,
Vout pulled down, T = 25 °C
Figure 21. Turn-off time, VCC = ±2.5 V,
Vout pulled down, T = 25 °C
S hutdown puls e
Output voltage (V )
V oltage (V )
V out
Vcc = ±2.5 V
T = 25 °C
V out
Vcc = ±2.5 V
T = 25 °C
R L connected to G N D
T ime(µ s )
T ime( µs )
14/24
S hutdown pulse
DocID15689 Rev 6
TSV62x, TSV62xA
4.6
Application information
Driving resistive and capacitive loads
These products are micro-power, low-voltage operational amplifiers optimized to drive
rather large resistive loads, above 5 kΩ. For lower resistive loads, the THD level may
significantly increase.
In a follower configuration, these operational amplifiers can drive capacitive loads up to
100 pF with no oscillations. When driving larger capacitive loads, adding a small resistor in
series at the output can improve the stability of the device (see Figure 22 for recommended
in-series resistor values). Once the value of the in-series resistor has been selected, the
stability of the circuit should be tested on bench and simulated with the simulation model.
Figure 22. In-series resistor vs. capacitive load
4.7
PCB layouts
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible
to the power supply pins.
4.8
Macromodel
Two accurate macromodels (with or without shutdown feature) of TSV62x/TSV62xA are
available on STMicroelectronics’ web site at www.st.com. This model is a trade-off between
accuracy and complexity (that is, time simulation) of the TSV62x/TSV62xA operational
amplifiers. It emulates the nominal performances of a typical device within the specified
operating conditions mentioned in the datasheet. It helps to validate a design approach and
to select the right operational amplifier, but it does not replace on-board measurements.
DocID15689 Rev 6
15/24
24
Package information
5
TSV62x, TSV62xA
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
16/24
DocID15689 Rev 6
TSV62x, TSV62xA
5.1
Package information
SO8 package information
Figure 23. SO8 package outline
Table 9. SO8 mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.75
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.25
Max.
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
L1
k
ccc
1.04
0
0.040
8°
0.10
DocID15689 Rev 6
1°
8°
0.004
17/24
24
Package information
5.2
TSV62x, TSV62xA
MiniSO8 package information
Figure 24. MiniSO8 package outline
Table 10. MiniSO8 mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.1
A1
0
A2
0.75
b
Max.
0.043
0.15
0
0.95
0.030
0.22
0.40
0.009
0.016
c
0.08
0.23
0.003
0.009
D
2.80
3.00
3.20
0.11
0.118
0.126
E
4.65
4.90
5.15
0.183
0.193
0.203
E1
2.80
3.00
3.10
0.11
0.118
0.122
e
L
0.85
0.65
0.40
0.60
0.006
0.033
0.80
0.016
0.024
0.95
0.037
L2
0.25
0.010
ccc
0°
0.037
0.026
L1
k
18/24
Inches
8°
0.10
DocID15689 Rev 6
0°
0.031
8°
0.004
TSV62x, TSV62xA
5.3
Package information
MiniSO10 package information
Figure 25. MiniSO10 package outline
Table 11. MiniSO10 mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.10
Max.
0.043
A1
0.05
0.10
0.15
0.002
0.004
0.006
A2
0.78
0.86
0.94
0.031
0.034
0.037
b
0.25
0.33
0.40
0.010
0.013
0.016
c
0.15
0.23
0.30
0.006
0.009
0.012
D
2.90
3.00
3.10
0.114
0.118
0.122
E
4.75
4.90
5.05
0.187
0.193
0.199
E1
2.90
3.00
3.10
0.114
0.118
0.122
e
L
0.50
0.40
L1
k
aaa
0.55
0.020
0.70
0.016
0.95
0°
3°
0.022
0.028
0.037
6°
0.10
DocID15689 Rev 6
0°
3°
6°
0.004
19/24
24
Package information
5.4
TSV62x, TSV62xA
TSSOP14 package information
Figure 26. TSSOP14 package outline
Table 12. TSSOP14 mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.20
Max.
0.047
A1
0.05
0.10
0.15
0.002
0.004
0.006
A2
0.80
1.00
1.05
0.031
0.039
0.041
b
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0089
D
4.90
5.00
5.10
0.193
0.197
0.201
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.176
e
L
0.65
0.45
L1
k
aaa
20/24
Inches
0.60
0.0256
0.75
0.018
1.00
0°
0.024
0.030
0.039
8°
0.10
DocID15689 Rev 6
0°
8°
0.004
TSV62x, TSV62xA
5.5
Package information
TSSOP16 package information
Figure 27. TSSOP16 package outline
b
Table 13. TSSOP16 mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.20
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
4.90
5.00
5.10
0.193
0.197
0.201
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
0.65
k
0°
L
0.45
L1
aaa
1.00
0.60
0.006
0.039
0.041
0.0256
8°
0°
0.75
0.018
1.00
8°
0.024
0.030
0.039
0.10
DocID15689 Rev 6
0.004
21/24
24
Ordering information
6
TSV62x, TSV62xA
Ordering information
Table 14. Order codes
Order codes
Temperature
range
TSV622IDT
TSV622IST
TSV624IPT
TSV624AIPT
TSV625IPT
TSV625AIPT
22/24
-40 °C to 125 °C
MiniSO10
TSSOP14
TSSOP16
DocID15689 Rev 6
Marking
TSV622
TSV622A
K107
MiniSO8
TSV622AIST
TSV623AIST
Packing
SO8
TSV622AIDT
TSV623IST
Package
K143
Tape and reel
K114
K144
TSV624
TSV624A
TSV625
TSV625A
TSV62x, TSV62xA
7
Revision history
Revision history
Table 15. Document revision history
Date
Revision
25-May-2009
1
Initial release.
15-Jun-2009
2
Corrected pin connection diagram in Figure 1.
24-Aug-2009
3
Added root part numbers (TSv62xA) and Table 1: Device
summary on cover page.
Added order code TSV622AILT in Table 15: Order codes.
22-Oct-2009
4
Corrected error in Table 15: Order codes: TSV625 offered in
TSSOP16.
5
Updated Features.
Updated Figure 1.
Table 4, Table 6, and Table 7: replaced DVio with ΔVio/ΔT.
Section 4.5: Shutdown function (TSV623, TSV625): added
explanation of Figure 20 and Figure 21; replaced Figure 18 and
Figure 19; updated Figure 20 and Figure 21.
Corrected error in Table 15: Order codes: the marking for the
order code TSV622AILT is K143.
6
Changed part number layout on cover page
Removed package SOT23-5
Table 4, Table 6, and Table 7: updated VOH parameter
information and changed min. values to max. values.
Table 14: Order codes: removed obsolete order codes:
TSV622ILT, TSV622AILT, TSV622ID, TSV622AID
09-Jan-2013
23-May-2017
Changes
DocID15689 Rev 6
23/24
24
TSV62x, TSV62xA
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved
24/24
DocID15689 Rev 6