TSV629x, TSV629xA
Micropower, wide bandwidth CMOS operational amplifiers
Features
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Rail-to-rail input and output Low power consumption: 29 µA typ, 36 µA max Low supply voltage: 1.5 – 5.5 V High gain bandwidth product: 1.3 MHz typ Stable when used in gain configuration Low power shutdown mode: 5 nA typ Good accuracy: 800 µV max (A version) Low input bias current: 1 pA typ Micropackages: MiniSO-8, SOT23-8, MiniSO-10, TSSOP14, TSSOP16 EMI hardened operational amplifiers High tolerance to ESD: 4 kV HBM Extended temperature range: -40 to +125° C TSSOP-14 MiniSO-8/10 SO-8 SOT23-8
Applications
■ ■ ■ ■ ■
Battery-powered applications Portable devices Signal conditioning Active filtering Medical instrumentation TSSOP-16 These features make the TSV629x family ideal for sensor interfaces, battery supplied and portable applications, as well as active filtering. Table 1.
Reference
Description
The TSV6292, TSV6293, TSV6294 and TSV6295 dual and quad operational amplifiers offer a high bandwidth of 1.3 MHz while consuming only 29 µA. They must be used in a gain configuration (equal or above +4 or -3). The TSV629x series features low voltage, low power operation and rail-to-rail input and output. The devices also offer an ultra-low input bias current and low input offset voltage. The TSV6293 (dual) and TSV6295 (quad) have two shutdown pins for reduced power consumption.
Device summary
Dual version Quad version
Without With Without With standby standby standby standby
TSV6292 TSV6292A TSV6293 TSV6293A TSV6294 TSV6294A TSV6295 TSV6295A
TSV629x TSV629xA
March 2010
Doc ID 16882 Rev 2
1/25
www.st.com 25
Contents
TSV629x, TSV629xA
Contents
1 2 3 4 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Optimization of DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Shutdown function (TSV6293, TSV6295) . . . . . . . . . . . . . . . . . . . . . . . . 14 Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1 5.2 5.3 5.4 5.5 5.6 SOT23-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 MiniSO-10 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 TSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA
Package pin connections
1
Package pin connections
Figure 1. Pin connections for each package (top view)
Out1
VCC+ Out2 In2In2+
Out1 In1In1+ VCC-
1 2 3 4 _ + _ +
8 7 6 5
1 2 3 4 5 _ + _ +
10 VCC+ 9 8 7 6 Out2 In2In2+ SHDN2
In1In1+ VCCSHDN1
TSV6292IDT/IST/ILT SO8/Mini-SO8/SOT23-8
TSV6293IST MiniSO-10
1 2 3 4 5 6 7 8 + _ + _ _ + _ + 16 Out4 15 In414 In4+ 13 VCC12 In3+ 11 In310 Out3 9 SHDN3/4
Out1 In1In1+ VCC+ In2+ In2Out2
1 2 3 4 5 6 7 + _ + _ _ + _ +
14 Out4 13 In412 In4+ 11 VCC10 In3+ 9 8 In3Out3
Out1 In1In1+ VCC+ In2+ In2Out2 SHDN1/2
TSV6294IPT TSSOP14
TSV6295IPT TSSOP16
Doc ID 16882 Rev 2
3/25
Absolute maximum ratings and operating conditions
TSV629x, TSV629xA
2
Absolute maximum ratings and operating conditions
Table 2.
Symbol VCC Vid Vin Iin SHDN Tstg Supply voltage
(1) (2)
Absolute maximum ratings (AMR)
Parameter Value 6 ±VCC VCC- - 0.2 to VCC++ 0.2 10
(3)
Unit V V V mA V °C
Differential input voltage Input voltage Input current
(3) (4)
Shutdown voltage
VCC- - 0.2 to VCC++ 0.2 -65 to +150 105 190 125 113 100 95 150 4 200 1.5 200
Storage temperature Thermal resistance junction to ambient(5)(6) SOT23-8 MiniSO-8 SO-8 Mini-SO10 TSSOP14 TSSOP16 Maximum junction temperature HBM: human body model(7) model(9) model(8)
Rthja
°C/W
Tj ESD
°C kV V kV mA
MM: machine
CDM: charged device Latch-up immunity
1. All voltage values, except differential voltages are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. VCC-Vin must not exceed 6 V, Vin must not exceed 6V. 4. Input current must be limited by a resistor in series with the inputs. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. Rth are typical values. 7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating. 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.
Table 3.
Symbol VCC Vicm Toper
Operating conditions
Parameter Supply voltage Common mode input voltage range Operating free air temperature range Value 1.5 to 5.5 VCC- - 0.1 to VCC+ + 0.1 -40 to +125 Unit V V °C
4/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA
Electrical characteristics
3
Table 4.
Symbol
Electrical characteristics
Electrical characteristics at VCC+ = +1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, and RL connected to VCC/2 (unless otherwise specified)
Parameter Conditions Min. Typ. Max. Unit
DC performance TSV629x TSV629xA TSV6293AIST - MiniSO-10 Vio Offset voltage TSV629x -Tmin < Top < Tmax TSV629xA - Tmin < Top < Tmax TSV6293AIST - Tmin < Top < Tmax Input offset voltage drift Input offset current (Vout = VCC/2) Input bias current (Vout = VCC/2) Common mode rejection ratio 20 log (ΔVic/ΔVio) Large signal voltage gain 2 1 Tmin < Top < Tmax 1 1 Tmin < Top < Tmax 0 V to 1.8 V, Vout = 0.9 V Tmin < Top < Tmax RL= 10 kΩ Vout= 0.5 V to 1.3 V , Tmin < Top < Tmax High level output voltage Low level output voltage RL = 10 kΩ Tmin < Top < Tmax RL = 10 kΩ Tmin < Top < Tmax Vout = 1.8 V Tmin < Top < Tmax Isource Vout = 0 V Tmin < Top < Tmax ICC Supply current (per operator) No load, Vout=VCC/2 Tmin < Top < Tmax , RL = 10 kΩ CL = 100 pF Phase margin = 60°, Rf = 10kΩ, , RL = 10 kΩ CL = 20 pF, Top = 25° C RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to 1.3V 6 4 6 4 25 31 33 µA µA 10 53 51 78 73 35 50 5 4 12 mA 35 50 95 1 74 10
(1)
4 0.8 1 6 2 2.2
mV
DVio Iio
μV/°C pA pA pA pA dB dB dB dB mV mV
100 10
(1)
Iib
100
CMR
Avd VOH VOL
Isink Iout
AC performance GBP Gain SR Gain bandwidth product Minimum gain for stability Slew rate 1.1 +4 -3 0.33 MHz V/V V/μs
1. Guaranteed by design.
Doc ID 16882 Rev 2
5/25
Electrical characteristics Table 5.
Symbol DC performance SHDN = VCCICC Supply current in shutdown mode (all operators) Amplifier turn-on time Amplifier turn-off time SHDN logic high SHDN logic low SHDN current high SHDN current low Output leakage in shutdown mode SHDN = VCC+ SHDN = VCCSHDN = VCCTmin < Top < 125° C Tmin < Top < 85° C Tmin < Top < 125° C ton toff VIH VIL IIH IIL IOLeak RL = 5 k, Vout = VCC- to VCC- + 0.2 V RL = 5 k, Vout = VCC+ - 0.5 V to VCC+ - 0.7 V 1.35
TSV629x, TSV629xA
Shutdown characteristics VCC = 1.8 V (TSV6293, TSV6295)
Parameter Conditions Min. Typ. Max. Unit
2.5
50 200 1.5
nA nA µA ns ns V
200 20
0.6 10 10 50 1
V pA pA pA nA
6/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA Table 6.
Symbol DC performance TSV629x TSV629xA TSV6293AIST - MiniSO-10 Vio Offset voltage TSV629x -Tmin < Top < Tmax TSV629xA - Tmin < Top < Tmax TSV6293AIST - Tmin < Top < Tmax Input offset voltage drift Input offset current Iio Tmin < Top < Tmax Input bias current Tmin < Top < Tmax Common mode rejection ratio 20 log (ΔVic/ΔVio) Large signal voltage gain 0 V to 3.3 V, Vout = 1.65 V Tmin < Top < Tmax RL=10 kΩ Vout= 0.5 V to 2.8 V , Tmin < Top < Tmax High level output voltage Low level output voltage RL = 10 kΩ Tmin < Top < Tmax RL = 10 kΩ Tmin < Top < Tmax Vo = 5 V Tmin < Top < Tmax Isource Vo = 0 V Tmin < Top < Tmax ICC Supply current (per operator) No load, Vout= 2.5 V Tmin < Top < Tmax 23 20 23 20 57 53 81 76 35 50
Electrical characteristics
VCC+ = +3.3 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, RL connected to VCC/2 (unless otherwise specified)
Parameter Conditions Min. Typ. Max. Unit
4 0.8 1 mV 6 2 2.2 2 1 1 1 10(1) 100 10(1) 100 μV/°C pA pA pA pA dB dB 98 dB dB 5 4 45 mA 38 mA 26 33 35 µA µA 35 50 mV mV
DVio
Iib
1 79
CMR
Avd VOH VOL
Isink Iout
AC performance GBP Gain SR Gain bandwidth product Minimum gain for stability Slew rate RL = 10 kΩ CL = 100 pF , Phase margin = 60°, Rf = 10kΩ, , RL = 10 kΩ CL = 20 pF, Top = 25° C RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to 2.8 V 1.2 +4 -3 0.4 MHz V/V V/μs
1. Guaranteed by design.
Doc ID 16882 Rev 2
7/25
Electrical characteristics Table 7.
Symbol DC performance TSV629x TSV629xA TSV6293AIST - MiniSO-10 Vio Offset voltage TSV629x - Tmin < Top < Tmax TSV629xA - Tmin < Top < Tmax TSV629xA - Tmin < Top < Tmax Input offset voltage drift Input offset current Tmin < Top < Tmax Input bias current Tmin < Top < Tmax Common mode rejection ratio 20 log (ΔVic/ΔVio) Large signal voltage gain 0 V to 5 V, Vout = 2.5 V Tmin < Top < Tmax RL=10 kΩ Vout = 0.5 V to 4.5 V , Tmin < Top < Tmax Supply voltage rejection ratio VCC = 1.8 to 5 V 20 log (ΔVCC/ΔVio) Tmin < Top < Tmax VRF = 100 mVrms, f = 400 MHz EMIRR EMI rejection ratio
EMIRR = -20 log (VRFpeak/ΔVio)
TSV629x, TSV629xA
VCC+ = +5 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, RL connected to VCC/2 (unless otherwise specified)
Parameter Conditions Min. Typ. Max. Unit
4 0.8 1 mV 6 2 2.2 2 1 10(1) 100 10(1) 100 μV/°C pA pA pA pA dB
DVio Iio
1 1
Iib
1 60 55 85 80 75 73 61 85 102 98 80
CMR
dB
Avd
dB
SVR
VRF = 100 mVrms, f = 900 MHz VRF = 100 mVrms, f = 1800 MHz VRF = 100 mVrms, f = 2400 MHz RL = 10 kΩ Tmin < Top < Tmax RL = 10 kΩ Tmin < Top < Tmax
dB 92 83 35 50 6 35 mV 50 40 35 40 35 29 36 38 µA µA 74 mA 69 mA 7 mV
VOH
High level output voltage
VOL
Low level output voltage
Isink Iout Isource
Vo = 5 V Tmin < Top < Tmax Vo = 0 V Tmin < Top < Tmax No load, Vout = 2.5 V Tmin < Top < Tmax
ICC
Supply current (per operator)
8/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA Table 7.
Symbol AC performance GBP Gain SR en Gain bandwidth product Minimum gain for stability Slew rate Equivalent input noise voltage Total harmonic distortion + noise RL = 10 kΩ CL = 100 pF , Phase margin = 60°, Rf = 10kΩ, RL = 10 kΩ CL = 20 pF, Top = 25° C , RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to 4.5 V f = 1 kHz Av = -10, fin = 1 kHz, RL= 100 kΩ, Vicm = Vcc/2, Vout = 1 Vrms, BW = 22 kHz
Electrical characteristics
VCC+ = +5 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, RL connected to VCC/2 (unless otherwise specified) (continued)
Parameter Conditions Min. Typ. Max. Unit
1.3 +4 -3 0.5 77
MHz V/V V/μs
nV ----------Hz
THD+N
0.03
%
1. Guaranteed by design.
Table 8.
Symbol
Shutdown characteristics at VCC = 5 V (TSV6293, TSV6295)
Parameter Conditions Min. Typ. Max. Unit
DC performance SHDN = VIL ICC Supply current in shutdown mode (all operators) Amplifier turn-on time Amplifier turn-off time SHDN logic high SHDN logic low SHDN current high SHDN current low SHDN = VCC+ SHDN = VCC10 10 50 1 Tmin < Top < 85° C Tmin < Top < 125° C ton toff VIH VIL IIH IIL IOLeak RL = 5 kΩ Vout = VCC- to VCC- + 0.2 V , RL = 5 kΩ Vout = VCC+ - 0.5 V to , VCC + - 0.7 V 2 0.8 200 20 5 50 200 1.5 nA nA µA ns ns V V pA pA pA nA
Output leakage in shutdown SHDN = VCCmode Tmin < Top < 125° C
Doc ID 16882 Rev 2
9/25
Electrical characteristics
TSV629x, TSV629xA
Figure 2.
Supply current vs. supply voltage at Vicm = VCC/2
Figure 3.
Output current vs. output voltage at VCC = 1.5 V
Figure 4.
Output current vs. output voltage at Figure 5. VCC = 5 V
20
Closed loop frequency response, gain = -10 at VCC = 1.5 V & VCC = 5 V
15
Gain (dB)
VCC=5V VCC=1.5V
10
Closed loop gain=-10 CLoad=100pF, Vicm=VCC/2, Iout giving minimum stability on a typical part at T=25 C, RLoad=10kΩ
5
0 10000
100000
Frequency (Hz)
1000000
Figure 6.
12
Closed loop frequency response, gain = -3, VCC = 1.5 V
RLoad=10kΩ
Figure 7.
12
Closed loop frequency response, gain = -3, VCC = 5 V
RLoad=10kΩ
10 8
Gain (dB)
10 RLoad=100kΩ
Gain (dB)
RLoad=100kΩ RLoad=100kΩ to VCC/2 RLoad=10kΩ for Iout giving minimum stability on a typical part
8 6 4 2 0 10000
6 4 2 0 10000
RLoad=100kΩ to VCC/2 RLoad=10kΩ for Iout giving minimum stability on a typical part
100000
Frequency (Hz)
1000000
100000
Frequency (Hz)
1000000
10/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA
Electrical characteristics
Figure 8.
Positive slew rate vs. supply voltage in closed loop
Figure 9.
Negative slew rate vs. supply voltage in closed loop
RLoad=10kΩ, CLoad=100pF, ACL=− 10 Vin: from VCC+− 0.5V to 0.5V SR calculated from 10% to 90% Vicm=VCC/2 T=125°C T=− 40°C
T=125°C
Slew rate (V/ s)
T=25°C
T=− 40°C
RLoad=10kΩ, CLoad=100pF, ACL=− 10 Vin: from 0.5V to VCC+− 0.5V SR calculated from 10% to 90% Vicm=VCC/2
Supply voltage (V)
Slew rate (V/ s)
T=25°C
Supply voltage (V)
Figure 10. Slew rate vs. supply voltage in open Figure 11. Slew rate timing in open loop loop
Slew rate (V/ s)
Open loop configuration, T = 25 C RLoad=10kΩ, CLoad=100pF, Vin=1VPP, Vicm=VCC/2 SR calculated from 0.5V to VCC-0.5V
Amplitude (V)
Open loop,RLoad=10kΩ CLoad=100pF, Vicm=VCC/2 T=25°C, VCC=5V, Vin = 1VPP
Supply voltage (V)
Time (µs)
Figure 12. Slew rate timing in closed loop
RLoad=10kΩ, CLoad=100pF, Vicm=VCC/2, ACL=− 10 T=25°C, VCC=5V
Figure 13. Noise at VCC = 5 V
Input equivalent noise density (nV/VHz)
Vout
Amplitude (V)
Vicm=2.5V Vicm=4.5V
Vin
VCC=5V T=25°C
Time (µs)
Frequency (Hz)
Doc ID 16882 Rev 2
11/25
Electrical characteristics Figure 14. Distortion + noise vs. output voltage at VCC = 1.8 V
TSV629x, TSV629xA Figure 15. Distortion + noise vs. output voltage at VCC = 5 V
THD + N (%)
THD + N (%)
Ω
Ω
Ω
Ω
Output voltage (Vrms)
Ouput voltage (Vrms)
Figure 16. Distortion + noise vs. frequency at Figure 17. Distortion + noise vs. frequency at VCC = 1.8 V VCC = 5 V
THD + N (%)
THD + N (%)
Ω
Ω
Ω Ω
Frequency (Hz)
Frequency (Hz)
Figure 18. EMIRR vs. frequency at Vcc = 5 V, T = 25° C
120 100
EMIRR Vpeak (dB)
80 60 40 20 0 1 10
10
2
10
3
12/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA
Application information
4
4.1
Application information
Operating voltages
The TSV629x can operate from 1.5 to 5.5 V. The devices’ parameters are fully specified for 1.8, 3.3 and 5 V power supplies. However, the parameters are very stable in the full VCC range and several characterization curves show the TSV629x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40° C to +125° C.
4.2
Rail-to-rail input
The TSV629x are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from VCC- - 0.1 V to VCC+ + 0.1 V. The transition between the two pairs appears at VCC+ - 0.7 V. In the transition region, the performance of CMR, SVR, Vio (Figure 19 and Figure 20) and THD is slightly degraded.
Figure 19. Input offset voltage vs input common mode at VCC = 1.5 V
Figure 20. Input offset voltage vs input common mode at VCC = 5 V
The devices are guaranteed without phase reversal.
4.3
Rail-to-rail output
The operational amplifiers’ output level can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 kΩ resistive load to VCC/2.
Doc ID 16882 Rev 2
13/25
Application information
TSV629x, TSV629xA
4.4
Optimization of DC and AC parameters
These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of current consumption (29 µA typical, min/max at ±17%). Parameters linked to the current consumption value, such as GBP, SR and Avd benefit from this narrow dispersion.
4.5
Shutdown function (TSV6293, TSV6295)
The operational amplifier is enabled when the SHDN pin is pulled high. To disable the amplifier, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifier output is in a high impedance state. The SHDN pin must never be left floating but tied to VCC+ or VCC-. The turn-on and turn-off times are calculated for an output variation of ±200 mV (Figure 21 and Figure 22 show the test configurations).
Figure 21. Test configuration for turn-on time (Vout pulled down)
+ VCC
Figure 22. Test configuration for turn-off time (Vout pulled down)
+ VCC
GND
2 KΩ
GND
2 KΩ
VCC - 0.5 V
+ DUT -
VCC - 0.5 V
+ DUT -
GND
GND
Figure 23. Turn-on time, VCC = 5 V, Vout pulled down, T = 25° C
Shutdown pulse
Figure 24. Turn-off time, VCC = 5 V, Vout pulled down, T = 25° C
Vcc = 5V T = 25°C
Vout
Voltage (V)
Output voltage (V)
Vout
Vcc = 5V T = 25°C RL connected to GND
Shutdown pulse
Time (μs)
Time (μs)
14/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA
Application information
4.6
Driving resistive and capacitive loads
These products are micropower, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 5 kΩ For lower resistive loads, the THD level may significantly . increase. The amplifiers have a relatively low internal compensation capacitor, making them very fast while consuming very little. They are ideal when used in a non-inverting configuration or in an inverting configuration in the following conditions:
● ●
IGainI ≥ 3 in an inverting configuration (CL = 20 pF, RL = 100 kΩ) or IgainI ≥ 10 (CL = 100 pF, RL = 100 kΩ)
Gain ≥ +4 in a non-inverting configuration (CL = 20 pF, RL = 100kΩ) or gain ≥ +11 (CL = 100 pF, RL= 100 kΩ)
As these operational amplifiers are not unity gain stable, the TSV62x (29 µA, 420 kHz) or TSV63x (60 µA, 880 kHz) – which are unity gain stable – might be a solution for your application. Table 9.
Part # TSV622-3-4-5 TSV6292-3-4-5 TSV632-3-4-5 TSV6392-3-4-5
Related products
Icc (µA) at 5V 29 29 60 60 GBP (MHz) 0.42 1.3 0.88 2.4 SR (V/µs) 0.14 0.5 0.34 1.1 1 +11 1 +11 Minimum gain for stability (CLoad = 100 pF)
4.7
PCB layouts
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.
4.8
Macromodel
Two accurate macromodels (with or without shutdown feature) of the TSV629x are available on STMicroelectronics’ web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV629x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.
Doc ID 16882 Rev 2
15/25
Package information
TSV629x, TSV629xA
5
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.
16/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA
Package information
5.1
SOT23-8 package information
Figure 25. SOT23-8 package mechanical drawing
Table 10.
SOT23-8 package mechanical data
Dimensions
Ref. Min. A A1 A2 b c D E E1 e e1 L < 0.30 0° 0.90 0.22 0.08 2.80 2.60 1.50
Millimeters Typ. Max. 1.45 0.15 1.30 0.38 0.22 3 3 1.75 0.65 1.95 0.60 8° 0.012 0.035 0.009 0.003 0.110 0.102 0.059 Min.
Inches Typ. Max. 0.057 0.006 0.051 0.015 0.009 0.118 0.118 0.069 0.026 0.077 0.024
Doc ID 16882 Rev 2
17/25
Package information
TSV629x, TSV629xA
5.2
SO-8 package information
Figure 26. SO-8 package mechanical drawing
Table 11.
SO-8 package mechanical data
Dimensions
Ref. Min. A A1 A2 b c D E E1 e h L L1 k ccc 0 0.25 0.40 0.10 1.25 0.28 0.17 4.80 5.80 3.80
Millimeters Typ. Max. 1.75 0.25 0.004 0.049 0.48 0.23 4.90 6.00 3.90 1.27 0.50 1.27 1.04 8° 0.10 1° 0.010 0.016 5.00 6.20 4.00 0.011 0.007 0.189 0.228 0.150 Min.
Inches Typ. Max. 0.069 0.010
0.019 0.010 0.193 0.236 0.154 0.050 0.020 0.050 0.040 8° 0.004 0.197 0.244 0.157
18/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA
Package information
5.3
MiniSO-8 package information
Figure 27. MiniSO-8 package mechanical drawing
Table 12.
MiniSO-8 package mechanical data
Dimensions
Ref. Min. A A1 A2 b c D E E1 e L L1 L2 k ccc 0° 0.40 0 0.75 0.22 0.08 2.80 4.65 2.80
Millimeters Typ. Max. 1.1 0.15 0.85 0.95 0.40 0.23 3.00 4.90 3.00 0.65 0.60 0.95 0.25 8° 0.10 0° 0.80 0.016 3.20 5.15 3.10 0 0.030 0.009 0.003 0.11 0.183 0.11 Min.
Inches Typ. Max. 0.043 0.006 0.033 0.037 0.016 0.009 0.118 0.193 0.118 0.026 0.024 0.037 0.010 8° 0.004 0.031 0.126 0.203 0.122
Doc ID 16882 Rev 2
19/25
Package information
TSV629x, TSV629xA
5.4
MiniSO-10 package information
Figure 28. MiniSO-10 package mechanical drawing
Table 13.
MiniSO-10 package mechanical data
Dimensions
Ref. Min. A A1 A2 b c D E E1 e L L1 k aaa 0° 0.40 0.05 0.78 0.25 0.15 2.90 4.75 2.90
Millimeters Typ. Max. 1.10 0.10 0.86 0.33 0.23 3.00 4.90 3.00 0.50 0.55 0.95 3° 6° 0.10 0° 0.70 0.016 0.15 0.94 0.40 0.30 3.10 5.05 3.10 0.002 0.031 0.010 0.006 0.114 0.187 0.114 Min.
Inches Typ. Max. 0.043 0.004 0.034 0.013 0.009 0.118 0.193 0.118 0.020 0.022 0.037 3° 6° 0.004 0.028 0.006 0.037 0.016 0.012 0.122 0.199 0.122
20/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA
Package information
5.5
TSSOP14 package information
Figure 29. TSSOP14 package mechanical drawing
Table 14.
TSSOP14 package mechanical data
Dimensions
Ref. Min. A A1 A2 b c D E E1 e L L1 k aaa 0° 0.45 0.05 0.80 0.19 0.09 4.90 6.20 4.30
Millimeters Typ. Max. 1.20 0.15 1.00 1.05 0.30 0.20 5.00 6.40 4.40 0.65 0.60 1.00 8° 0.10 0° 0.75 0.018 5.10 6.60 4.50 0.002 0.031 0.007 0.004 0.193 0.244 0.169 Min.
Inches Typ. Max. 0.047 0.004 0.039 0.006 0.041 0.012 0.0089 0.197 0.252 0.173 0.0256 0.024 0.039 8° 0.004 0.030 0.201 0.260 0.176
Doc ID 16882 Rev 2
21/25
Package information
TSV629x, TSV629xA
5.6
TSSOP16 package information
Figure 30. TSSOP16 package mechanical drawing
Table 15.
b
TSSOP16 package mechanical data
Dimensions
Ref. Min. A A1 A2 b c D E E1 e k L L1 aaa 0° 0.45 0.05 0.80 0.19 0.09 4.90 6.20 4.30
Millimeters Typ. Max. 1.20 0.15 1.00 1.05 0.30 0.20 5.00 6.40 4.40 0.65 8° 0.60 1.00 0.10 0.75 0° 0.018 5.10 6.60 4.50 0.002 0.031 0.007 0.004 0.193 0.244 0.169 Min.
Inches Typ. Max. 0.047 0.006 0.039 0.041 0.012 0.008 0.197 0.252 0.173 0.0256 8° 0.024 0.039 0.004 0.030 0.201 0.260 0.177
22/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA
Ordering information
6
Ordering information
Table 16. Order codes
Temperature range Package Packing Marking V6292I SO-8 TSV6292AID/DT TSV6292IST MiniSO-8 TSV6292AIST TSV6292ILT TSV6293IST TSV6293AIST TSV6294IPT TSSOP-14 TSV6294AIPT TSV6295IPT TSSOP-16 TSV6295AIPT Tape & reel V6295A Tape & reel V6294A V6295 -40° C to +125° C MiniSO-10 Tape & reel K135 V6294 SOT23-8 Tape & reel Tape & reel K144 K114 K134 Tube and tape & reel V6292AI K114
Part number TSV6292ID/DT
Doc ID 16882 Rev 2
23/25
Revision history
TSV629x, TSV629xA
7
Revision history
Table 17.
Date 14-Jan-2010 01-Mar-2010
Document revision history
Revision 1 2 Initial release. Corrected error in Table 16: Order codes: TSV6295 offered in TSSOP-16 package. Changes
24/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
Doc ID 16882 Rev 2
25/25