0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSV632IST

TSV632IST

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TSSOP8

  • 描述:

    IC OPAMP GP 2 CIRCUIT 8MINISO

  • 数据手册
  • 价格&库存
TSV632IST 数据手册
TSV63x, TSV63xA Dual and quad, rail-to-rail input/output, 60 µA, 880 kHz operational amplifiers Datasheet - production data Related products See the TSV52x series for higher merit factor (1.15 MHz for 45 µA) See the TSV61x (120 kHz for 9 µA) or TSV62x (420 kHz for 29 µA) for more power savings Applications Battery-powered applications Portable devices Signal conditioning Active filtering Medical instrumentation Description The TSV63x and TSV63xA series of dual and quad operational amplifiers offers low voltage operation and rail-to-rail input and output. This family features an excellent speed/power consumption ratio, offering an 880 kHz gainbandwidth product while consuming only 60 µA at 5 V supply voltage. The devices also feature an ultralow input bias current and TSV633 and TSV635 have a shutdown mode. Features Rail-to-rail input and output Low power consumption: 60 µA typ at 5 V Low supply voltage: 1.5 V - 5.5 V Gain bandwidth product: 880 kHz typ Unity gain stable on 100 pF capacitor Low power shutdown mode: 5 nA typ Low offset voltage: 800 µV max (A version) Low input bias current: 1 pA typ EMI hardened op amps Automotive qualification May 2015 These features make the TSV63x and TSV63xA family ideal for sensor interfaces, batterysupplied and portable applications, and active filtering. Table 1: Device summary Dual version Reference With standby Without standby With standby TSV63x TSV632 TSV633 TSV634 TSV635 TSV63xA TSV632A TSV633A TSV634A TSV635A DocID15688 Rev 6 This is information on a product in full production. Without standby Quad version 1/31 www.st.com Contents TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Contents 1 Package pin connections................................................................ 3 2 3 Absolute maximum ratings and operating conditions ................. 4 Electrical characteristics ................................................................ 6 4 Application information ................................................................ 14 5 4.1 Operating voltages .......................................................................... 14 4.2 Rail-to-rail input ............................................................................... 14 4.3 Rail-to-rail output ............................................................................. 14 4.4 Shutdown function (TSV633, TSV635) ........................................... 15 4.5 Optimization of DC and AC parameters .......................................... 16 4.6 Driving resistive and capacitive loads ............................................. 16 4.7 PCB layouts .................................................................................... 16 4.8 Macromodel .................................................................................... 17 Package information ..................................................................... 18 5.1 DFN8 2 x 2 (NB) package information ............................................ 19 5.2 SOT23-8 package information ........................................................ 21 5.3 MiniSO8 package information ......................................................... 22 5.4 MiniSO10 package information ....................................................... 23 5.5 SO8 package information ................................................................ 24 5.6 QFN16 3x3 package information..................................................... 25 5.7 TSSOP14 package information ....................................................... 27 5.8 TSSOP16 package information ....................................................... 28 6 Ordering information..................................................................... 29 7 Revision history ............................................................................ 30 2/31 DocID15688 Rev 6 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A 1 Package pin connections Package pin connections Figure 1: Pin connections for each package (top view) 1. The exposed pads of the DFN8 2x2 and the QFN16 3x3 can be connected to V CC- or left floating. DocID15688 Rev 6 3/31 Absolute maximum ratings and operating conditions 2 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Absolute maximum ratings and operating conditions Table 2: Absolute maximum ratings (AMR) Symbol VCC Vid Vin Iin SHDN Parameter Supply voltage Value (1) Unit 6 Differential input voltage (2) ±VCC V Input voltage (3) (VCC-) - 0.2 to (VCC+) + 0.2 Input current (4) 10 mA (VCC-) - 0.2 to (VCC+) + 0.2 V -65 to 150 °C Shutdown voltage (3) SHDN Tstg Rthja Tj Storage temperature Thermal resistance junction to (5)(6) ambient 57 SOT23-8 105 MiniSO8 190 MiniSO10 113 SO8 125 QFN16 3x3 39 TSSOP14 100 TSSOP16 95 °C/W Maximum junction temperature HBM: human body model ESD DFN8 2x2 MM: machine model (7) °C 4000 (8) CDM: charged device model 150 300 (9) Latch-up immunity V 1500 200 mA Notes: (1) (2) (3) (4) (5) (6) All voltage values, except the differential voltage are with respect to the network ground terminal. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. VCC - VIN must not exceed 6 V, VIN must not exceed 6 V. Input current must be limited by a resistor in series with the inputs Rth are typical values Short-circuits can cause excessive heating and destructive dissipation (7) Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. (8) Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating (9) Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground. 4/31 DocID15688 Rev 6 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Absolute maximum ratings and operating conditions Table 3: Operating conditions Symbol Parameter VCC Supply voltage VICM Common-mode input voltage range Toper Operating free-air temperature range Value 1.5 to 5.5 DocID15688 Rev 6 (VCC-) - 0.1 to (VCC+) + 0.1 -40 to 125 Unit V °C 5/31 Electrical characteristics 3 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Electrical characteristics Table 4: Electrical characteristics at VCC+ = 1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, and RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance TSV63x 3 TSV63xA Vio Offset voltage 0.8 TSV633AIST (MiniSO10) 1 Tmin < Top < Tmax - TSV63x 4.5 Tmin < Top < Tmax - TSV63xA 2 Tmin < Top < Tmax - TSV633AIST ∆Vio/∆T Iio Iib CMR Avd VOH VOL Input bias current Common mode rejection ratio 20 log (ΔVic/ΔVio) Large signal voltage gain High level output voltage, (VOH = VCC - Vout) Low level output voltage Isink Iout Isource ICC 2.2 Input offset voltage drift Input offset current Supply current (per channel) mV μV/°C 2 (1) (Vout = VCC/2) 1 10 Tmin < Top < Tmax 1 100 (Vout = VCC/2) 1 10 Tmin < Top < Tmax 1 100 0 V to 1.8 V, Vout = 0.9 V 53 Tmin < Top < Tmax 51 RL= 10 kΩ, Vout = 0.5 V to 1.3 V 85 Tmin < Top < Tmax 80 RL = 10 kΩ (1) 74 dB 95 5 Tmin < Top < Tmax 35 50 RL = 10 kΩ pA 4 Tmin < Top < Tmax 35 mV 50 Vo = 1.8 V 6 Tmin < Top < Tmax 4 Vo = 0 V 6 Tmin < Top < Tmax 4 No load, Vout = VCC/2 40 12 mA 10 50 Tmin < Top < Tmax 60 62 µA AC performance Gain bandwidth product RL = 2 kΩ, CL = 100 pF, f = 100 kHz ɸm Phase margin Gm Gain margin SR Slew rate RL = 2 kΩ, CL = 100 pF, Av = 1 en Equivalent input noise voltage f = 1 kHz 60 f = 10 kHz 33 GBP 790 kHz RL = 2 kΩ, CL = 100 pF 45 Degrees RL = 2 kΩ, CL = 100 pF 13 dB 0.27 V/μs Notes: (1) Guaranteed by design 6/31 DocID15688 Rev 6 700 0.2 nV/√Hz TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Electrical characteristics Table 5: Shutdown characteristics VCC = 1.8 V Symbol Parameter Conditions Min. Typ. Max. 2.5 50 Unit DC performance SHDN = VCCICC Supply current in shutdown mode (all channels) Tmin < Top < 85° C 200 Tmin < Top < 125° C 1.5 ton Amplifier turn-on time RL = 2 kΩ, Vout = (VCC-) to (VCC-) + 0.2 V 200 toff Amplifier turn-off time RL = 2 kΩ, Vout = (VCC+) - 0.5 V to (VCC+) - 0.7 V 20 nA µA ns VIH SHDN logic high VIL SHDN logic low IIH SHDN current high SHDN = VCC+ 10 IIL SHDN current low SHDN = VCC- 10 SHDN = VCC- 50 1.35 V IOLeak Output leakage in shutdown mode 0.6 Tmin < Top < 125° C DocID15688 Rev 6 1 pA nA 7/31 Electrical characteristics TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Table 6: VCC+ = 3.3 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance TSV63x 3 TSV63xA Vio Offset voltage 0.8 TSV633AIST (MiniSO10) 1 Tmin < Top < Tmax - TSV63x 4.5 2 Tmin < Top < Tmax - TSV63xA 2.2 Tmin < Top < Tmax - TSV633AIST ∆Vio/∆T Iio Iib CMR Input offset voltage drift Input offset current Input bias current Common mode rejection ratio 20 log (ΔVic/ΔVio) Avd Large signal voltage gain VOH High level output voltage, (VOH = VCC - Vout) VOL Low level output voltage Isink Iout Isource ICC Supply current, (per channel) mV μV/°C 2 10 (1) Vout = VCC/2 1 Tmin < Top < Tmax 1 100 Vout = VCC/2 1 10 Tmin < Top < Tmax 1 100 0 V to 3.3 V, Vout = 1.65 V 57 Tmin < Top < Tmax 53 RL = 10 kΩ, Vout = 0.5 V to 2.8 V 88 Tmin < Top < Tmax 83 RL = 10 kΩ (1) 79 dB 98 5 Tmin < Top < Tmax 35 50 RL = 10 kΩ pA 4 Tmin < Top < Tmax 35 mV 50 Vo = 3.3 V 23 Tmin < Top < Tmax 20 Vo = 0 V 23 Tmin < Top < Tmax 20 No load, Vout = 1.75 V 43 45 mA 38 55 Tmin < Top < Tmax 64 66 µA AC performance Gain bandwidth product RL = 2 kΩ, CL = 100 pF, f = 100 kHz ɸm Phase margin Gm SR GBP 860 kHz RL = 2 kΩ, CL = 100 pF 46 Degrees Gain margin RL = 2 kΩ, CL = 100 pF 13 dB Slew rate RL = 2 kΩ, CL = 100 pF, AV = 1 0.29 V/μs Notes: (1) Guaranteed by design 8/31 DocID15688 Rev 6 710 0.22 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Electrical characteristics Table 7: Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, and RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance TSV63x 3 0.8 TSV63xA Vio Offset voltages TSV633AIST ( MiniSO10) 1 Tmin < Top < Tmax - TSV63x 4.5 2 Tmin < Top < Tmax - TSV63xA 2.2 Tmin < Top < Tmax - TSV633AIST ∆Vio/∆T Iio Iib Input offset voltage drift Input offset current Input bias current 1 10 Tmin < Top < Tmax 1 100 (Vout = VCC/2) 1 10 Tmin < Top < Tmax 1 100 0 V to 5 V, Vout = 2.5 V 60 Tmin < Top < Tmax 55 SVR Supply voltage rejection ratio 20 log (ΔVCC/ΔVio) VCC = 1.8 to 5 V 75 Tmin < Top < Tmax 73 Avd Large signal voltage gain RL = 10 kΩ, Vout = 0.5 V to 4.5 V 89 Tmin < Top < Tmax 84 VOH VOL High level output voltage, (VOH = VCC - Vout) Low level output voltage Isink Iout Isource ICC Supply current, (per channel) (1) (Vout = VCC/2) Common mode rejection ratio 20 log (ΔVic/ΔVio) EMI rejection ratio, EMIRR = -20 log (VRFpeak/ΔVio) μV/°C 2 CMR EMIRR mV (1) 80 102 98 VRF = 100 mVrms, f = 400 MHz 61 VRF = 100 mVrms, f = 900 MHz 85 VRF = 100 mVrms, f = 1800 MHz 92 VRF = 100 mVrms, f = 2400 MHz 83 RL = 10 kΩ 7 Tmin < Top < Tmax dB 35 50 RL = 10 kΩ pA 6 Tmin < Top < Tmax 35 mV 50 Vo = 5 V 40 Tmin < Top < Tmax 35 Vo = 0 V 40 Tmin < Top < Tmax 35 No load, Vout = VCC/2 50 69 mA 74 60 Tmin < Top < Tmax 69 72 µA AC performance GBP Fu ɸm Gain bandwidth product RL = 2 kΩ, CL = 100 pF, f = 100 kHz Unity gain frequency RL = 2 kΩ, CL = 100 pF 830 Phase margin RL = 2 kΩ, CL = 100 pF 48 DocID15688 Rev 6 730 880 kHz Degrees 9/31 Electrical characteristics Symbol TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Parameter Conditions Min. Typ. Gm Gain margin RL = 2 kΩ, CL = 100 pF SR Slew rate RL = 2 kΩ, CL = 100 pF, Av =1 en Equivalent input noise voltage f = 1 kHz 60 f = 10 kHz 33 Total harmonic distortion + noise VCC = 5V, f = 1 kHz, Av = 1, RL = 100 kΩ, Vicm = VCC/2, Vout = 2Vpp THD+en 0.25 Max. Unit 13 dB 0.34 V/μs nV/√Hz 0.002 % Notes: (1) Guaranteed by design Table 8: Shutdown characteristics at VCC = 5 V Symbol Parameter Conditions Min. Typ. Max. 5 50 Unit DC performance SHDN = VCCICC ton toff Supply current in shutdown mode (all channels) Tmin < Top < 85° C 200 Tmin < Top < 125° C 1.5 Amplifier turn-on time RL = 2 kΩ, Vout = (VCC-) to (VCC-) + 0.2 V 200 Amplifier turn-off time RL = 2 kΩ, Vout = (VCC+) - 0.5 V to (VCC+) - 0.7 V 20 nA µA ns VIH SHDN logic high VIL SHDN logic low IIH SHDN current high SHDN = VCC+ 10 IIL SHDN current low SHDN = VCC- 10 SHDN = VCC- 50 2 V IOLeak 10/31 Output leakage in shutdown mode 0.8 Tmin < Top < 125 °C DocID15688 Rev 6 1 pA nA TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Electrical characteristics Figure 2: Supply current vs. supply voltage at Vicm = VCC/2 Figure 3: Output current vs. output voltage at VCC = 1.5 V Figure 4: Output current vs. output voltage at VCC = 5 V Figure 5: Voltage gain and phase vs. frequency at VCC = 1.5 V Ω Figure 6: Voltage gain and phase vs. frequency at VCC = 5 V Figure 7: Phase margin vs. output current at VCC = 5 V DocID15688 Rev 6 11/31 Electrical characteristics TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Figure 8: Positive slew rate vs. time Figure 9: Negative slew rate vs. time Figure 10: Positive slew rate vs. supply voltage Figure 11: Negative slew rate vs. supply voltage Figure 12: Distortion + noise vs. output voltage Figure 13: Distortion + noise vs. frequency 1 Vcc = 1.5 V Rl = 100 kΩ Vcc = 1.5 V Rl = 2 kΩ Vcc = 1.5 V Rl = 2 kΩ Av = 1 Vin = 1 Vpp THD + N (% ) THD + N (%) BW = 80 kHz f = 1 kHz Gain = 1 0.1 Vicm = Vcc/2 Vcc = 1.5 V Rl = 100 kΩ Vcc = 5.5 V Rl = 2 kΩ 0.01 Vcc = 5.5 V Rl = 2 kΩ BW = 22 kHz Vicm = Vcc/2 Vcc = 5.5 V Rl = 100 kΩ Output Voltage (Vpp) 12/31 Vcc = 5.5 V Rl = 100 kΩ 1E-3 10 DocID15688 Rev 6 100 1000 10000 100000 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Electrical characteristics Figure 15: EMIRR vs. frequency at VCC = 5 V, T = 25 °C 120 300 Vcc=5V Tamb=25°C 250 200 100 E MIR RVpeak (dB ) E quivalent Input Volt age Noise (nV/VHz) Figure 14: Noise vs. frequency Vicm=2.5V 150 100 80 60 40 Vicm=4.5V 20 50 0 100 1000 10000 0 1 10 DocID15688 Rev 6 2 10 3 10 13/31 Application information TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A 4 Application information 4.1 Operating voltages The TSV63x and TSV63xA can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8 V, 3.3 V, and 5 V power supplies. However, the parameters are very stable in the full VCC range and several characterization curves show the TSV63x and TSV63xA characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 °C to 125 °C. 4.2 Rail-to-rail input The TSV63x and TSV63xA are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input and the input common mode range is extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V. The transition between the two pairs appears at (VCC+) - 0.7 V. In the transition region, the performance of CMRR, PSRR, Vio (Figure 16 and Figure 17), and THD is slightly degraded. Figure 16: Input offset voltage vs input common mode voltage at VCC = 1.5 V Figure 17: Input offset voltage vs input common mode voltage at VCC = 5 V The devices are guaranteed without phase reversal. 4.3 Rail-to-rail output The operational amplifiers’ output levels can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 kΩ resistive load to VCC/2. 14/31 DocID15688 Rev 6 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A 4.4 Application information Shutdown function (TSV633, TSV635) The operational amplifiers are enabled when the SHDN pin is pulled high. To disable the amplifiers, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifiers’ output is in a high impedance state. The SHDN pin must never be left floating, but tied to VCC+ or VCC-. The turn-on and turn-off times are calculated for an output variation of ±200 mV. Figure 18 and Figure 19 show the test configurations. Figure 20 shows the time it takes the product to come out of shutdown mode and Figure 21 shows the time it takes the product to enter shutdown mode. Figure 18: Test configuration for turn-on time (Vout pulled down) Figure 19: Test configuration for turn-off time (Vout pulled down) +Vcc +Vcc 2 kΩ Vcc-0.5V GND 2 kΩ GND + DUT - Vcc-0.5V + DUT - GND GND Figure 20: Turn-on time, VCC = 5 V, Vout pulled down, T = 25° C Figure 21: Turn-off time, VCC = 5 V, Vout pulled down, T = 25° C 25° °C µ µ DocID15688 Rev 6 15/31 Application information 4.5 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Optimization of DC and AC parameters These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of the current consumption (60 µA typical, min/max at ±17 %). Parameters linked to the current consumption value, such as GBP, SR, and Avd, benefit from this narrow dispersion. All parts present a similar speed and the same behavior in terms of stability. In addition, the minimum values of GBP and SR are guaranteed (GBP = 730 kHz minimum and SR = 0.25 V/µs minimum). 4.6 Driving resistive and capacitive loads These products are micropower, low-voltage, operational amplifiers optimized to drive rather large resistive loads, above 2 kΩ. For lower resistive loads, the THD level may significantly increase. In a follower configuration, these operational amplifiers can drive capacitive loads up to 100 pF with no oscillations. When driving larger capacitive loads, adding an in-series resistor at the output can improve the stability of the devices (see Figure 22 for recommended in-series resistor values). Once the in-series resistor value has been selected, the stability of the circuit should be tested on the bench and simulated with the simulation model. Figure 22: In-series resistor vs. capacitive load 4.7 PCB layouts For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins. 16/31 DocID15688 Rev 6 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A 4.8 Application information Macromodel Two accurate macromodels (with or without the shutdown feature) of the TSV63x and TSV63xA are available on STMicroelectronics’ web site at www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSV63x and TSV63xA operational amplifiers. They emulate the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, but they do not replace on-board measurements. DocID15688 Rev 6 17/31 Package information 5 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Package information In order to meet environmental requirements, ST offers these devices in different grades of ® ® ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ® ECOPACK is an ST trademark. 18/31 DocID15688 Rev 6 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A 5.1 Package information DFN8 2 x 2 (NB) package information Figure 23: DFN8 2 x 2 mm (NB) package outline Table 9: DFN8 2 x 2 x 0.6 mm (NB) package mechanical data (pitch 0.5 mm) Dimensions Ref. A Millimeters Inches Min. Typ. Max. Min. Typ. Max. 0.51 0.55 0.60 0.020 0.022 0.024 A1 0.05 A3 0.002 0.15 0.006 b 0.18 0.25 0.30 0.007 0.010 0.012 D 1.85 2.00 2.15 0.073 0.079 0.085 D2 1.45 1.60 1.70 0.057 0.063 0.067 E 1.85 2.00 2.15 0.073 0.079 0.085 E2 0.75 0.90 1.00 0.030 0.035 0.039 e 0.50 0.020 L 0.425 0.017 ddd 0.08 0.003 DocID15688 Rev 6 19/31 Package information TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Figure 24: DFN8 2 x 2 mm (NB) recommended footprint 20/31 DocID15688 Rev 6 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A 5.2 Package information SOT23-8 package information Figure 25: SOT23-8 package outline SIDE VIEW Dimensions in mm A A2 Gauge plane A1 L 0.1 C coplanar leads D e1 C e 0.25 e/2 Seating plane E/2 E1/2 E E1 c b (8x leads) TOP VIEW projection Table 10: SOT23-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.45 A1 Max. 0.057 0.15 0.006 A2 0.90 1.30 0.035 0.051 b 0.22 0.38 0.009 0.015 c 0.08 0.22 0.003 0.009 D 2.80 3.00 0.110 0.118 E 2.60 3.00 0.102 0.118 E1 1.50 1.75 0.059 0.069 e 0.65 e1 0.026 1.95 0.077 L 0.30 0.60 0.012 0.024 < 0° 8° 0° 8° DocID15688 Rev 6 21/31 Package information 5.3 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A MiniSO8 package information Figure 26: MiniSO8 package outline Table 11: MiniSO8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.80 0.016 0.024 0.95 0.037 L2 0.25 0.010 ccc 0° 0.037 0.026 L1 k 22/31 Inches 8° 0.10 DocID15688 Rev 6 0° 0.031 8° 0.004 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A 5.4 Package information MiniSO10 package information Figure 27: MiniSO10 package outline Table 12: MiniSO-10 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.10 Max. 0.043 A1 0.05 0.10 0.15 0.002 0.004 0.006 A2 0.78 0.86 0.94 0.031 0.034 0.037 b 0.25 0.33 0.40 0.010 0.013 0.016 c 0.15 0.23 0.30 0.006 0.009 0.012 D 2.90 3.00 3.10 0.114 0.118 0.122 E 4.75 4.90 5.05 0.187 0.193 0.199 E1 2.90 3.00 3.10 0.114 0.118 0.122 e L 0.50 0.40 L1 k aaa 0.55 0.020 0.70 0.016 0.95 0° 3° 0.022 0.028 0.037 6° 0.10 DocID15688 Rev 6 0° 3° 6° 0.004 23/31 Package information 5.5 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A SO8 package information Figure 28: SO8 package outline Table 13: SO8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.75 0.25 Max. 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 L1 k ccc 24/31 Inches 1.04 1° 0.040 8° 0.10 DocID15688 Rev 6 1° 8° 0.004 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A 5.6 Package information QFN16 3x3 package information Figure 29: QFN16 3x3 mm package outline DocID15688 Rev 6 25/31 Package information TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Table 14: QFN16 3x3 mm package mechanical data Dimensions Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 0.80 0.90 1.00 0.031 0.035 0.039 A1 0 0.05 0 A3 0.20 b 0.18 D 2.90 D2 1.50 E 2.90 E2 1.50 e L 3.00 3.00 0.30 0.007 3.10 0.114 1.80 0.059 3.10 0.114 1.80 0.059 0.50 0.30 0.002 0.008 0.012 0.118 0.071 0.118 0.122 0.071 0.020 0.50 0.012 Figure 30: QFN16 3x3 mm recommended footprint 26/31 0.122 DocID15688 Rev 6 0.020 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A 5.7 Package information TSSOP14 package information Figure 31: TSSOP14 package outline Table 15: TSSOP14 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.90 5.00 5.10 0.193 0.197 0.201 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.176 e L 0.65 0.45 L1 k aaa 1.00 0.60 0.0256 0.75 0.018 1.00 0° 0.024 0.030 0.039 8° 0.10 DocID15688 Rev 6 0° 8° 0.004 27/31 Package information 5.8 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A TSSOP16 package information Figure 32: TSSOP16 package outline Table 16: TSSOP16 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b 0.19 1.00 Max. 0.047 0.15 0.002 1.05 0.031 0.30 0.007 0.006 0.039 0.041 0.012 c 0.09 0.20 0.004 D 4.90 5.00 5.10 0.193 0.197 0.201 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 k 0° L 0.45 L1 aaa 28/31 Inches 0.60 0.008 0.026 8° 0° 0.75 0.018 1.00 8° 0.024 0.030 0.039 0.10 DocID15688 Rev 6 0.004 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A 6 Ordering information Ordering information Table 17: Order codes Order code Temperature range Package (1) Marking TSV632AIDT SO8 TV632A TSV632AILT SOT23-8 K145 TSV632AIQ2T DFN8 2x2 K1P MiniSO8 K145 SΟ8 TSV632 TSV632ILT SOT23-8 K110 TSV632IQ2T DFN8 2x2 K1N MiniSO8 K110 SΟ8 V632IY TSV632AIST TSV632IDT -40 °C to 125 °C TSV632IST TSV632IYDT -40 °C to 125 °C, (2) automotive grade TSV633AIST MiniSO10 TSV633IST TSV634AIPT -40 °C to 125 °C TSV634IQ4T TSV635AIPT TSV635IPT K111 TSSOP14 TSV634A QFN16 3x3 K112 TSV634IPT TSV634IYPT K146 TSV634 -40 °C to 125 °C, (2) automotive grade TSSOP14 -40 °C to 125 °C TSSOP16 V634IY TSV635A TSV635 Notes: (1) All devices are in tape and reel packing (2) Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002. DocID15688 Rev 6 29/31 Revision history 7 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A Revision history Table 18: Document revision history Date Revision 25-May-2009 1 Initial release. 15-Jun-2009 2 Corrected pin connection diagram in Figure 1. 03-Sep-2009 3 Added root part numbers (TSV63xA) and Table 1: "Device summary" on cover page. Added order code TSV632AILT in Table 17: "Order codes". 4 Added DFN8 2x2 package mechanical drawing. Added ordering information for DFN package to Table 17: "Order codes". Corrected unit on Y axis of Figure 16 and Figure 17. 5 Updated Features Added QFN16 3x3 package Updated Figure 1: "Pin connections for each package (top view)". Table 4, Table 6, and Table 7: replaced DVio symbol with ∆Vio/∆T Table 4, Table 5, Table 6, Table 7 and Table 8: for supply current parameter, replaced “operator” with “channel”. Table 17: "Order codes": added automotive order codes and updated footnote Deleted TSV632ID/AID from order codes in Table 17: "Order codes" 6 Table 4, Table 6, and Table 7: VOH "min" values changed to "max" values. Table 17: "Order codes": added order code TSV632AIQ2T, updated footnote 1. 07-Nov-2011 13-Dec-2012 29-May-2015 30/31 Changes DocID15688 Rev 6 TSV632, TSV632A, TSV633, TSV633A, TSV634, TSV634A, TSV635, TSV635A IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID15688 Rev 6 31/31
TSV632IST 价格&库存

很抱歉,暂时无法提供与“TSV632IST”相匹配的价格&库存,您可以联系我们找货

免费人工找货