TSV639x, TSV639xA
Micropower (60 μA), wide bandwidth (2.4 MHz) CMOS op amps
Datasheet - production data
Applications
Battery-powered applications
Portable devices
Signal conditioning
Active filtering
Medical instrumentation
Description
The TSV639x series of dual and quad
operational amplifiers (op amps) offers low
voltage operation and rail-to-rail input and output.
For applications configured with gain, the
TSV639x series offers an excellent speed/power
consumption ratio, 2.4 MHz gain bandwidth
product while consuming only 60 µA at 5 V. The
devices also feature an ultra-low input bias
current and have a shutdown mode (TSV6393,
TSV6395).
These features make the TSV639x family ideal
for sensor interfaces, battery supplied and
portable applications, as well as active filtering.
Table 1: Device summary
Features
Dual version
Rail-to-rail input and output
Low-power consumption: 60 µA typ at 5 V
Low supply voltage: 1.5 V - 5.5 V
Gain bandwidth product: 2.4 MHz typ, stable
for gain equal or above -3 or 4
Low-power shutdown mode: 5 nA typ
Low offset voltage: 800 µV max (A version)
Low input bias current: 1 pA typ
EMI hardened operational amplifiers
High tolerance to ESD: 4 kV HBM
Extended temperature range:
-40 °C to 125 °C
February 2016
Reference
Without
standby
With
standby
Without
standby
With
standby
TSV639x
TSV6392
TSV6393
TSV6394
TSV6395
TSV639xA
TSV6392A
TSV6393A
TSV6394A
TSV6395A
DocID16883 Rev 2
This is information on a product in full production.
Quad version
1/25
www.st.com
Contents
TSV639x, TSV639xA
Contents
1
Package pin connections................................................................ 3
2
Absolute maximum ratings and operating conditions ................. 4
3
4
Electrical characteristics ................................................................ 5
Electrical characteristic curves .................................................... 10
5
Application information ................................................................ 13
6
5.1
Operating voltages .......................................................................... 13
5.2
Rail-to-rail input ............................................................................... 13
5.3
Rail-to-rail output ............................................................................. 13
5.4
Shutdown function (TSV6393 - TSV6395) ...................................... 14
5.5
Optimization of DC and AC parameters .......................................... 15
5.6
Driving resistive and capacitive loads ............................................. 15
5.7
PCB layouts .................................................................................... 15
5.8
Macromodel .................................................................................... 15
Package information ..................................................................... 16
6.1
SOT23-8 package information ........................................................ 17
6.2
MiniSO8 package information ......................................................... 18
6.3
MiniSO10 package information ....................................................... 19
6.4
SO8 package information ................................................................ 20
6.5
TSSOP14 package information ....................................................... 21
6.6
TSSOP16 package information ....................................................... 22
7
Ordering information..................................................................... 23
8
Revision history ............................................................................ 24
2/25
DocID16883 Rev 2
TSV639x, TSV639xA
1
Package pin connections
Package pin connections
Figure 1: Pin connections for each package (top view)
DocID16883 Rev 2
3/25
Absolute maximum ratings and operating
conditions
2
TSV639x, TSV639xA
Absolute maximum ratings and operating conditions
Table 2: Absolute maximum ratings (AMR)
Symbol
VCC
Vid
Vin
Iin
SHDN
Tstg
Tj
Rthja
Parameter
Supply voltage
Input voltage
Input current
(4)
Shutdown voltage
(2)
±VCC
(VCC )
V
+
- 0.2 to (VCC ) + 0.2
mA
10
(3)
(VCC )
Storage temperature
Maximum junction temperature
Thermal resistance junction to
(5)(6)
ambient
MM: machine model
+
- 0.2 to (VCC ) + 0.2
-65 to 150
HBM: human body model
ESD
Unit
6
Differential input voltage
(3)
Value
(1)
150
SOT23-8
105
MiniSO8
190
MiniSO10
113
SO8
125
TSSOP14
100
TSSOP16
95
(7)
(8)
CDM: charged device model
(9)
Latch-up immunity
V
°C
°C/W
4
kV
300
V
1.5
kV
200
mA
Notes:
(1)
(2)
(3)
(4)
(5)
(6)
All voltage values, except the differential voltage are with respect to the network ground terminal.
Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
VCC - Vin must not exceed 6 V, Vin must not exceed 6 V.
The input current must be limited by a resistor in-series with the inputs.
Rth are typical values.
Short-circuits can cause excessive heating and destructive dissipation.
(7)
Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all
couples of pin combinations with other pins floating.
(8)
Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two
pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations
with other pins floating.
(9)
Charged device model: all pins plus package are charged together to the specified voltage and then discharged
directly to the ground.
Table 3: Operating conditions
Symbol
VCC
4/25
Parameter
Value
Supply voltage
Unit
1.5 to 5.5
Vicm
Common-mode input voltage range
Toper
Operating free-air temperature range
DocID16883 Rev 2
(VCC )
+
- 0.1 to (VCC ) + 0.1
-40 to 125
V
°C
TSV639x, TSV639xA
3
Electrical characteristics
Electrical characteristics
Table 4: Electrical characteristics at VCC+ = 1.8 V with VCC- = 0 V, Vicm = VCC/2,
Tamb = 25 °C, and RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
TSV639x
3
TSV639xA
Vio
Offset voltage
0.8
TSV6393AIST (MiniSO10)
1
Tmin < Top < Tmax, TSV639x
4.5
Tmin < Top < Tmax, TSV639xA
2
Tmin < Top < Tmax, TSV6393AIST
DVio
Input offset current,
Vout = VCC/2
Iib
Input bias current,
Vout = VCC/2
CMR
Common mode rejection ratio
20 log (ΔVic/ΔVio)
Avd
Large signal voltage gain
VOH
High-level output voltage,
VOH = VCC - Vout
VOL
Low-level output voltage
Isink
Iout
Isource
ICC
2.2
Input offset voltage drift
Iio
Supply current (per operator)
mV
μV/°C
2
Tmin < Top < Tmax
Tmin < Top < Tmax
0 V to 1.8 V, Vout = 0.9 V
53
Tmin < Top < Tmax
51
RL= 10 kΩ, Vout = 0.5 V to 1.3 V
85
Tmin < Top < Tmax
80
RL = 10 kΩ
(1)
1
10
1
100
1
10
1
100
(1)
74
dB
95
5
RL = 10 kΩ, Tmin < Top < Tmax
35
50
RL = 10 kΩ
pA
4
RL = 10 kΩ, Tmin < Top < Tmax
35
mV
50
Vο = 1.8 V
6
Tmin < Top < Tmax
4
Vο = 0 V
6
Tmin < Top < Tmax
4
No load, Vout = VCC/2
40
12
mA
10
50
Tmin < Top < Tmax
60
62
µA
AC performance
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
2
Gain
Minimum gain for stability
Phase margin = 60 °, Rf = 10 kΩ,
RL = 10 kΩ, CL = 20 pF
-3
SR
Slew rate
RL = 10 kΩ, CL = 100 pF,
Vout = 0.5 V to 1.3 V
0.7
en
Equivalent input noise voltage
f = 1 kHz
60
f = 10 kHz
33
4
MHz
V/V
V/μs
nV/√Hz
Notes:
(1)
Guaranteed by design.
DocID16883 Rev 2
5/25
Electrical characteristics
TSV639x, TSV639xA
Table 5: Shutdown characteristics VCC = 1.8 V
Symbol
Parameter
Conditions
Min.
Typ.
Max.
2.5
50
Unit
DC performance
-
SHDN = VCC
ICC
Supply current in shutdown mode
(all operators)
Tmin < Top < 85 °C
200
Tmin < Top < 125 °C
1.5
Amplifier turn-on time
RL = 2 kΩ,
Vout = (VCC ) to (VCC ) + 0.2 V
200
toff
Amplifier turn-off time
RL = 2 kΩ,
+
+
Vout = (VCC ) - 0.5 V to (VCC ) - 0.7 V
20
VIH
SHDN logic high
VIL
SHDN logic low
IIH
SHDN current high
ton
IIL
IOLeak
6/25
SHDN current low
Output leakage in shutdown mode
0.6
+
10
SHDN =
VCC
10
SHDN =
VCC
50
Tmin < Top < 125 °C
DocID16883 Rev 2
µA
ns
1.35
SHDN = VCC
nΑ
1
V
pA
nA
TSV639x, TSV639xA
Electrical characteristics
Table 6: Electrical characteristics at VCC+ = 3.3 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C,
RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
TSV639x
3
TSV639xA
Vio
Offset voltage
0.8
TSV6393AIST (MiniSO10)
1
Tmin < Top < Tmax, TSV639x
4.5
Tmin < Top < Tmax, TSV639xA
2
Tmin < Top < Tmax, TSV6393AIST
DVio
Iio
Iib
CMR
Input bias current
Common mode rejection ratio
20 log (ΔVic/ΔVio)
Avd
Large signal voltage gain
VOH
High-level output voltage,
VOH = VCC - Vout
VOL
Low-level output voltage
Isink
Iout
Isource
ICC
2.2
Input offset voltage drift
Input offset current
Supply current (per operator)
mV
μV/°C
2
Tmin < Top < Tmax
Tmin < Top < Tmax
0 V to 3.3 V, Vout = 1.65 V
57
Tmin < Top < Tmax
53
RL = 10 kΩ, Vout = 0.5 V to 2.8 V
88
Tmin < Top < Tmax
83
RL = 10 kΩ
(1)
1
10
1
100
1
10
1
100
(1)
79
dB
98
6
RL = 10 kΩ, Tmi. < Top < Tmax
35
50
RL = 10 kΩ
pA
7
RL = 10 kΩ, Tmin < Top < Tmax
35
mV
50
Vο = 3.3 V
23
Tmin < Top < Tmax
20
Vο = 0 V
23
Tmin < Top < Tmax
20
No load, Vout = 1.75 V
43
45
mA
38
55
Tmin < Top < Tmax
64
66
µA
AC performance
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
Gain
Minimum gain for stability
Phase margin = 60 °, Rf = 10 kΩ,
RL = 10 kΩ, CL = 20 pF
Slew rate
RL = 10 kΩ, CL = 100 pF,
Vout = 0.5 V to 2.8 V
SR
2.2
4
-3
0.9
MHz
V/V
V/μs
Notes:
(1)
Guaranteed by design.
DocID16883 Rev 2
7/25
Electrical characteristics
TSV639x, TSV639xA
Table 7: Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C,
and RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
TSV639x
3
TSV639xA
Vio
Offset voltages
0.8
TSV6393AIST (MiniSO10)
1
Tmin < Top < Tmax, TSV639x
4.5
Tmin < Top < Tmax, TSV639xA
2
Tmin < Top < Tmax, TSV6393AIST
DVio
Input offset current,
Vout = VCC/2
Iib
Input bias current,
Vout = VCC/2
CMR
SVR
Avd
EMIRR
VOH
VOL
Tmin < Top < Tmax
Tmin < Top < Tmax
0 V to 5 V, Vout = 2.5 V
60
Tmin < Top < Tmax
55
Supply voltage rejection ratio
20 log (ΔVCC/ΔVio)
VCC = 1.8 to 5 V
75
Tmin < Top < Tmax
73
RL = 10 kΩ, Vout = 0.5 V to 4.5 V
89
Tmin < Top < Tmax
84
Large signal voltage gain
EMI rejection ratio,
EMIRR = -20 log (VRFpeak/ΔVio)
High-level output voltage, VOH
= VCC - Vout
Low-level output voltage
Iout
Isource
Supply current
(per operator)
μV/°C
2
Common mode rejection ratio
20 log (ΔVic/ΔVio)
Isink
ICC
2.2
Input offset voltage drift
Iio
mV
(1)
1
10
1
100
1
10
1
100
(1)
80
93
98
VRF = 100 mVrms , f = 400 MHz
61
VRF = 100 mVrms , f = 900 MHz
85
VRF = 100 mVrms , f = 1800 MHz
92
VRF = 100 mVrms , f = 2400 MHz
83
RL = 10 kΩ
7
RL = 10 kΩ, Tmin < Top < Tmax
dB
35
50
RL = 10 kΩ
pA
6
RL = 10 kΩ, Tmin < Top < Tmax
35
mV
50
Vο = 5 V
40
Tmin < Top < Tmax
35
Vο = 0 V
40
Tmin < Top < Tmax
35
No load, Vout = VCC/2
50
65
mA
72
60
Tmin < Top < Tmax
69
72
µA
AC performance
GBP
Gain
SR
8/25
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
2.4
4
Minimum gain for stability
Phase margin = 60 °, Rf = 10 kΩ,
RL = 10 kΩ, CL = 20 pF,
-3
Slew rate
RL = 10 kΩ, CL = 100 pF
1.1
DocID16883 Rev 2
MHz
V/V
V/μs
TSV639x, TSV639xA
Electrical characteristics
Symbol
Parameter
en
Equivalent input noise voltage
THD+N
Total harmonic distortion +
noise
Conditions
Min.
Typ.
f = 1 kHz
60
f = 10 kHz
33
VCC = 5 V, fin = 1 kHz, ACL = -10,
RL = 100 kΩ, Vicm = VCC/2,
BW = 22 kHz, Vout = 1 Vrms
Max.
Unit
nV/√Hz
0.015
%
Notes:
(1)
Guaranteed by design.
Table 8: Shutdown characteristics at VCC = 5 V
Symbol
Parameter
Conditions
Min.
Typ.
Max.
5
50
Unit
DC performance
-
SHDN = VCC
ICC
Supply current in shutdown mode
(all operators)
Tmin < Top < 85 °C
200
Tmin < Top < 125 °C
1.5
ton
Amplifier turn-on time
RL = 2 kΩ,
Vout = (VCC ) V to (VCC ) + 0.2 V
200
toff
Amplifier turn-off time
RL = 2 kΩ,
+
+
Vout = (VCC ) - 0.5 V to (VCC ) - 0.7 V
20
VIH
SHDN logic high
VIL
SHDN logic low
IIH
IIL
IOLeak
SHDN current high
SHDN current low
Output leakage in shutdown mode
V
0.8
SHDN =
+
VCC
10
SHDN =
VCC
10
SHDN =
VCC
50
DocID16883 Rev 2
µA
ns
2
Tmin < Top < 125 °C
nΑ
1
V
pA
nA
9/25
Electrical characteristic curves
4
TSV639x, TSV639xA
Electrical characteristic curves
Figure 2: Supply current vs. supply voltage
at Vicm = VCC/2
Figure 3: Output current vs. output voltage
at VCC = 1.5 V
Figure 4: Output current vs. output voltage
at VCC = 5 V
Figure 5: Closed loop response for gain = -10,
at VCC = 1.5 V and VCC = 5 V
Figure 6: Closed loop response for gain = -3
at VCC = 1.5 V
Figure 7: Closed loop response for gain = -3
at VCC = 5 V
10/25
DocID16883 Rev 2
TSV639x, TSV639xA
Electrical characteristic curves
Figure 8: Positive slew rate vs. supply voltage in
closed loop
Figure 9: Negative slew rate vs. supply voltage in
closed loop
Figure 10: Slew rate vs. supply voltage in open loop
Figure 11: Slew rate timing in open loop
Figure 12: Slew rate timing in closed loop
Figure 13: Noise vs. frequency
DocID16883 Rev 2
11/25
Electrical characteristic curves
TSV639x, TSV639xA
Figure 14: Distortion and noise vs. output voltage
at VCC = 1.8 V
Figure 15: Distortion and noise vs. frequency
at VCC = 1.8 V
Figure 16: Distortion and noise vs. output voltage
at VCC = 5 V
Figure 17: Distortion and noise vs. frequency
at VCC = 5 V
Figure 18: EMIRR vs. frequency at VCC = 5 V, T = 25 °C
12/25
DocID16883 Rev 2
TSV639x, TSV639xA
Application information
5
Application information
5.1
Operating voltages
The TSV639x can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8,
3.3 and 5 V power supplies. However, the parameters are very stable in the full VCC range
and several characterization curves show the TSV639x characteristics at 1.5 V.
Additionally, the main specifications are guaranteed in extended temperature ranges from
-40 °C to 125 °C.
5.2
Rail-to-rail input
The TSV639x are built with two complementary PMOS and NMOS input differential pairs.
The devices have a rail-to-rail input, and the input common mode range is extended from
+
(VCC ) - 0.1 V to (VCC ) + 0.1 V. The transition between the two pairs appears at
+
(VCC ) - 0.7 V. In the transition region, the performance of CMR, SVR, Vio (Figure 19 and
Figure 20) and THD is slightly degraded.
Figure 19: Input offset voltage vs input common-mode
at VCC = 1.5 V
Figure 20: Input offset voltage vs input common-mode
at VCC = 5 V
The devices are guaranteed without phase reversal.
5.3
Rail-to-rail output
The operational amplifiers’ output levels can go close to the rails: 35 mV maximum above
and below the rail when connected to a 10 kΩ resistive load to VCC/2.
DocID16883 Rev 2
13/25
Application information
5.4
TSV639x, TSV639xA
Shutdown function (TSV6393 - TSV6395)
The operational amplifiers are enabled when the SHDN pin is pulled high. To disable the
amplifiers, the SHDN must be pulled down to VCC . When in shutdown mode, the amplifiers’
output is in a high impedance state. The SHDN pin must never be left floating but tied to
+
VCC or VCC .
The turn-on and turn-off times are calculated for an output variation of 200 mV (Figure 21
and Figure 22 show the test configurations).
Figure 21: Test configuration for turn-on time (Vout
pulled down)
Figure 22: Test configuration for turn-off time (Vout
pulled down)
Figure 23: Turn-on time, VCC = 5 V, Vout pulled down,
T = 25 °C
Figure 24: Turn-off time, VCC = 5 V, Vout pulled down,
T = 25 °C
14/25
DocID16883 Rev 2
TSV639x, TSV639xA
5.5
Application information
Optimization of DC and AC parameters
These devices use an innovative approach to reduce the spread of the main DC and AC
parameters. An internal adjustment achieves a very narrow spread of the current
consumption (60 µA typical, min/max at ±17 %). Parameters linked to the current
consumption value, such as GBP, SR and Avd, benefit from this narrow dispersion.
5.6
Driving resistive and capacitive loads
These products are micropower, low-voltage operational amplifiers optimized to drive
rather large resistive loads, above 2 kΩ. For lower resistive loads, the THD level may
significantly increase.
The amplifiers have a relatively low internal compensation capacitor, making them very fast
while consuming very little. They are ideal when used in a non-inverting configuration or in
an inverting configuration in the following conditions.
IGainI ≥ 3 in an inverting configuration (CL = 20 pF, RL = 100 kΩ) οr ΙgainI ≥ 10
(CL = 100 pF, RL = 100 kΩ)
Gain ≥ 4 in a non-inverting configuration (CL = 20 pF, RL = 100 kΩ) οr gain ≥ 11
(CL = 100 pF, RL= 100 kΩ)
As these operational amplifiers are not unity gain stable, for a low closed-loop gain, it is
recommended to use the TSV63x (60 µA, 880 kHz) which is unity gain stable.
Table 9: Related products
5.7
Part #
Icc (µA) at 5 V
GBP (MHz)
SR (V/µs)
Minimum gain for stability
(CLoad = 100 pF)
TSV62-2-3-4-5
29
0.42
0.14
1
TSV629-2-3-4-5
29
1.3
0.5
11
TSV63-2-3-4-5
60
0.88
0.34
1
TSV639-2-3-4-5
60
2.4
1.1
11
PCB layouts
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible
to the power supply pins.
5.8
Macromodel
Two accurate macromodels (with or without shutdown feature) of the TSV639x are
available on STMicroelectronics’ web site at www.st.com. This model is a trade-off
between accuracy and complexity (that is, time simulation) of the TSV639x operational
amplifiers. It emulates the nominal performances of a typical device within the specified
operating conditions mentioned in the datasheet. It also helps to validate a design
approach and to select the right operational amplifier, but it does not replace on-board
measurements.
DocID16883 Rev 2
15/25
Package information
6
TSV639x, TSV639xA
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
®
ECOPACK is an ST trademark.
16/25
DocID16883 Rev 2
TSV639x, TSV639xA
6.1
Package information
SOT23-8 package information
Figure 25: SOT23-8 package outline
SIDE VIEW
Dimensions in mm
A
A2
Gauge plane
A1
L
0.1 C
coplanar leads
D
e1
C
e
0.25
e/2
Seating plane
E/2
E1/2
E
E1
c
b (8x leads)
TOP VIEW
projection
Table 10: SOT23-8 mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
Inches
Max.
Min.
Typ.
Max.
A
1.45
0.057
A1
0.15
0.006
A2
0.90
1.30
0.035
0.051
b
0.22
0.38
0.009
0.015
c
0.08
0.22
0.003
0.009
D
2.80
3.00
0.110
0.118
E
2.60
3.00
0.102
0.118
E1
1.50
1.75
0.059
0.069
e
0.65
0.026
e1
1.95
0.077
L
0.30
0.60
0.012
0.024
<
0°
8°
0°
8°
DocID16883 Rev 2
17/25
Package information
6.2
TSV639x, TSV639xA
MiniSO8 package information
Figure 26: MiniSO8 package outline
Table 11: MiniSO8 mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
0
Min.
Typ.
A2
0.75
b
0.22
c
0.08
D
2.80
E
E1
0.043
0
0.95
0.030
0.40
0.009
0.016
0.23
0.003
0.009
3.00
3.20
0.11
0.118
0.126
4.65
4.90
5.15
0.183
0.193
0.203
2.80
3.00
3.10
0.11
0.118
0.122
0.85
0.65
0.40
0.60
0.006
0.033
0.80
0.016
0.024
0.95
0.037
L2
0.25
0.010
ccc
0°
0.037
0.026
L1
k
Max.
0.15
e
18/25
Max.
1.1
A1
L
Inches
8°
0.10
DocID16883 Rev 2
0°
0.031
8°
0.004
TSV639x, TSV639xA
6.3
Package information
MiniSO10 package information
Figure 27: MiniSO10 package outline
Table 12: MiniSO10 mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.10
Max.
0.043
A1
0.05
0.10
0.15
0.002
0.004
0.006
A2
0.78
0.86
0.94
0.031
0.034
0.037
b
0.25
0.33
0.40
0.010
0.013
0.016
c
0.15
0.23
0.30
0.006
0.009
0.012
D
2.90
3.00
3.10
0.114
0.118
0.122
E
4.75
4.90
5.05
0.187
0.193
0.199
E1
2.90
3.00
3.10
0.114
0.118
0.122
e
L
0.50
0.40
L1
k
aaa
0.55
0.020
0.70
0.016
0.95
0°
3°
0.022
0.028
0.037
6°
0.10
DocID16883 Rev 2
0°
3°
6°
0.004
19/25
Package information
6.4
TSV639x, TSV639xA
SO8 package information
Figure 28: SO8 package outline
Table 13: SO8 mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.75
0.25
Max
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
L1
k
ccc
20/25
Inches
1.04
1°
0.040
8°
0.10
DocID16883 Rev 2
1°
8°
0.004
TSV639x, TSV639xA
6.5
Package information
TSSOP14 package information
Figure 29: TSSOP14 package outline
aaa
Table 14: TSSOP14 mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.20
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0089
D
4.90
5.00
5.10
0.193
0.197
0.201
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.176
e
L
0.65
0.45
L1
k
aaa
1.00
0.60
0.0256
0.75
0.018
1.00
0°
0.024
0.030
0.039
8°
0.10
DocID16883 Rev 2
0°
8°
0.004
21/25
Package information
6.6
TSV639x, TSV639xA
TSSOP16 package information
Figure 30: TSSOP16 package outline
Table 15: TSSOP16 mechanical data
Dimensions
Ref
Millimeters
Min
Typ
A
Max
Min
Typ
1.20
A1
0.05
A2
0.80
b
Max
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
4.90
5.00
5.10
0.193
0.197
0.201
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
0°
L
0.45
aaa
1.00
0.65
k
L1
22/25
Inches
0.60
0.006
0.039
0.041
0.026
8°
0°
0.75
0.018
1.00
8°
0.024
0.030
0.039
0.10
DocID16883 Rev 2
0.004
TSV639x, TSV639xA
7
Ordering information
Ordering information
Table 16: Order codes
Order code
Temperature range
TSV6392IDT
TSV6392IST
TSV6394IPT
TSV6394AIPT
TSV6395IPT
TSV6395AIPT
V6392I
K111
K146
SΟΤ23-8
TSV6392ILT
-40 °C to 125 °C
ΜiniSΟ10
ΤSSΟP14
ΤSSΟP16
DocID16883 Rev 2
Marking
V632AI
ΜiniSΟ8
TSV6392AIST
TSV6393AIST
Packing
SΟ8
TSV6392AIDT
TSV6393IST
Package
K111
Tape and reel
K111
K145
V6394I
V6394AI
V6395I
V6395AI
23/25
Revision history
8
TSV639x, TSV639xA
Revision history
Table 17: Document revision history
Date
Revision
18-Jan-2010
1
Initial release
2
Updated layout
Table 4, Table 6, and Table 7: for VOH, added VOH = VCC - Vout to the
parameter column; moved the values in the “min” column to the “max”
column.
Table 10: "SOT23-8 mechanical data": added angle information to
“Inches” columns.
Table 16: "Order codes": removed obsolete order codes TSV6392ID
and TSV6392AID.
29-Feb-2016
24/25
Changes
DocID16883 Rev 2
TSV639x, TSV639xA
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
DocID16883 Rev 2
25/25