TSV639x, TSV639xA
Micropower (60 µA), wide bandwidth (2.4 MHz) CMOS op-amps
Features
■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Rail-to-rail input and output Low power consumption: 60 µA typ at 5 V Low supply voltage: 1.5 V - 5.5 V Gain bandwidth product: 2.4 MHz typ, stable for gain equal or above -3 or +4 Low power shutdown mode: 5 nA typ Low offset voltage: 800 µV max (A version) Low input bias current: 1 pA typ EMI hardened operational amplifiers High tolerance to ESD: 4 kV HBM Extended temperature range: -40° C to +125° C MiniSO-8/10 SO-8 SOT23-8
Applications
■ ■ ■ ■ ■
Battery-powered applications Portable devices Signal conditioning Active filtering Medical instrumentation TSSOP-14
Description
The TSV639x series of dual and quad operational amplifiers offers low voltage operation and rail-torail input and output. For applications configured with gain, the TSV639x series offers an excellent speed/power consumption ratio, 2.4 MHz gain bandwidth product while consuming only 60 µA at 5 V. The devices also feature an ultra-low input bias current and have a shutdown mode (TSV6393, TSV6395). These features make the TSV639x family ideal for sensor interfaces, battery supplied and portable applications, as well as active filtering. Table 1.
Reference
TSSOP-16
Device summary
Dual version Quad version
Without With Without With standby standby standby standby
TSV6392 TSV6392A TSV6393 TSV6393A TSV6394 TSV6394A TSV6395 TSV6395A
TSV639x TSV639xA
January 2010
Doc ID 16883 Rev 1
1/25
www.st.com 25
Contents
TSV639x, TSV639xA
Contents
1 2 3 4 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Shutdown function (TSV6393 - TSV6395) . . . . . . . . . . . . . . . . . . . . . . . . 13 Optimization of DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1 5.2 5.3 5.4 5.5 5.6 SOT23-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 MiniSO-10 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 TSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA
Package pin connections
1
Package pin connections
Figure 1. Pin connections for each package (top view)
Out1
Out1 In1In1+ VCC1 2 3 4 _ + _ + 8 7 6 5 VCC+ Out2 In2In2+
1 2 3 4 5 _ + _ +
10 VCC+ 9 8 7 6 Out2 In2In2+ SHDN2
In1In1+ VCCSHDN1
TSV6392IDT/IST/ILT SO8/Mini-SO8/SOT23-8 TSV6393IST MiniSO-10
Out1 In1In1+ VCC+ In2+ In2Out2 SHDN1/2 1 2 3 4 5 6 7 8 + _ + _ _ + _ + 16 Out4 15 In414 In4+ 13 VCC12 In3+ 11 In310 Out3 9 SHDN3/4
Out1 In1In1+ VCC+ In2+ In2Out2
1 2 3 4 5 6 7 + _ + _ _ + _ +
14 Out4 13 In412 In4+ 11 VCC10 In3+ 9 8 In3Out3
TSV6394IPT TSSOP14
TSV6395IPT TSSOP16
Doc ID 16883 Rev 1
3/25
Absolute maximum ratings and operating conditions
TSV639x, TSV639xA
2
Absolute maximum ratings and operating conditions
Table 2.
Symbol VCC Vid Vin Iin SHDN Tstg Supply voltage
(1) (2)
Absolute maximum ratings (AMR)
Parameter Value 6 ±VCC VCC- - 0.2 to VCC++ 0.2 10
(3)
Unit V V V mA V °C
Differential input voltage Input voltage Input current
(3) (4)
Shutdown voltage
VCC- - 0.2 to VCC++ 0.2 -65 to +150 ambient(5)(6) 105 190 125 113 100 95 150 4 300 1.5 200
Storage temperature Thermal resistance junction to SOT23-8 MiniSO-8 SO-8 MiniSO-10 TSSOP14 TSSOP16 model(7) model(9)
Rthja
°C/W
Tj ESD
Maximum junction temperature HBM: human body MM: machine model(8)
°C kV V kV mA
CDM: charged device Latch-up immunity
1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. VCC-Vin must not exceed 6 V, Vin must not exceed 6V. 4. Input current must be limited by a resistor in series with the inputs. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. Rth are typical values. 7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating. 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.
Table 3.
Symbol VCC Vicm Toper
Operating conditions
Parameter Supply voltage Common mode input voltage range Operating free air temperature range Value 1.5 to 5.5 VCC- - 0.1 to VCC+ + 0.1 -40 to +125 Unit V V °C
4/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA
Electrical characteristics
3
Table 4.
Symbol
Electrical characteristics
Electrical characteristics at VCC+ = +1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, and RL connected to VCC/2 (unless otherwise specified)
Parameter Conditions Min. Typ. Max. Unit
DC performance TSV639x TSV639xA TSV6393AIST - MiniSO-10 Vio Offset voltage Tmin < Top < Tmax - TSV639x Tmin < Top < Tmax - TSV639xA Tmin < Top < Tmax - TSV6393AIST Input offset voltage drift Input offset current (Vout = VCC/2) Input bias current (Vout = VCC/2) Common mode rejection ratio 20 log (ΔVic/ΔVio) Large signal voltage gain 2 1 Tmin < Top < Tmax 1 1 Tmin < Top < Tmax 0 V to 1.8 V, Vout = 0.9 V Tmin < Top < Tmax , RL= 10 kΩ Vout = 0.5 V to 1.3 V Tmin < Top < Tmax High level output voltage Low level output voltage RL = 10 kΩ Tmin < Top < Tmax RL = 10 kΩ Tmin < Top < Tmax Vo = 1.8 V Tmin < Top < Tmax Vo = 0 V Tmin < Top < Tmax No load, Vout = VCC/2 Tmin < Top < Tmax 6 4 6 4 40 50 60 62 µA µA 10 mA 53 51 85 80 35 50 5 4 12 mA 35 50 95 1 74 10(1) 100 10(1) 100 4.5 2 2.2 mV μV/°C pA pA pA pA dB dB dB dB mV mV 3 0.8 1
mV
DVio Iio
Iib
CMR
Avd VOH VOL
Isink Iout Isource Supply current (per operator)
ICC
AC performance GBP Gain SR en Gain bandwidth product Minimum gain for stability Slew rate Equivalent input noise voltage , RL = 10 kΩ CL = 100 pF Phase margin = 60°, Rf = 10kΩ, RL = 10 kΩ CL = 20 pF , RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to 1.3 V f = 1 kHz f = 10 kHz 2 +4 -3 0.7 60 33 MHz V/V V/μs
nV ----------Hz
1. Guaranteed by design.
Doc ID 16883 Rev 1
5/25
Electrical characteristics Table 5.
Symbol DC performance SHDN = VCCICC Supply current in shutdown mode (all operators) Tmin < Top < 85° C Tmin < Top < 125° C ton toff VIH VIL IIH IIL IOLeak Amplifier turn-on time Amplifier turn-off time SHDN logic high SHDN logic low SHDN current high SHDN current low SHDN = VCC+ SHDN = VCCRL= 2 kΩ , Vout = VCC- to VCC-+0.2 V RL = 2 kΩ , Vout = VCC+ - 0.5 V to VCC+ - 0.7 V 1.35
TSV639x, TSV639xA
Shutdown characteristics VCC = 1.8 V
Parameter Conditions Min. Typ. Max. Unit
2.5
50 200 1.5
nA nA µA ns ns V
200 20
0.6 10 10 50 1
V pA pA pA nA
Output leakage in shutdown SHDN = VCCmode Tmin < Top < 125° C
6/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA Table 6.
Symbol DC performance TSV639x TSV639xA TSV6393AIST - MiniSO10 Vio Offset voltage Tmin < Top < Tmax - TSV639x Tmin < Top < Tmax - TSV639xA Tmin < Top < Tmax - TSV6393AIST Input offset voltage drift Input offset current Tmin < Top < Tmax Input bias current Tmin < Top < Tmax Common mode rejection ratio 20 log (ΔVic/ΔVio) Large signal voltage gain 0 V to 3.3 V, Vout = 1.65 V Tmin < Top < Tmax RL = 10 kΩ Vout = 0.5 V to 2.8 V , Tmin < Top < Tmax High level output voltage Low level output voltage RL = 10 kΩ Tmi. < Top < Tmax RL = 10 kΩ Tmin < Top < Tmax Vo = 3.3 V Tmin < Top < Tmax Vo = 0 V Tmin < Top < Tmax No load, Vout = 1.75 V Tmin < Top < Tmax 23 20 23 20 43 57 53 88 83 35 50
Electrical characteristics
VCC+ = +3.3 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, RL connected to VCC/2 (unless otherwise specified)
Parameter Conditions Min. Typ. Max. Unit
3 0.8 1 4.5 2 2.2 2 1 10(1) 100 10(1) 100
mV
mV μV/°C pA pA pA pA dB
DVio Iio
1 1
Iib
1 79
CMR
98 dB 6 7 45 mA 38 mA 55 64 66 µA µA 35 50
Avd VOH VOL
mV mV
Isink Iout Isource Supply current (per operator)
ICC
AC performance GBP Gain SR Gain bandwidth product Minimum gain for stability Slew rate RL = 10 kΩ CL = 100 pF , Phase margin = 60°, Rf = 10kΩ, , RL = 10 kΩ CL = 20 pF RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to 2.8 V 2.2 +4 -3 0.9 MHz V/V V/μs
1. Guaranteed by design.
Doc ID 16883 Rev 1
7/25
Electrical characteristics Table 7.
Symbol DC performance TSV639x TSV639xA TSV6393AIST - MiniSO10 Vio Offset voltages Tmin < Top < Tmax - TSV639x Tmin < Top < Tmax - TSV639xA Tmin < Top < Tmax - TSV6393AIST Input offset voltage drift Input offset current (Vout = VCC/2) Input bias current (Vout = VCC/2) Common mode rejection ratio 20 log (ΔVic/ΔVio) Supply voltage rejection ratio 20 log (ΔVCC/ΔVio) Large signal voltage gain
TSV639x, TSV639xA
Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, and RL connected to VCC/2 (unless otherwise specified)
Parameter Conditions Min. Typ. Max. Unit
3 0.8 1 4.5 2 2.2 2 1 10
(1)
mV
mV μV/°C pA pA pA pA dB dB
DVio Iio
Tmin < Top < Tmax
1 1
100 10(1) 100
Iib
Tmin < Top < Tmax 0 V to 5 V, Vout = 2.5 V Tmin < Top < Tmax VCC = 1.8 to 5 V Tmin < Top < Tmax RL= 10 kΩ Vout = 0.5 V to 4.5 V , Tmin < Top < Tmax VRF = 100 mVrms, f = 400 MHz 60 55 75 73 89 84
1 80
CMR
93 dB 98 dB dB 61 85 dB 92 83
SVR
Avd
EMIRR
EMI Rejection Ratio
VRF = 100 mVrms, f = 900 MHz
EMIRR = -20 log (VRFpeak/ΔVio) V = 100 mV RF rms, f = 1800 MHz
VRF = 100 mVrms, f = 2400 MHz VOH VOL High level output voltage Low level output voltage RL = 10 kΩ Tmin < Top < Tmax RL = 10 kΩ Tmin < Top < Tmax Vo = 5 V Tmin < Top < Tmax Vo = 0 V Tmin < Top < Tmax No load, Vout = VCC/2 Tmin < Top < Tmax 40 35 40 35 50 35 50
7 6 65 35 50
mV mV
Isink Iout Isource Supply current (per operator)
mA 72 mA µA µA
60
69 72
ICC
8/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA Table 7.
Symbol AC performance GBP Gain SR en Gain bandwidth product Minimum gain for stability Slew rate Equivalent input noise voltage Total harmonic distortion + noise , RL = 10 kΩ CL = 100 pF Phase margin = 60°, Rf = 10kΩ, , RL = 10 kΩ CL = 20 pF, RL = 10 kΩ, CL = 100 pF f = 1 kHz f = 10 kHz VCC = 5 V, fin = 1 kHz, ACL = -10, , RL = 100 kΩ Vicm = VCC/2, BW = 22 kHz, Vout = 1 Vrms
Electrical characteristics
Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, and RL connected to VCC/2 (unless otherwise specified) (continued)
Parameter Conditions Min. Typ. Max. Unit
2.4 +4 -3 1.1 60 33 0.015
MHz V/V V/μs
nV ----------Hz
THD+N
%
1. Guaranteed by design.
Table 8.
Symbol
Shutdown characteristics at VCC = 5 V
Parameter Conditions Min. Typ. Max. Unit
DC performance SHDN = VCCICC Supply current in shutdown mode (all operators) Tmin < Top < 85° C Tmin < Top < 125° C ton toff VIH VIL IIH IIL IOLeak Amplifier turn-on time Amplifier turn-off time SHDN logic high SHDN logic low SHDN current high SHDN current low SHDN = VCC+ SHDN = VCC10 10 50 1 RL = 2 kΩ , Vout = VCC- V to VCC-+0.2 V RL = 2 kΩ , Vout = VCC+ - 0.5 V to VCC+ - 0.7 V 2 0.8 200 20 5 50 200 1.5 nA nA µA ns ns V V pA pA pA nA
Output leakage in shutdown SHDN = VCCmode Tmin < Top < 125° C
Doc ID 16883 Rev 1
9/25
Electrical characteristics
TSV639x, TSV639xA
Figure 2.
Supply current vs. supply voltage at Vicm = VCC/2
Figure 3.
Output current vs. output voltage at VCC = 1.5 V
Figure 4.
Output current vs. output voltage at Figure 5. VCC = 5 V
20
Closed loop response for gain = -10, at VCC = 1.5 V and VCC = 5 V
15
Gain (dB)
VCC=1.5V VCC=5V
10
5
Closed loop gain = -10 T=25 C,CLoad=100pF, Vicm=VCC/2, RLoad=2.2kΩ for Iout giving minimum stability on a typical part
0 10000
100000
Frequency (Hz)
1000000
Figure 6.
Closed loop response for gain = -3 Figure 7. at VCC = 1.5 V
T=25°C, Vicm=VCC/2 ACL=-3, VCC=1.5V CLoad=33pF RLoad=2.2kΩ
14 12 10
Gain (dB)
Closed loop response for gain = -3 at VCC = 5 V
T=25°C, Vicm=VCC/2 ACL=-3, VCC=5V CLoad=33pF RLoad=2.2kΩ
14 12 10
Gain (dB)
8 6 4 2 0 10000
RLoad=100kΩ
8 6 4
RLoad=100kΩ
RLoad= 100kΩ connected to VCC/2 RLoad= 2.2kΩ for Iout giving minimum stability on a typical part
2 0 10000
RLoad= 100kΩ connected to VCC/2 RLoad= 2.2kΩ for Iout giving minimum stability on a typical part
100000
Frequency (Hz)
1000000
100000
Frequency (Hz)
1000000
10/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA
Electrical characteristics
Figure 8.
Positive slew rate vs. supply voltage in closed loop
RLoad=2kΩ, CLoad=100pF, ACL=− 10 Vin: from 0.5V to VCC+− 0.5V SR calculated from 10% to 90% Vicm=VCC/2
Figure 9.
Negative slew rate vs. supply voltage in closed loop
RLoad=2kΩ, CLoad=100pF, ACL=− 10 Vin: from VCC+− 0.5V to 0.5V SR calculated from 10% to 90% Vicm=VCC/2
Slew rate (V/ s)
Slew rate (V/ s)
T=25°C T=125°C T=− 40°C
T=125°C T=− 40°C
T=25°C
Supply voltage (V)
Supply voltage (V)
Figure 10. Slew rate vs. supply voltage in open Figure 11. Slew rate timing in open loop loop
Slew rate (V/ s)
Open loop configuration, T = 25°C RLoad=10kΩ, CLoad=100pF, Vin=1VPP, Vicm=VCC/2 SR calculated from 0.5V to VCC- 0.5V
Amplitude (V)
Open loop,RLoad=10kΩ CLoad=100pF, Vicm=VCC/2 T=25°C, VCC=5V, Vin=1VPP
Supply voltage (V)
Time (µs)
Figure 12. Slew rate timing in closed loop
RLoad=2kΩ, CLoad=100pF, Vicm=VCC/2, ACL=− 10 T=25°C, VCC=5V Vout
Figure 13. Noise vs. frequency
Equivalent Input Voltage Noise (nV/VHz)
300 250 200 150 100 Vicm=4.5V 50 0 Vcc=5V T=25°C
Amplitude (V)
Vin
Vicm=2.5V
Time (µs)
100
1000
10000
Doc ID 16883 Rev 1
11/25
Electrical characteristics
TSV639x, TSV639xA
Figure 14. Distortion + noise vs. output voltage at VCC = 1.8 V
Figure 15. Distortion + noise vs. frequency at VCC = 1.8 V
THD + N (%)
THD + N (%)
Ω
Ω
Ω
Ω
Output voltage (Vrms)
Frequency (Hz)
Figure 16. Distortion + noise vs. output voltage at VCC = 5 V
Figure 17. Distortion + noise vs. frequency at VCC = 5 V
THD + N (%)
Ω
THD + N (%)
Ω
Ω
Ω
Ouput voltage (Vrms)
Frequency (Hz)
Figure 18. EMIRR vs. frequency at Vcc = 5 V, T = 25° C
120 100
EMIRR Vpeak (dB)
80 60 40 20 0 1 10
10
2
10
3
12/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA
Application information
4
4.1
Application information
Operating voltages
The TSV639x can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8, 3.3 and 5 V power supplies. However, the parameters are very stable in the full VCC range and several characterization curves show the TSV639x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40° C to +125° C.
4.2
Rail-to-rail input
The TSV639x are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from VCC-- 0.1 V to VCC+ + 0.1 V. The transition between the two pairs appears at VCC+ - 0.7 V. In the transition region, the performance of CMR, SVR, Vio (Figure 19 and Figure 20) and THD is slightly degraded.
Figure 19. Input offset voltage vs input common mode at VCC = 1.5 V
Figure 20. Input offset voltage vs input common mode at VCC = 5 V
The devices are guaranteed without phase reversal.
4.3
Rail-to-rail output
The operational amplifiers’ output levels can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 kΩ resistive load to VCC/2.
4.4
Shutdown function (TSV6393 - TSV6395)
The operational amplifiers are enabled when the SHDN pin is pulled high. To disable the amplifiers, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifiers’ output is in a high impedance state. The SHDN pin must never be left floating but tied to VCC+ or VCC-.
Doc ID 16883 Rev 1
13/25
Application information
TSV639x, TSV639xA
The turn-on and turn-off times are calculated for an output variation of ±200 mV (Figure 21 and Figure 22 show the test configurations). Figure 21. Test configuration for turn-on time (Vout pulled down)
+ VCC
Figure 22. Test configuration for turn-off time (Vout pulled down)
+ VCC
GND
2 KΩ
GND
2 KΩ
VCC - 0.5 V
+ DUT -
VCC - 0.5 V
+ DUT -
GND
GND
Figure 23. Turn-on time, VCC = 5 V, Vout pulled down, T = 25° C
Shutdown pulse
Figure 24. Turn-off time, VCC = 5 V, Vout pulled down, T = 25° C
Vcc = 5V T = 25°C
Vout
Voltage (V)
Output voltage (V)
Vout
Vcc = 5V T = 25°C RL connected to GND
Shutdown pulse
Time (μs)
Time (μs)
14/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA
Application information
4.5
Optimization of DC and AC parameters
These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of the current consumption (60 µA typical, min/max at ±17 %). Parameters linked to the current consumption value, such as GBP, SR and Avd, benefit from this narrow dispersion.
4.6
Driving resistive and capacitive loads
These products are micropower, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 2 kΩ . For lower resistive loads, the THD level may significantly . increase. The amplifiers have a relatively low internal compensation capacitor, making them very fast while consuming very little. They are ideal when used in a non-inverting configuration or in an inverting configuration in the following conditions.
● ●
IGainI ≥ 3 in an inverting configuration (CL = 20 pF, RL = 100 kΩ) or IgainI ≥10 (CL = 100 pF, RL = 100 kΩ) Gain ≥ +4 in a non-inverting configuration (CL = 20 pF, RL = 100 kΩ) or gain ≥ +11 (CL = 100 pF, RL= 100 kΩ)
As these operational amplifiers are not unity gain stable, for a low closed-loop gain, it is recommended to use the TSV63x (60 µA, 880 kHz) which is unity gain stable. Table 9.
Part # TSV62-2-3-4-5 TSV629-2-3-4-5 TSV63-2-3-4-5 TSV639-2-3-4-5
Related products
Icc (µA) at 5 V 29 29 60 60 GBP (MHz) 0.42 1.3 0.88 2.4 SR (V/µs) 0.14 0.5 0.34 1.1 1 +11 1 +11 Minimum gain for stability (CLoad = 100 pF)
4.7
PCB layouts
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.
4.8
Macromodel
Two accurate macromodels (with or without shutdown feature) of the TSV639x are available on STMicroelectronics’ web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV639x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.
Doc ID 16883 Rev 1
15/25
Package information
TSV639x, TSV639xA
5
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.
16/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA
Package information
5.1
SOT23-8 package information
Figure 25. SOT23-8 package mechanical drawing
Table 10.
SOT23-8 package mechanical data
Dimensions
Ref. Min. A A1 A2 b c D E E1 e e1 L < 0.30 0° 0.90 0.22 0.08 2.80 2.60 1.50
Millimeters Typ. Max. 1.45 0.15 1.30 0.38 0.22 3 3 1.75 0.65 1.95 0.60 8° 0.012 0.035 0.009 0.003 0.110 0.102 0.059 Min.
Inches Typ. Max. 0.057 0.006 0.051 0.015 0.009 0.118 0.118 0.069 0.026 0.077 0.024
Doc ID 16883 Rev 1
17/25
Package information
TSV639x, TSV639xA
5.2
SO-8 package information
Figure 26. SO-8 package mechanical drawing
Table 11.
SO-8 package mechanical data
Dimensions
Ref. Min. A A1 A2 b c D E E1 e h L L1 k ccc 0 0.25 0.40 0.10 1.25 0.28 0.17 4.80 5.80 3.80
Millimeters Typ. Max. 1.75 0.25 0.004 0.049 0.48 0.23 4.90 6.00 3.90 1.27 0.50 1.27 1.04 8° 0.10 1° 0.010 0.016 5.00 6.20 4.00 0.011 0.007 0.189 0.228 0.150 Min.
Inches Typ. Max. 0.069 0.010
0.019 0.010 0.193 0.236 0.154 0.050 0.020 0.050 0.040 8° 0.004 0.197 0.244 0.157
18/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA
Package information
5.3
MiniSO-8 package information
Figure 27. MiniSO-8 package mechanical drawing
Table 12.
MiniSO-8 package mechanical data
Dimensions
Ref. Min. A A1 A2 b c D E E1 e L L1 L2 k ccc 0° 0.40 0 0.75 0.22 0.08 2.80 4.65 2.80
Millimeters Typ. Max. 1.1 0.15 0.85 0.95 0.40 0.23 3.00 4.90 3.00 0.65 0.60 0.95 0.25 8° 0.10 0° 0.80 0.016 3.20 5.15 3.10 0 0.030 0.009 0.003 0.11 0.183 0.11 Min.
Inches Typ. Max. 0.043 0.006 0.033 0.037 0.016 0.009 0.118 0.193 0.118 0.026 0.024 0.037 0.010 8° 0.004 0.031 0.126 0.203 0.122
Doc ID 16883 Rev 1
19/25
Package information
TSV639x, TSV639xA
5.4
MiniSO-10 package information
Figure 28. MiniSO-10 package mechanical drawing
Table 13.
MiniSO-10 package mechanical data
Dimensions
Ref. Min. A A1 A2 b c D E E1 e L L1 k aaa 0° 0.40 0.05 0.78 0.25 0.15 2.90 4.75 2.90
Millimeters Typ. Max. 1.10 0.10 0.86 0.33 0.23 3.00 4.90 3.00 0.50 0.55 0.95 3° 6° 0.10 0° 0.70 0.016 0.15 0.94 0.40 0.30 3.10 5.05 3.10 0.002 0.031 0.010 0.006 0.114 0.187 0.114 Min.
Inches Typ. Max. 0.043 0.004 0.034 0.013 0.009 0.118 0.193 0.118 0.020 0.022 0.037 3° 6° 0.004 0.028 0.006 0.037 0.016 0.012 0.122 0.199 0.122
20/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA
Package information
5.5
TSSOP14 package information
Figure 29. TSSOP14 package mechanical drawing
Table 14.
TSSOP14 package mechanical data
Dimensions
Ref. Min. A A1 A2 b c D E E1 e L L1 k aaa 0° 0.45 0.05 0.80 0.19 0.09 4.90 6.20 4.30
Millimeters Typ. Max. 1.20 0.15 1.00 1.05 0.30 0.20 5.00 6.40 4.40 0.65 0.60 1.00 8° 0.10 0° 0.75 0.018 5.10 6.60 4.50 0.002 0.031 0.007 0.004 0.193 0.244 0.169 Min.
Inches Typ. Max. 0.047 0.004 0.039 0.006 0.041 0.012 0.0089 0.197 0.252 0.173 0.0256 0.024 0.039 8° 0.004 0.030 0.201 0.260 0.176
Doc ID 16883 Rev 1
21/25
Package information
TSV639x, TSV639xA
5.6
TSSOP16 package information
Figure 30. TSSOP16 package mechanical drawing
Table 15.
b
TSSOP16 package mechanical data
Dimensions
Ref. Min. A A1 A2 b c D E E1 e k L L1 aaa 0° 0.45 0.05 0.80 0.19 0.09 4.90 6.20 4.30
Millimeters Typ. Max. 1.20 0.15 1.00 1.05 0.30 0.20 5.00 6.40 4.40 0.65 8° 0.60 1.00 0.10 0.75 0° 0.018 5.10 6.60 4.50 0.002 0.031 0.007 0.004 0.193 0.244 0.169 Min.
Inches Typ. Max. 0.047 0.006 0.039 0.041 0.012 0.008 0.197 0.252 0.173 0.0256 8° 0.024 0.039 0.004 0.030 0.201 0.260 0.177
22/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA
Ordering information
6
Ordering information
Table 16. Order codes
Temperature range Package Packing Marking V6392I SO-8 TSV6392AID/DT TSV6392IST MiniSO-8 TSV6392AIST TSV6392ILT TSV6393IST TSV6393AIST TSV6394IPT TSSOP-14 TSV6394AIPT TSV6395IPT TSSOP-16 TSV6395AIPT Tape & reel V6395AI Tape & reel V6394AI V6395I -40° C to +125° C MiniSO-10 Tape & reel K145 V6394I SOT23-8 Tape & reel Tape & reel K146 K111 K111 Tube and tape & reel V632AI K111
Order code TSV6392ID/DT
Doc ID 16883 Rev 1
23/25
Revision history
TSV639x, TSV639xA
7
Revision history
Table 17.
Date 18-Jan-2010
Document revision history
Revision 1 Initial release. Changes
24/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
Doc ID 16883 Rev 1
25/25