0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSX631AIYLT

TSX631AIYLT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOT23-5

  • 描述:

    IC OPAMP GP 1 CIRCUIT SOT23-5

  • 数据手册
  • 价格&库存
TSX631AIYLT 数据手册
TSX631, TSX632, TSX634, TSX631A, TSX632A, TSX634A Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers Datasheet - production data Related products Single • See TSX56x or TSX92x series for higher gain bandwidth products (900 kHz or 10 MHz) Applications SOT23-5 • Industrial signal conditioning • Automotive signal conditioning Dual • Active filtering • Medical instrumentation DFN8 2x2 • High impedance sensors MiniSO-8 Description Quad QFN16 3x3 The TSX63x and TSX63xA series of operational amplifiers offer low voltage operation and rail-torail input and output. TSX631 is the single version, TSX632 the dual version and TSX634 the quad version, with pinouts compatible with industry standards. TSSOP14 The TSX63x and TSX63xA series offer a 200 kHz gain bandwidth product while consuming 60 µA maximum at 16 V. Features • Low power consumption: 60 µA max at 16 V • Supply voltage: 3.3 V to 16 V The devices are housed in the tiniest industrial packages. These features make the TSX63x and TSX63xA family ideal for sensor interfaces and industrial signal conditioning. The wide temperature range and high ESD tolerance ease the use in harsh automotive applications. • Rail-to-rail input and output • Gain bandwidth product: 200 kHz typ • Low offset voltage: – 500 µV max for “A” version – 1 mV max for standard version Table 1. Device summary • Low input bias current: 1 pA typ • Automotive qualification Benefits • Power savings in power-conscious applications Op-amp version Standard Vio Enhanced Vio Single TSX631 TSX631A Dual TSX632 TSX632A Quad TSX634 TSX634A • Easy interfacing with high impedance sensors March 2013 This is information on a product in full production. DocID024293 Rev 1 1/31 www.st.com 31 Contents TSX63x, TSX63xA Contents 1 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 4.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 18 4.4 Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.5 High values of input differential voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.6 PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.7 Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 SOT23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 DFN8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.4 QFN16 3x3 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.5 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2/31 DocID024293 Rev 1 TSX63x, TSX63xA Package pin connections Figure 1. Pin connections for each package (top view) Single SOT23-5 (TSX631) Dual 287   9&& 287 9&& ,1   287 ,1 287 ,1   ,1 ,1 ,1 9&&   ,1 9&& ,1 DFN8 2x2 (TSX632) Mini-SO8 (TSX632) ,1 287 287 ,1 Quad     ,1 9&&   9&& 1&   1& ,1   ,1     ,1  287  287 ,1 ,1 1 Package pin connections QFN16 3x3 (TSX634) DocID024293 Rev 1 TSSOP14 (TSX634) 3/31 Absolute maximum ratings and operating conditions 2 TSX63x, TSX63xA Absolute maximum ratings and operating conditions Table 2. Absolute maximum ratings (AMR) Symbol VCC Vid Vin Iin Tstg Rthja Rthjc Tj Parameter Supply voltage (2) ±VCC V (3) VCC- - 0.2 to VCC++ 0.2 (4) 10 mA -65 to +150 °C Input voltage Storage temperature Thermal resistance junction to ambient SOT23-5 DFN8 2x2 MiniSO-8 QFN16 3x3 TSSOP14 (5)(6) 250 120 190 80 100 °C/W Thermal resistance junction to case DFN8 2x2 QFN16 3x3 33 30 Maximum junction temperature 160 °C 4 kV 200 V 1.3 kV 200 mA HBM: human body ESD Unit 18 Differential input voltage Input current Value (1) MM: machine model(7) model(8) CDM: charged device model(9) Latch-up immunity 1. All voltage values, except the differential voltage are with respect to network ground terminal. 2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. See Section 4.5 for precautions of using the TSX631 with high differential input voltage. 3. VCC-Vin must not exceed 18 V, Vin must not exceed 18 V. 4. Input current must be limited by a resistor in series with the inputs. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. Rth are typical values. 7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating. 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground. Table 3. Operating conditions Symbol 4/31 Parameter VCC Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Value 3.3 to 16 DocID024293 Rev 1 VCC- - 0.1 to VCC+ + 0.1 -40 to +125 Unit V °C TSX63x, TSX63xA 3 Electrical characteristics Electrical characteristics Table 4. Electrical characteristics at VCC+ = +3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL= 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Vio Offset voltage Offset voltage, high common mode (Vicm=VCC, RL > 1 MΩ) ΔVio/ΔT Input offset voltage drift Iio Iib Input offset current (Vout = VCC/2) Input bias current (Vout = VCC/2) TSX63xA, T = 25 °C 700 TSX63xA, -40°C < T < 125 °C 1500 TSX63x, T = 25 °C 1.6 TSX63x, -40°C < T < 125 °C 2.4 T = 25 °C 4 -40°C < T < 125 °C 5 -40°C < T < 125 °C(1) 1 T = 25 °C 1 (2) 200(2) -40°C < T < 125 °C T = 25 °C 1 mV μV/°C 8 100 μV 100(2) pA 200(2) -40°C < T < 125 °C RIN Input resistance 1 TΩ CIN Input capacitance 5 pF T = 25 °C 65 CMR1 Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩs) -40°C < T < 125 °C 62 T = 25 °C 59 CMR2 Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) -40°C < T < 125 °C 55 Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) T = 25 °C 100 Avd -40°C < T < 125°C 90 VOH High level output voltage Vid = +1 V, VOH = VCC-Vout RL = 10 kΩ, T = 25 °C 70 RL = 10 kΩ, -40 °C < T < 125 °C 100 VOL Low level output voltage Vid = -1 V, RL = 10 kΩ, T = 25 °C 70 RL = 10 kΩ, -40°C < T < 125 °C 100 Isink (Vout = VCC) Iout Isource (Vout = 0 V) ICC Supply current (per operator, Vout = VCC/2, RL > 1 MΩ) 79 74 dB T = 25 °C 4.3 -40°C < T < 125 °C 2.5 T = 25 °C 3.3 -40°C < T < 125 °C 2.5 T = 25 °C -40°C < T < 125 °C DocID024293 Rev 1 110 mV 5.3 mA 4.3 45 60 60 µA 5/31 Electrical characteristics TSX63x, TSX63xA Table 4. Electrical characteristics at VCC+ = +3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL= 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. 160 200 Max. Unit AC performance GBP Gain bandwidth product Fu Unity gain frequency Φm Phase margin Gm Gain margin SR Slew rate ∫ en Low-frequency peak-to-peak input noise en Equivalent input noise voltage RL = 100 kΩ, CL = 100 pF 160 kHz 55 degrees 9 dB RL = 100 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5V 0.12 V/μs Bandwidth: f = 0.1 to 10 Hz 5 µVpp 60 nV -----------Hz 0.005 % f = 1 kHz f = 10 kHz THD+N Total harmonic distortion + noise Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = 0.9V, BW = 22 kHz, Vout = 1 Vpp 1. See Chapter 4.3: Input offset voltage drift over temperature on page 18 2. Guaranteed by design 6/31 DocID024293 Rev 1 TSX63x, TSX63xA Electrical characteristics Table 5. Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL= 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Vio Offset voltage Offset voltage, high common mode (Vicm=VCC, RL > 1 MΩ) ΔVio/ΔT Input offset voltage drift ΔVio Iio Iib TSX63xA, T = 25 °C 700 TSX63xA, -40°C < T < 125 °C 1500 TSX63x, T = 25 °C 1.6 TSX63x, -40°C < T < 125 °C 2.4 T = 25 °C 4 -40°C < T < 125 °C -40°C < T < 125 mV 5 °C(1) 1 Long term input offset voltage drift T = 25 °C(2) 17 Input offset current (Vout = VCC/2) T = 25 °C 1 Input bias current (Vout = VCC/2) μV 8 nV month --------------------------- 100(3) 200(3) -40°C < T < 125 °C T = 25 °C 1 μV/°C 100(3) pA 200(3) -40°C < T < 125 °C RIN Input resistance 1 TΩ CIN Input capacitance 5 pF T = 25 °C 65 CMR1 Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩ) -40°C < T < 125 °C 62 T = 25 °C 62 CMR2 Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) -40°C < T < 125 °C 58 Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) T = 25 °C 100 Avd -40°C < T < 125 °C 90 VOH High level output voltage Vid = +1 V, VOH = VCC-Vout RL = 10 kΩ, T=25 °C 70 RL = 10 kΩ, -40°C < T < 125 °C 100 VOL Low level output voltage Vid = -1 V, RL = 10 kΩ, T = 25 °C 70 RL = 10 kΩ, -40°C < T < 125 °C 100 Isink (Vout = VCC) Iout Isource (Vout = 0 V) ICC Supply current (per operator, Vout = VCC/2, RL > 1 MΩ) 79 77 dB T = 25 °C 11 -40°C < T < 125 °C 8 T = 25 °C 9 -40°C < T < 125 °C 7 T = 25 °C -40°C < T < 125 °C DocID024293 Rev 1 110 mV 14 mA 12 45 60 60 µA 7/31 Electrical characteristics TSX63x, TSX63xA Table 5. Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL= 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. 160 200 Max. Unit AC performance GBP Gain bandwidth product Fu Unity gain frequency Φm Phase margin Gm Gain margin SR Slew rate ∫ en Low-frequency peak-to-peak input noise en Equivalent input noise voltage RL = 100 kΩ, CL = 100 pF 160 kHz 55 degrees 9 dB RL = 100 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5V 0.12 V/μs Bandwidth: f = 0.1 to 10 Hz 5 µVpp 60 nV -----------Hz 0.005 % f = 1 kHz f = 10 kHz Follower configuration, f = 1 kHz, RL = 100 kΩ, THD+N Total harmonic distortion + noise in Vicm = 2.5V, BW = 22 kHz, Vout = 1 Vpp 1. See Chapter 4.3: Input offset voltage drift over temperature on page 18 2. Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Chapter 4.4: Long term input offset voltage drift on page 19. 3. Guaranteed by design 8/31 DocID024293 Rev 1 TSX63x, TSX63xA Electrical characteristics Table 6. Electrical characteristics at VCC+ = +10 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL=10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Offset voltage TSX63xA, T = 25 °C 500 TSX63xA, -40°C < T < 125 °C 1300 TSX63x, T = 25 °C 1 TSX63x, -40°C < T < 125 °C Vio Offset voltage, high common mode (Vicm=VCC, RL > 1 MΩ) ΔVio/ΔT Input offset voltage drift ΔVio Iio Iib Long term input offset voltage drift Input offset current (Vout = VCC/2) Input bias current (Vout = VCC/2) 1.8 T = 25 °C 4 -40°C < T < 125 °C -40°C < T < 125 μV mV 5 °C(1) 1 T = 25 °C(2) 8 nV month --------------------------- 180 T = 25 °C 1 100(3) 200(3) -40°C < T < 125 °C T = 25 °C 1 μV/°C 100(3) pA 200(3) -40°C < T < 125 °C RIN Input resistance 1 TΩ CIN Input capacitance 5 pF T = 25 °C 71 -40°C < T < 125 °C 68 84 CMR1 Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩ) T = 25 °C 69 CMR2 Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) -40°C < T < 125 °C 66 Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) T = 25 °C 100 Avd -40°C < T < 125 °C 90 VOH High level output voltage Vid = +1 V, VOH = VCC-Vout RL = 10 kΩ, T = 25 °C 70 RL = 10 kΩ, -40°C < T < 125 °C 100 VOL Low level output voltage Vid = -1 V, RL = 10 kΩ, T = 25 °C 70 RL = 10 kΩ, -40°C < T < 125 °C 100 Isink (Vout = VCC) Iout Isource (Vout = 0 V) ICC Supply current (per operator, Vout = VCC/2, RL > 1 MΩ) 82 dB T = 25 °C 35 -40°C < T < 125 °C 25 T = 25 °C 30 -40°C < T < 125 °C 20 T = 25 °C -40°C < T < 125 °C DocID024293 Rev 1 110 mV 51 mA 42 45 60 60 µA 9/31 Electrical characteristics TSX63x, TSX63xA Table 6. Electrical characteristics at VCC+ = +10 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL=10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. 160 200 Max. Unit AC performance GBP Gain bandwidth product Fu Unity gain frequency Φm Phase margin Gm Gain margin SR Slew rate ∫ en Low-frequency peak-to-peak input noise en Equivalent input noise voltage RL = 100 kΩ, CL = 100 pF 160 kHz 55 degrees 9 dB RL = 100 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5V 0.12 V/μs Bandwidth: f = 0.1 to 10 Hz 5 µVpp 60 nV -----------Hz 0.004 % f = 1 kHz f = 10 kHz THD+N Total harmonic distortion + noise Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = 5 V, BW = 22 kHz, Vout = 1 Vpp 1. See Chapter 4.3: Input offset voltage drift over temperature on page 18 2. Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Chapter 4.4: Long term input offset voltage drift on page 19. 3. Guaranteed by design 10/31 DocID024293 Rev 1 TSX63x, TSX63xA Electrical characteristics Table 7. Electrical characteristics at VCC+ = +16 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL=10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Vio Offset voltage Offset voltage, high commonmode (Vicm=VCC, RL > 1 MΩ) ΔVio/ΔT Input offset voltage drift TSX63xA, T = 25 °C 700 TSX63xA, -40°C < T < 125 °C 1500 T = 25 °C 1.6 -40°C < T < 125 °C 2.4 T = 25°C 4 -40°C < T < 125 °C 5 -40°C < T < 125 °C(1) Long term input offset voltage drift T = 25 °C(2) Iio Input offset current (Vout = VCC/2) T = 25 °C Iib Input bias current (Vout = VCC/2) ΔVio 1 8 T = 25 °C 1 μV/°C --------------------------- 100(3) 200(3) -40°C < T < 125 °C mV μV month 3.4 1 μV 100(3) pA 200(3) -40°C < T < 125 °C RIN Input resistance 1 TΩ CIN Input capacitance 5 pF T = 25 °C 71 CMR1 Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩ) 85 -40°C < T < 125 °C 68 T = 25 °C 69 CMR2 Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) -40°C < T < 125 °C 66 T = 25 °C 73 SVR Common mode rejection ratio 20 log (ΔVCC/ΔVio) (VCC =3.3 V to 16 V, Vout = Vicm VCC/2) -40°C < T < 125 °C 70 Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) T = 25 °C 100 Avd -40°C < T < 125 °C 90 VOH High level output voltage Vid = +1 V, VOH = VCC-Vout RL = 10 kΩ, T = 25 °C 70 RL = 10 kΩ, -40°C < T < 125 °C 100 VOL Low level output voltage Vid = -1 V, RL = 10 kΩ, T = 25 °C 70 RL = 10 kΩ, -40°C < T < 125 °C 100 83 dB DocID024293 Rev 1 87 110 mV 11/31 Electrical characteristics TSX63x, TSX63xA Table 7. Electrical characteristics at VCC+ = +16 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL=10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Isink Iout Isource ICC Supply current (per operator, Vout = VCC/2, RL > 1 MΩ) Conditions Min. Typ. Vout = VCC, T = 25 °C 40 92 Vout = VCC, -40°C < T < 125 °C 35 Vout = 0 V, T = 25 °C 30 Vout = 0 V, -40°C < T < 125 °C 25 T = 25 °C Max. mA 90 45 -40°C < T < 125 °C Unit 60 60 µA AC performance GBP Gain bandwidth product Fu Unity gain frequency Φm Phase margin Gm Gain margin SR Slew rate ∫ en Low-frequency peak-to-peak input noise en Equivalent input noise voltage 160 RL = 100 kΩ, CL = 100 pF 200 160 kHz 55 degrees 9 dB RL = 100 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5V 0.12 V/μs Bandwidth: f = 0.1 to 10 Hz 5 µVpp 60 nV -----------Hz 0.004 % f = 1 kHz f = 10 kHz THD+N Total harmonic distortion + noise Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = 8 V, BW = 22 kHz, Vout = 1 Vpp 1. See Chapter 4.3: Input offset voltage drift over temperature on page 18 2. Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Chapter 4.4: Long term input offset voltage drift on page 19. 3. Guaranteed by design 12/31 DocID024293 Rev 1 TSX63x, TSX63xA Electrical characteristics Figure 2. Supply current vs. supply voltage at Vicm = VCC/2 Figure 3. Input offset voltage distribution at VCC = 16 V 20 50 Vcc=16V Vicm=8V T=25°C Vicm=Vcc/2 15 Population (%) Supply Current (µA) 40 30 20 T=-40°C T=25°C 10 0 5 T=125°C 0 2 4 6 8 10 Supply Voltage (V) 12 14 0 -1500 16 -500 0 500 1000 1500 Figure 5. Input offset voltage vs. temperature at VCC=16 V 3000 35 Limit for TSX63x Vcc=3.3V Vicm=1.65V T=25°C Limit for TSX63xA 2000 Input offset voltage (µV) 30 -1000 Input offset voltage (µV) Figure 4. Input offset voltage distribution at VCC = 10 V 25 Population (%) 10 20 15 10 1000 0 -1000 5 -2000 0 -250 -3000 -40 Vcc=16V -200 -150 -100 -50 0 50 100 150 200 250 -20 0 Input offset voltage (µV) Figure 6. Input offset voltage temperature coefficient distribution Input Offset Voltage (µV) Population (%) 10 5 200 0 T=125°C -200 T=25°C T=-40°C -400 -600 -800 -1000 0 -6 -5 120 400 15 -7 100 600 Vcc=16V Vicm=8V T=25°C -8 80 Figure 7. Input offset voltage vs. input common mode voltage 25 20 20 40 60 Temperature (°C) -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 Vcc=16V 0 Δ Vio/Δ T (µV/°C) DocID024293 Rev 1 2 4 6 8 10 12 Input Common Mode Voltage (V) 14 16 13/31 Electrical characteristics TSX63x, TSX63xA Figure 8. Output current vs. output voltage at VCC = 3.3 V Figure 9. Output current vs. output voltage at VCC = 16 V 125 10.0 100 Sink Vid=-1V 75 Sink 7.5 Vid=-1V Output Current (mA) 2.5 0.0 T=-40°C T=25°C T=125°C -2.5 -5.0 25 T=-40°C T=25°C 0 T=125°C -25 -50 -75 -7.5 -10.0 0.0 50 0.5 1.0 1.5 2.0 Output Voltage (V) -100 Source Vid=1V Vcc=3.3V 2.5 -125 0.0 3.0 Figure 10. Output low-rail linearity performance (RL≥ 2 kΩ) 2.0 4.0 14.0 16.0 0.20 From Vcc=3.3V to Vcc=16V From Vcc=3.3V to Vcc=16V 0.15 0.15 Vcc - Vout (V) Vout (V) 6.0 8.0 10.0 12.0 Output Voltage (V) Figure 11. Output high-rail linearity performance (RL≥ 2kΩ) 0.20 0.10 0.05 0.10 0.05 Follower configuration T=25°C 0.00 0.00 0.05 0.10 Vin (V) 0.15 Follower configuration T=25°C 0.00 0.00 0.20 Figure 12. Bode diagram at VCC = 3.3 V, RL= 10 kΩ 40 0.05 0.10 Vcc - Vin (V) 0.15 0.20 Figure 13. Bode diagram at VCC = 3.3 V, RL= 100 kΩ 40 0 0 Gain Gain -45 30 -45 20 -90 20 -90 Phase T=-40°C 10 0 -135 Vcc=3.3V Vicm=1.65V Rl=10kΩ Cl=100pF Gain=-100 -10 T=25°C -180 0 -225 -10 10k 100k -270 1M -20 -135 Vcc=3.3V Vicm=1.65V Rl=100kΩ Cl=100pF Gain=-100 1k Frequency (Hz) 14/31 Phase T=-40°C 10 T=125°C -20 1k Gain (dB) 30 Phase (°) Gain (dB) Source Vid=1V Vcc=16V -180 T=25°C -225 T=125°C 10k 100k Frequency (Hz) DocID024293 Rev 1 -270 1M Phase (°) Output Current (mA) 5.0 TSX63x, TSX63xA Electrical characteristics Figure 14. Bode diagram at VCC = 16 V, RL = 10 kΩ Figure 15. Bode diagram at VCC = 16 V, RL = 100 kΩ 0 40 40 0 -45 30 -45 20 -90 20 -90 Phase T=-40°C 10 0 -135 Vcc=16V Vicm=8V Rl=10kΩ Cl=100pF Gain=-100 -10 0 -225 -10 -270 1M -20 100k -135 Vcc=16V Vicm=8V Rl=100kΩ Cl=100pF Gain=-100 T=125°C 10k Phase T=-40°C 10 -180 T=25°C -20 1k Gain (dB) 30 1k T=125°C -270 1M 100k Figure 17. In-series resistor (Riso) vs. capacitive load 15 10000 Follower configuration 10 Vcc=16V Vicm=8V Rl=100kΩ 5 T=25°C Cl=470pF Cl=200pF 0 -5 Follower configuration Vcc=16V Vicm=8V Rl=100kΩ T=25°C Stable 1000 Riso (Ω ) Gain (dB) -225 Frequency (Hz) Figure 16. Closed-loop gain vs. capacitive load Unstable 100 Cl=20pF Cl=100pF -10 -15 1k 10k 100k Frequency (Hz) 10 100p 1M 10n 100n Figure 19. Positive slew rate 6.0 6.0 5.0 T=-40°C 3.0 2.0 1.0 5.0 Vcc=16V Vicm=Vcc/2 Rl=100kΩ Cl=100pF T=25°C 0.0 -1.0 T=125°C -2.0 4.0 3.0 Output Voltage (V) 4.0 -3.0 2.0 0.0 -2.0 -3.0 -5.0 -5.0 20 40 60 80 Time (µs) 100 120 140 T=25°C -1.0 -4.0 0 T=125°C 1.0 -4.0 -6.0 -20 1n Cload (F) Figure 18. Negative slew rate Output Voltage (V) -180 T=25°C 10k Frequency (Hz) Phase (°) Gain Phase (°) Gain (dB) Gain -6.0 -20 DocID024293 Rev 1 T=-40°C 0 20 40 60 80 Time (µs) Vcc=16V Vicm=Vcc/2 Rl=100kΩ Cl=100pF 100 120 140 15/31 Electrical characteristics TSX63x, TSX63xA Figure 20. Slew rate vs. supply voltage Figure 21. Small step response 0.10 0.20 Vcc = 16V Vicm=8V Rl=100kΩ Cl=100pF T=25°C 0.15 0.05 Slew rate (V/µs) 0.05 0.00 T=125°C T=25°C Vicm=Vcc/2 Vload=Vcc/2 Rl=100kΩ Cl=100pF T=-40°C -0.05 -0.10 Output Voltage (V) 0.10 0.00 -0.05 -0.15 -0.10 -0.20 4 6 8 10 12 Supply Voltage (V) 14 0 16 Figure 22. Noise vs. frequency at VCC = 16 V 20 Time (µs) 30 40 Figure 23. 0.1 Hz to 10 Hz noise at VCC = 16 V 400 4 350 Vcc=16V Vicm=Vcc/2 T=25°C 300 250 200 150 100 Input voltage noise (µV) Equivalent Input Noise Voltage (nV/VHz) 10 2 Vcc=16V Vicm=8V T=25°C 0 -2 50 0 10 100 1000 Frequency (Hz) -4 0 10000 8 10 1 Vcc=16V Vicm=8V Gain=1 Vin=1Vpp BW=80kHz Rl=100kΩ T=25°C 0.1 THD + N (%) THD + N (%) 6 Figure 25. THD+N vs. output voltage at VCC = 16 V 1 0.01 100 16/31 4 Time (s) Figure 24. THD+N vs. frequency at VCC = 16 V 0.1 2 1000 Frequency (Hz) 10000 0.01 1E-3 0.01 DocID024293 Rev 1 Vcc=16V Vicm=8V Gain=1 f=1kHz BW=22kHz Rl=100kΩ T=25°C 0.1 1 Output Voltage (Vpp) 10 TSX63x, TSX63xA Electrical characteristics Figure 26. Output impedance vs. frequency in closed loop configuration Figure 27. PSRR vs. frequency 10000 100 Vcc=16V Vicm=8V Gain=1 Vosc=30mVRMS T=25°C + PSRR 80 PSRR (dB) Output impedance (Ω ) 1000 100 10 1 60 Vcc=16V Vicm=8V Gain=1 Rl=10kΩ Cl=100pF Vosc=100mVPP T=25°C 40 20 - PSRR 0.1 10 100 1k 10k 100k Frequency (Hz) 1M 10M 0 10 DocID024293 Rev 1 100 1k 10k Frequency (Hz) 100k 1M 17/31 Application information TSX63x, TSX63xA 4 Application information 4.1 Operating voltages The amplifiers of the TSX63x and TSX63xA series can operate from 3.3 to 16 V. Their parameters are fully specified at 3.3, 5, 10 and 16 V power supplies. However, the parameters are very stable in the full VCC range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 ° C to +125 ° C. 4.2 Rail-to-rail input The TSX63x and TSX63xA are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from VCC-- 0.1 V to VCC+ + 0.1 V. However, the performance of these devices is clearly optimized for the PMOS differential pairs (which means from VCC- - 0.1V to VCC+ - 1.65V). Beyond VCC+ - 1.65 V, the op-amp is still functional but with a degraded performance as can be observed in the electrical characteristics section of this datasheet (mainly Vio). These performances are suitable for a number of applications requiring rail-to-rail input and output. The devices are guaranteed without phase reversal. 4.3 Input offset voltage drift over temperature The maximum input voltage drift over the temperature variation is defined as the offset variation related to offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift over temperature is computed using Equation 1. Equation 1 ΔV io V io ( T ) – V io ( 25° C ) ------------ = max -------------------------------------------------ΔT T – 25° C with T = -40 °C and 125 °C. The datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a Cpk (process capability index) greater than 2. 18/31 DocID024293 Rev 1 TSX63x, TSX63xA 4.4 Application information Long term input offset voltage drift To evaluate product reliability, two types of stress acceleration are used: • Voltage acceleration, by changing the applied voltage • Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2. Equation 2 A FV = e β ⋅ ( VS – VU ) Where: AFV is the voltage acceleration factor β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1) VS is the stress voltage used for the accelerated test VU is the voltage used for the application The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3. Equation 3 A FT = e Ea ⎛ 1 1 ------ ⋅ ------ – ------⎞ ⎝ T U T S⎠ k Where: AFT is the temperature acceleration factor Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eV.K-1) TU is the temperature of the die when VU is used (K) TS is the temperature of the die under temperature stress (K) The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4). Equation 4 A F = A FT × A FV AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. DocID024293 Rev 1 19/31 Application information TSX63x, TSX63xA Equation 5 Months = A F × 1000 h × 12 months ⁄ ( 24 h × 365.25 days ) To evaluate the op-amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6). Equation 6 V CC = maxV op with V icm = V CC ⁄ 2 The long term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7). Equation 7 V io drift ΔV io = -----------------------------( months ) where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration. 4.5 High values of input differential voltage In closed loop configuration, which represents the typical use of an op-amp, the input differential voltage is low (close to Vio). However, some specific conditions can lead to higher input differential values, such as: • operation in an output saturation state • operation at speeds higher than the device bandwidth, with output voltage dynamics limited by slew rate. • use of the amplifier in a comparator configuration, hence in open loop Use of the TSX631 in comparator configuration, especially combined with high temperature and long duration can create a permanent drift of Vio. All channels of the dual and quad versions of the TSX632 and TSX634 are virtually unaffected when used in comparator configuration. 4.6 PCB layouts For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins. 20/31 DocID024293 Rev 1 TSX63x, TSX63xA 4.7 Application information Macromodel Accurate macromodels of the TSX63x and TSX63xA are available on STMicroelectronics’ web site at www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSX63x and TSX63xA operational amplifiers. They emulate the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, but they do not replace on-board measurements. DocID024293 Rev 1 21/31 Package information 5 TSX63x, TSX63xA Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 22/31 DocID024293 Rev 1 TSX63x, TSX63xA 5.1 Package information SOT23-5 package information Figure 28. SOT23-5 package mechanical drawing Table 8. SOT23-5 package mechanical data Dimensions Ref. A Millimeters Inches Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.013 0.015 0.019 C 0.09 0.15 0.20 0.003 0.006 0.008 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.013 0.023 K 0° 10 ° 0° DocID024293 Rev 1 10 ° 23/31 Package information 5.2 TSX63x, TSX63xA DFN8 2x2 package information Figure 29. DFN8 2x2 package mechanical drawing ' $ %  & [ ( 3,1,1'(;$5($  & [ 7239,(: $ $  & & 6($7,1* 3/$1( 6,'(9,(:  & H E SOFV 3,1,1'(;$5($    & $ % / 3LQ,'   %277209,(: *$06&% Table 9. DFN8 2x2 package mechanical data Dimensions Ref. Inches Min. Typ. Max. Min. Typ. Max. A 0.70 0.75 0.80 0.028 0.030 0.031 A1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.20 0.25 0.006 0.008 0.010 D 2.00 0.079 E 2.00 0.079 e 0.50 0.020 L N 24/31 Millimeters 0.045 0.55 0.65 8 DocID024293 Rev 1 0.018 0.022 8 0.026 TSX63x, TSX63xA 5.3 Package information MiniSO-8 package information Figure 30. MiniSO-8 package mechanical drawing Table 10. MiniSO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.026 0.80 0.016 0.024 L1 0.95 0.037 L2 0.25 0.010 k ccc 0° 0.037 8° 0.10 DocID024293 Rev 1 0° 0.031 8° 0.004 25/31 Package information 5.4 TSX63x, TSX63xA QFN16 3x3 package information Figure 31. QFN16 3x3 package mechanical drawing ' $ % DDD & [ ( ,1'(;$5($  '[( DDD & [  7239,(:  $ FFF & $ & 6($7,1* 3/$1( 6,'(9,(: HHH &   H / E  EEE  EEE 3LQ,' 5      & $ % &  %277209,(: *$06&% 26/31 DocID024293 Rev 1 TSX63x, TSX63xA Package information Table 11. QFN16 3x3 package mechanical data Dimensions Ref. Millimeters Min. Typ. Inches Max. Min. Typ. Max. A 0.50 0.65 0.020 0.026 A1 0 0.05 0 0.002 b 0.18 0.30 0.007 0.25 0.010 D 3.00 0.118 E 3.00 0.118 e 0.50 0.020 L 0.30 0.50 0.012 0.012 0.020 aaa 0.15 0.006 bbb 0.10 0.004 ccc 0.10 0.004 ddd 0.05 0.002 eee 0.08 0.003 DocID024293 Rev 1 27/31 Package information 5.5 TSX63x, TSX63xA TSSOP14 package information Figure 32. TSSOP14 package mechanical drawing Table 12. TSSOP14 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.90 5.00 5.10 0.193 0.197 0.201 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.176 e L k aaa 1.00 0.65 0.45 L1 28/31 Inches 0.60 0.0256 0.75 0.018 1.00 0° 0.024 0.030 0.039 8° 0.10 DocID024293 Rev 1 0° 8° 0.004 TSX63x, TSX63xA 6 Ordering information Ordering information Table 13. Order codes Order code No. of channels Package TSX631ILT 1 SOT23-5 K27 TSX632IQ2T 2 DFN8 2x2 K27 2 MiniSO8 K27 TSX634IQ4T 4 QFN16 3x3 K27 TSX634IPT 4 TSSOP14 TSX634I 1 SOT23-5 K188 2 MiniSO8 4 TSSOP14 1 SOT23-5 K189 2 MiniSO8 K189 4 TSSOP14 TSX634AI 1 SOT23-5 K190 2 MiniSO8 K190 4 TSSOP14 TSX634AIY TSX632IST TSX631IYLT TSX632IYST TSX634IYPT Temperature range -40 to 125 °C -40 to 125 °C Automotive grade(1) TSX631AILT TSX632AIST -40 to 125 °C TSX634AIPT TSX631AIYLT TSX632AIYST TSX634AIYPT -40 to 125°C Automotive grade(1) Packing Tape and reel Marking K188 TSX634IY 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. DocID024293 Rev 1 29/31 Revision history 7 TSX63x, TSX63xA Revision history Table 14. Document revision history 30/31 Date Revision 26-Mar-2013 1 Changes Initial release DocID024293 Rev 1 TSX63x, TSX63xA Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com DocID024293 Rev 1 31/31
TSX631AIYLT 价格&库存

很抱歉,暂时无法提供与“TSX631AIYLT”相匹配的价格&库存,您可以联系我们找货

免费人工找货