0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSX922IQ2T

TSX922IQ2T

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    WFDFN8

  • 描述:

    ICOPAMPR-R10MHZ16VCMOS8DFN

  • 数据手册
  • 价格&库存
TSX922IQ2T 数据手册
TSX920, TSX921 TSX922, TSX923 Datasheet 10 MHz rail-to-rail CMOS 16 V operational amplifiers Features SOT23-5 (TSX921) SOT23-6 (TSX920) MiniSO8 (TSX922) SO8 (TSX922) DFN8 2x2 (TSX922) MiniSO10 (TSX923) • • • • • • • • • Applications • • • Maturity status link TSX920, TSX921, TSV922, TSV923 Related products TSX5 Series for low-power features TSX6 Series for micro-power features TSX929 Series for higher speeds TSV9 Series for lower voltages Rail-to-rail input and output Wide supply voltage: 4 V - 16 V Gain bandwidth product: 10 MHz typ at 16 V Low power consumption: 2.8 mA typ per amplifier at 16 V Unity gain stable Low input bias current: 10 pA typ High tolerance to ESD: 4 kV HBM Extended temperature range: -40 °C to 125 °C Automotive qualification Communications Process control Test equipment Description The TSX92x single and dual operational amplifiers (op amps) offer excellent AC characteristics such as 10 MHz gain bandwidth, 17 V/ms slew rate, and 0.0003 % THD+N. These features make the TSX92x family particularly well-adapted for communications, I/V amplifiers for ADCs, and active filtering applications. Their rail-to-rail input and output capability, while operating on a wide supply voltage range of 4 V to 16 V, allows these devices to be used in a wide range of applications. Automotive qualification is available as these devices can be used in this market segment. Shutdown mode is available on the single (TSX920) and dual (TSV923) versions enabling an important current consumption reduction while this function is active. The TSX92x family is available in SMD packages featuring a high level of integration. The DFN8 package, used in the TSV922, with a typical size of 2x2 mm and a maximum height of 0.8 mm offers even greater package size reduction. DS9502 - Rev 5 - October 2022 For further information contact your local STMicroelectronics sales office. www.st.com TSX920, TSX921, TSX922, TSX923 Package pin connections 1 Package pin connections Figure 1. Pin connections (top view) OUT VCC- 1 5 VCC+ 2 1 OUT 6 2 VCC- 5 + IN+ 3 IN- 4 IN+ SOT23-5 (TSX921) VCC+ 3 SHDN - IN- 4 SOT23-6 (TSX920) OUT1 VCC+ OUT1 1 8 VCC+ IN1- OUT2 IN1- 2 7 OUT2 IN1+ IN2- IN1+ 3 6 IN2- VCC- IN2+ VCC- 4 5 IN2+ MiniSO8/SO8 (TSX922) DFN8 2x2 (TSX922) OUT1 1 10 VCC+ IN1- 2 9 OUT2 IN1+ 3 8 IN2- VCC- 4 7 IN2+ 5 6 SHDN MiniSO10 (TSX923) DS9502 - Rev 5 page 2/29 TSX920, TSX921, TSX922, TSX923 Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol Parameter VCC Supply voltage (1) Vid Differential input voltage (2) Vin Input voltage Iin Tstg Tj Rthja Input current Unit 18 V ±VCC mV (VCC-)- 0.2 to (VCC+) + 0.2 V 10 mA (3) Storage temperature -65 to 150 Maximum junction temperature 150 Thermal resistance junction to ambient (4) (5) HBM: human body model ESD Value MM: machine model SOT23-5 250 SOT23-6 240 MiniSO8 190 SO8 125 DFN8 2x2 57 MiniSO10 113 (6) °C/W 4000 (7) 100 CDM: charged device model °C (8) V 1500 Latch-up immunity 200 mA 1. All voltage values, except the differential voltage are with respect to network ground terminal. 2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. 3. Input current must be limited by a resistor in series with the inputs. 4. Rth are typical values. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. According to JEDEC standard JESD22-A114F 7. According to JEDEC standard JESD22-A115A 8. According to ANSI/ESD STM5.3.1 Table 2. Operating conditions Symbol DS9502 - Rev 5 Parameter VCC Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Value 4 to 16 (VCC-) - 0.1 to (VCC+) + 0.1 -40 to 125 Unit V °C page 3/29 TSX920, TSX921, TSX922, TSX923 Electrical characteristics 3 Electrical characteristics Table 3. Electrical characteristics at VCC+ = 4.5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Vio Parameter Input offset voltage Conditions Min. Typ. Vicm = 2 V (all order codes except TSX922IYST and TSX922IYDT) 4 Tmin < Top < Tmax 5 Vicm = 2 V (TSX922IYST, TSX922IYDT order codes only) 5 Tmin < Top < Tmax ∆Vio/∆T Input offset voltage drift ∆Vio Iib Iio Long-term input offset voltage drift (1) (2) Input bias current Input offset current Max. Unit mV 6.5 All order codes except TSX922IYST and TSX922IYDT 2 10 TSX922IYST and TSX922IYDT order codes only 2 15 TSX920/TSX921 6 TSX922/TSX923 9 Vout = VCC/2 10 Tmin < Top < Tmax nV/√month 100 200 Vout = VCC/2 10 Tmin < Top < Tmax μV/°C 100 pA 200 RIN Input resistance 1 TΩ CIN Input capacitance 8 pF CMRR Avd Common mode rejection ratio 20 log (ΔVic/ΔVio) Large signal voltage gain Vicm = -0.1 V to 2 V, VOUT = VCC/2 61 Tmin < Top < Tmax 59 Vicm = -0.1 V to 4.6 V, VOUT = VCC/2 59 Tmin < Top < Tmax 57 RL= 2 kΩ, Vout = 0.3 V to 4.2 V 100 Tmin < Top < Tmax 90 RL= 10 kΩ, Vout = 0.2 V to 4.3 V 100 Tmin < Top < Tmax 90 RL= 2 kΩ tο VCC/2 VOH High level output voltage 82 72 112 50 Tmin < Top < Tmax RL= 10 kΩ tο VCC/2 10 16 mV from VCC+ 20 RL= 2 kΩ tο VCC/2 Low level output voltage 80 100 Tmin < Top < Tmax VOL dB 108 42 Tmin < Top < Tmax 80 100 RL= 10 kΩ tο VCC/2 9 Tmin < Top < Tmax 16 mV 20 Empty Iout Isink DS9502 - Rev 5 Vout = 4.5 V 16 Tmin < Top < Tmax 13 21 mA page 4/29 TSX920, TSX921, TSX922, TSX923 Electrical characteristics Symbol Iout ICC GBP Parameter Conditions Isource Min. Typ. Vout = 0 V 16 21 Tmin < Top < Tmax 13 No load, Vout = VCC/2 Supply current (per amplifier) RL = 10 kΩ, CL = 20 pF, G = 20 dB 9 Unity gain frequency ɸm Phase margin Gm Gain margin SR+ Positive slew rate Av = 1, Vout = 0.5 to 4.0 V, measured between 10 % to 90 % 14.7 Negative slew rate Av = 1, Vout = 4.0 to 0.5 V, measured between 90 % to 10 % 17.2 f = 10 kHz 17.9 f = 100 kHz 12.9 SR- 3.4 3.5 FU MHz 9.3 RL = 10 kΩ, CL = 20 pF en Equivalent input noise voltage ∫en Low-frequency peak-to-peak input noise Bandwidth: f = 0.1 to 10 Hz f = 1 kHz, Av = 1, RL = 10 kΩ, Vout = 2 Vrms THD+N Total harmonic distortion + noise Unit mA 2.9 Tmin < Top < Tmax Gain bandwidth product Max. 60 Degrees 6.7 dB V/μs nV√Hz 8.1 µVpp 0.002 % Shutdown characteristics (TSX920 and TSX923 only) ICC_shdn Supply current in shutdown mode (per amplifier) SHDN = VCC- 7 Tmin < Top < Tmax 15 20 ton Amplifier turn-on time 9 toff Amplifier turn-off time 0.7 µΑ µs 1. Typical value is based on the Vio drift observed after 1000 h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.5 Long term input offset voltage drift). 2. When used in comparator mode, with high differential input voltage, during a long period of time with VCC close to 16 V and Vicm>VCC/2, Vio can experience a permanent drift of a few mV drift. This phenomenon is notably worse at low temperatures. DS9502 - Rev 5 page 5/29 TSX920, TSX921, TSX922, TSX923 Electrical characteristics Table 4. Electrical characteristics at VCC+ = 10 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Vio Parameter Input offset voltage Conditions Min. Typ. Vicm = 2 V (all order codes except TSX922IYST and TSX922IYDT) 4 Tmin < Top < Tmax 5 Vicm = 2 V (TSX922IYST and TSX922IYDT order codes only) 5 Tmin < Top < Tmax ∆Vio/∆T Input offset voltage drift ∆Vio Iib Iio Long-term input offset voltage drift (1) (2) Input bias current Input offset current Max. Unit mV 6.5 All order codes except TSX922IYST and TSX922IYDT 2 10 TSX922IYST and TSX922IYDT order codes only 2 15 TSX920/TSX921 92 TSX922/TSX923 128 Vout = VCC/2 10 Tmin < Top < Tmax nV/√month 100 200 Vout = VCC/2 10 Tmin < Top < Tmax μV/°C 100 pA 200 RIN Input resistance 1 TΩ CIN Input capacitance 8 pF CMRR Avd Common mode rejection ratio 20 log (ΔVic/ΔVio) Large signal voltage gain Vicm = -0.1 V to 7 V, VOUT = VCC/2 72 Tmin < Top < Tmax 70 Vicm = -0.1 V to 10.1 V, VOUT = VCC/2 64 Tmin < Top < Tmax 62 RL= 2 kΩ, Vout = 0.3 V to 9.7 V 100 Tmin < Top < Tmax 90 RL= 10 kΩ, Vout = 0.2 V to 9.8 V 100 Tmin < Top < Tmax 90 RL= 2 kΩ tο VCC/2 VOH High-level output voltage 85 75 117 94 Tmin < Top < Tmax RL= 10 kΩ tο VCC/2 31 80 Tmin < Top < Tmax Iout Isource ICC Supply current (per amplifier) RL= 10 kΩ tο VCC/2 14 DS9502 - Rev 5 40 mV 50 Vout = 10 V 50 Tmin < Top < Tmax 42 Vout = 0 V 75 Tmin < Top < Tmax 70 No load, Vout = VCC/2 mV from VCC+ 110 130 Tmin < Top < Tmax Isink 40 50 RL= 2 kΩ tο VCC/2 Low-level output voltage 110 130 Tmin < Top < Tmax VOL dB 107 55 mA 82 3.1 3.6 mA page 6/29 TSX920, TSX921, TSX922, TSX923 Electrical characteristics Symbol ICC GBP Parameter Conditions Supply current (per amplifier) Tmin < Top < Tmax Gain bandwidth product RL = 10 kΩ, CL = 20 pF, G = 20 dB Min. Typ. Unit 3.6 mA 10 FU Unity gain frequency ɸm Phase margin Gm Gain margin SR+ Positive slew rate Av = 1, Vout = 0.5 to 9.5 V, measured between 10 % to 90 % 17.7 Negative slew rate Av = 1, Vout = 9.5 to 0.5 V, measured between 90 % to 10 % 19.6 f = 10 kHz 16.8 f = 100 kHz 12 SR- Max. MHz 11.2 RL = 10 kΩ, CL = 20 pF en Equivalent input noise voltage ∫en Low-frequency peak-to-peak input noise Bandwidth: f = 0.1 to 10 Hz f = 1 kHz, Av = 1, RL = 10 kΩ, Vout = 2 Vrms THD+N Total harmonic distortion + noise 56 Degrees 6 dB V/μs nV√Hz 8.64 µVpp 0.0006 % Shutdown characteristics (TSX920 and TSX923 only) ICC_shdn Supply current in shutdown mode (per amplifier) SHDN = VCC- 7 Tmin < Top < Tmax 15 20 ton Amplifier turn-on time 2.4 toff Amplifier turn-off time 0.35 µΑ µs 1. Typical value is based on the Vio drift observed after 1000 h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.5 Long term input offset voltage drift). 2. When used in comparator mode, with high differential input voltage, during a long period of time with VCC close to 16 V and Vicm>VCC/2, Vio can experience a permanent drift of a few mV drift. This phenomenon is notably worse at low temperatures. DS9502 - Rev 5 page 7/29 TSX920, TSX921, TSX922, TSX923 Electrical characteristics Table 5. Electrical characteristics at VCC+ = 16 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Vio Parameter Input offset voltage Conditions Min. Typ. Vicm = 2 V (all order codes except TSX922IYST and TSX922IYDT) 4 Tmin < Top < Tmax 5 Vicm = 2 V (TSX922IYST and TSX922IYDT order codes only) 5 Tmin < Top < Tmax ∆Vio/∆T Input offset voltage drift ∆Vio Iib Iio Long-term input offset voltage drift (1) (2) Input bias current Input offset current Max. Unit mV 6.5 All order codes except TSX922IYST and TSX922IYDT 2 10 TSX922IYST and TSX922IYDT order codes only 2 15 TSX920/TSX921 1.73 TSX922/TSX923 2.26 Vout = VCC/2 10 Tmin < Top < Tmax nV/√month 100 200 Vout = VCC/2 10 Tmin < Top < Tmax μV/°C 100 pA 200 RIN Input resistance 1 TΩ CIN Input capacitance 8 pF CMRR SVRR Avd Common mode rejection ratio 20 log (ΔVic/ΔVio) Supply voltage rejection ratio Large signal voltage gain Vicm = -0.1 V to 13 V, VOUT = VCC/2 73 Tmin < Top < Tmax 71 Vicm = -0.1 V to 16.1 V, VOUT = VCC/2 67 Tmin < Top < Tmax 65 VCC = 4.5 V tο 16 V 73 Tmin < Top < Tmax 71 RL= 2 kΩ, Vout = 0.3 V to 15.7 V 100 Tmin < Top < Tmax 90 RL= 10 kΩ, Vout = 0.2 V to 15.8 V 100 Tmin < Top < Tmax 90 RL= 2 kΩ tο VCC/2 VOH High-level output voltage 85 76 85 105 113 150 Tmin < Top < Tmax RL= 10 kΩ tο VCC/2 43 50 mV from VCC+ 70 RL= 2 kΩ tο VCC/2 Low-level output voltage 200 230 Tmin < Top < Tmax VOL dB 140 Tmin < Top < Tmax 200 230 RL= 10 kΩ tο VCC/2 30 Tmin < Top < Tmax 50 mV 70 Empty Iout Isink DS9502 - Rev 5 Vout = 16 V 45 Tmin < Top < Tmax 40 50 mA page 8/29 TSX920, TSX921, TSX922, TSX923 Electrical characteristics Symbol Iout ICC GBP Parameter Conditions Isource Min. Typ. Vout = 0 V 65 74 Tmin < Top < Tmax 60 No load, Vout = VCC/2 Supply current (per amplifier) RL = 10 kΩ, CL = 20 pF, G = 20 dB Unit mA 2.8 Tmin < Top < Tmax Gain bandwidth product Max. 3.4 3.4 10 MHz FU Unity gain frequency ɸm Phase margin Gm Gain margin SR+ Positive slew rate Av = 1, Vout = 0.5 to 15.5 V, measured between 10 % to 90 % 16.2 Negative slew rate Av = 1, Vout = 15.5 to 0.5 V, measured between 90 % to 10 % 17.2 f = 10 kHz 16.5 f = 100 kHz 11.8 Bandwidth: f = 0.1 to 10 Hz 8.58 µVpp 0.0003 % SR- 12 RL = 10 kΩ, CL = 20 pF en Equivalent input noise voltage ∫en Low-frequency peak-to-peak input noise THD+N Total harmonic distortion + noise tS Setting time f = 1 kHz, Av = 1, RL = 10 kΩ, Vout = 4 Vrms 55 Degrees 5.9 dB V/μs Gain = 1, 100 mV input voltage, 0.1 % of final value 245 Gain = 1, 100 mV input voltage, 1 % of final value 178 nV√Hz ns Shutdown characteristics (TSX920 and TSX923 only) ICC_shdn SHDN = VCCSupply current in shutdown mode (per amplifier) Tmin < Top < Tmax 7 15 20 ton Amplifier turn-on time 1.5 toff Amplifier turn-off time 0.2 µΑ µs 1. Typical value is based on the Vio drift observed after 1000 h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.5 Long term input offset voltage drift). 2. When used in comparator mode, with high differential input voltage, during a long period of time with VCC close to 16 V and Vicm>VCC/2, Vio can experience a permanent drift of a few mV drift. This phenomenon is notably worse at low temperatures. DS9502 - Rev 5 page 9/29 TSX920, TSX921, TSX922, TSX923 Electrical characteristic curves 4 Electrical characteristic curves Figure 3. Distribution of input offset voltage at VCC = 4.5 V Figure 2. Supply current vs.supply voltage 30 Distribution of Vio Vcc=4.5V, Vicm=2.25V Population % 25 20 15 10 5 0 -3 -2 -1 0 1 2 3 Input Offset Voltage(mV) Figure 4. Distribution of input offset voltage at VCC = 10 V Figure 5. Distribution of input offset voltage at VCC = 16 V 30 30 Distribution of Vio Vcc=10V, Vicm=5V Distribution of Vio Vcc=16V, Vicm=8V 25 20 Population % Population % 25 15 10 5 20 15 10 5 0 0 -3 -2 -1 0 1 2 -3 3 -2 Figure 6. Input offset voltage vs. temperature at VCC = 16 V 1 2 3 25 ΔVio/ΔT Vcc=16V, Vicm=8V 20 3 Population % Input offset voltage (mV) 0 Figure 7. Distribution of input offset voltage drift over temperature Vcc=16V, Vicm=8V 5 -1 Input offset voltage (mV) Input offset voltage (mV) 0 15 10 -3 5 -5 -40 DS9502 - Rev 5 0 -20 0 20 40 60 80 Temperature (°C) 100 120 -7 -6 -5 -4 -3 -2 -1 0 ΔVio/ΔT (µV/°C) page 10/29 TSX920, TSX921, TSX922, TSX923 Electrical characteristic curves Vcc=4V T=-40°C 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5 2.8 3.0 3.3 3.5 3.8 4.0 -75 4.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Output Voltage (V) Figure 12. Output current vs. output voltage at VCC = 16 V T=25°C T=125°C 0 -25 Vcc=16V -50 Source Vid=1V -75 0.0 DS9502 - Rev 5 2.5 5.0 7.5 10.0 Output Voltage (V) 12.5 15.0 16.0 15.9 15.8 15.7 15.6 15.5 15.4 0.5 0.4 0.3 0.2 0.1 0.0 0.0 25 T=-40°C Output voltage (V) Output Current (mA) Sink 50 Vid=-1V Figure 13. Output rail linearity Rl=2kΩ Vcc=16V Follower configuration T=25°C Rl=10kΩ 16.0 3.5 15.9 1.5 2.0 2.5 3.0 Output Voltage (V) Source Vid=1V 15.8 1.0 -50 15.7 0.5 Vcc=10V 15.6 -30 0.0 -25 15.5 Source Vid=1V 0 0.5 -10 T=125°C T=25°C 15.4 Vcc=4V 25 0.4 T=125°C 0 T=-40°C 0.3 T=25°C Output Current (mA) Output Current (mA) Sink 50 Vid=-1V T=-40°C -20 T=125°C Figure 11. Output current vs. output voltage at VCC = 10 V 30 10 T=25°C Common mode voltage(V) Figure 10. Output current vs. output voltage at VCC = 4 V 20 T=-40°C 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 10.011.012.0 12.013.014.0 14.015.016.0 16.0 Common mode voltage(V) Sink Vid=-1V Vcc=16V 0.2 T=125°C T=25°C 1.0 0.8 0.5 0.3 0.0 -0.3 -0.5 -0.8 -1.0 -1.3 -1.5 -1.8 -2.0 0.1 1.0 0.8 0.5 0.3 0.0 -0.3 -0.5 -0.8 -1.0 -1.3 -1.5 -1.8 -2.0 Figure 9. Input offset voltage vs. common-mode voltage at VCC = 16 V Input offset voltage (mV) Input offset voltage (mV) Figure 8. Input offset voltage vs. common-mode voltage at VCC = 4 V Input voltage (V) page 11/29 TSX920, TSX921, TSX922, TSX923 Electrical characteristic curves Figure 15. Bode diagram vs. temperature for VCC = 4 V 120 Gain 60 40 20 Phase 0 -20 Vcc=16V, Vicm=8V, Rl=10kΩ , Cl=20pF; VRl=Vcc/2 -40 0.01 0.1 1 10 100 1000 200 T=25°C 20 T=125°C 0 0 T=-40°C -20 -150 Vcc=4V, Vicm=2V, G=100 Rl=10kΩ, Cl=20pF, VRl=Vcc/2 -200 -250 1 10 100 1000 10000 Frequency (kHz) Figure 17. Bode diagram vs. temperature for VCC = 16 V 250 250 200 Gain 40 200 Gain 150 Gain (dB) 150 100 0 -50 T=-40°C -20 Phase (°) 50 T=125°C -100 Phase T=25°C 20 Gain (dB) T=25°C 0 Vcc=10V, Vicm=5V, G=100 Rl=10kΩ, Cl=20pF, VRl=Vcc/2 T=125°C 0 T=-40°C -20 -50 -100 Phase -150 10 100 1000 Vcc=16V, Vicm=8V, G=100 Rl=10kΩ, Cl=20pF, VRl=Vcc/2 -40 -200 -200 -250 -250 1 100 50 0 -150 -40 -50 -100 Phase -40 10000 Figure 16. Bode diagram vs. temperature for VCC = 10 V 20 100 50 Frequency (kHz) 40 150 Phase (°) 80 Phase (°) Gain (dB) 100 250 Gain 40 Phase (°) 360 320 280 240 200 160 120 80 40 0 -40 -80 -120 -160 -200 -240 -280 -320 -360 140 Gain (dB) Figure 14. Open loop gain vs. frequency 1 10000 10 100 1000 10000 Frequency (kHz) Frequency (kHz) Figure 18. Bode diagram at VCC = 16 V with low common- Figure 19. Bode diagram at VCC = 16 V with high commonmode voltage mode voltage 250 Gain (dB) T=-40°C 100 50 0 0 -50 -20 150 T=25°C 20 -100 Phase 200 Gain 150 100 T=-40°C T=125°C 0 0 -50 -20 -100 Phase -150 Vcc=16V, Vicm=0.5V, G=100 Rl=10kΩ, Cl=20pF, VRl=Vcc/2 -40 -200 -150 Vcc=16V, Vicm=15.5V, G=100 Rl=10kΩ, Cl=20pF, VRl=Vcc/2 -40 -200 -250 -250 1 10 100 1000 Frequency (kHz) DS9502 - Rev 5 10000 50 Phase (°) T=25°C T=125°C 40 Gain (dB) Gain 20 250 200 Phase (°) 40 1 10 100 1000 10000 Frequency (kHz) page 12/29 TSX920, TSX921, TSX922, TSX923 Electrical characteristic curves Figure 20. Bode diagram at VCC = 16 V and RL = 10 kΩ, CL = 47 pF Figure 21. Bode diagram at VCC = 16 V and RL = 10 kΩ, CL = 120 pF 250 250 40 200 Gain 200 Gain 150 150 T=25°C T=125°C 0 -50 T=-40°C -20 -100 Phase T=125°C Gain (dB) 50 0 T=25°C 20 100 Phase (°) Gain (dB) 20 50 0 0 T=-40°C -20 -50 -100 Phase -150 -150 Vcc=16V, Vicm=8V, G=100 Rl=10kΩ, Cl=47pF, VRl=Vcc/2 -40 -200 10 100 1000 Vcc=16V, Vicm=8V, G=100 Rl=10kΩ, Cl=120pF, VRl=Vcc/2 -40 1 10000 10 100 1000 10000 Frequency (kHz) Frequency (kHz) Figure 22. Bode diagram at VCC = 16 V and RL = 2.2 kΩ, CL = 20 pF Figure 23. Slew rate vs. supply voltage and temperature 30 250 40 -200 -250 -250 1 100 Phase (°) 40 200 Gain 20 T=125°C SR positive 50 0 0 T=-40°C -20 -50 Phase (°) Gain (dB) 100 T=125°C -100 Phase Slew Rate (V/µs) 150 T=25°C 20 10 100 1000 10000 SR negative Figure 25. Closed loop gain vs. frequency with different gain resistors 20 Rf=Rg=1kΩ 10 Gain (dB) Overshoot (%) Figure 24. Overshoot vs. capacitive load without feedback capacitor DS9502 - Rev 5 Vicm=VRl=Vcc/2 Rl=10kΩ, Cl=20pF Vin from 0.5V to Vcc-0.5V -30 4.0 5.0 6.0 7.0 8.0 9.0 10.0 10.011.012.0 12.013.014.0 14.015.016.0 16.0 Vcc (V) Frequency (kHz) 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 10 -10 T=-40°C -200 -250 1 0 T=25°C -20 -150 Vcc=16V, Vicm=8V, G=100 Rl=2.2kΩ, Cl=20pF, VRl=Vcc/2 -40 10 G=1 G=-1 Vcc=16V, 100mVpp, Rl=10kΩ 100 Load capacitance (pF) 1000 Rf=Rg=100kΩ 0 -10 -20 -30 1k Vcc=16V Vicm=Vcc/2 Gain=-1 Cf=0pF Rl=10kΩ Cl=20pF 10k Rf=Rg=30kΩ Rf=Rg=10kΩ 100k 1M 10M Frequency (Hz) page 13/29 TSX920, TSX921, TSX922, TSX923 Electrical characteristic curves Figure 26. Large step response Figure 27. Small step response 5.00 Output Voltage (V) 3.00 2.00 1.00 0.05 0.03 0.00 -1.00 -2.00 0.01 0.00 -0.01 -0.02 -0.03 -4.00 -0.04 -0.05 -1.0µ 0.0 1.0µ Time (s) 2.0µ 20.0µ 3.0µ Figure 28. Small step response with feedback capacitor CF 0.10 Output Impedance (Ω) Cf=2pF 0.03 Cf=3pF 0.00 Vcc = 16V Rl=10kΩ Cl=20pF G=-1 Rf=Rg=10kΩ T=25°C -0.03 -0.05 -0.08 -0.10 -500.0n 0.0 500.0n Time (s) 1.0µ 1.5µ 100 10 1 0.1 0.01 0.1 1 500 6 Vicm=15.5V 300 Tamb=25°C 200 Vicm=0.5V 10000 Noise 0.1Hz_10Hz 8.58 µVpp 5 400 10 100 1000 Frequency (kHz) Figure 31. 0.1 to 10 Hz noise Output Voltage (µV) Equivalent Input Voltage Noise (nV/VHz) 20.8µ Vcc=4V to 16V Osc level=30mVRMS G=1 Ta=25° C Figure 30. Noise vs. frequency with 16 V supply voltage 4 3 2 1 0 -1 100 DS9502 - Rev 5 20.6µ 1000 0.05 0 20.2µ 20.4µ Time (s) Figure 29. Output impedance vs. frequency in closed loop configuration No Cf 0.08 Output Voltage (V) 0.02 -3.00 -5.00 Vcc = 16V Rl=10kΩ Cl=20pF G=1 T=25°C 0.04 Vcc = 16V Rl=10kΩ Cl=20pF G=1 T=25°C Output Voltage (V) 4.00 Vicm=8V 100m -2 1 10 100 Frequency (kHz) 1k 10k -3 2 Time (s) 3 page 14/29 TSX920, TSX921, TSX922, TSX923 Electrical characteristic curves Figure 32. THD+N vs. frequency at VCC = 16 V Figure 33. THD+N vs. output voltage at VCC = 16 V 1 Vin=2Vrms Gain=1 BW=80kHz Vcc=16V Vicm=Vcc/2 0.01 Rl=600Ω f=1kHz Gain=1 BW=22kHz Vcc=16V Vicm=Vcc/2 0.1 THD + N (%) THD + N (%) 0.1 0.01 Rl=600Ω 1E-3 Rl=10kΩ Rl=10kΩ 1E-3 Rl=2kΩ 1E-4 100 1000 Rl=2kΩ 10000 1E-4 0.01 100000 0.1 Frequency (Hz) 1 Output Voltage (Vrms) Figure 34. Power supply rejection ratio (PSRR) vs. frequency Figure 35. Crosstalk vs. frequency between operators on TSX922 at VCC = 16 V -120 0 +PSRR -20 Vcc=16V Vicm=Vcc/2 Rl=10kΩ Cl=20pF Vout=3.5Vrms -100 Crosstalk (dB) PSRR (dB) -40 -80 -PSRR -60 -40 -60 -80 -100 Ch1 to Ch2 -120 -140 -20 0 10 Vcc=16V, Vicm=8V, G=1 Rl=10kΩ, Cl=20pF, Vripple=100mVpp 100 1000 10000 100000 Ch2 to Ch1 -160 -180 1k 1000000 10k Frequency (Hz) Figure 36. Startup time after standby released for VCC = 4 V 17.50 Standby 3.00 Output -40°C 2.00 Vcc = 4V Rl=10kΩ 1.00 Cl=20pF G=1 Output 25°C Output 125°C 0.00 Output Voltage (V) Output Voltage (V) 10M 20.00 4.00 DS9502 - Rev 5 1M Figure 37. Startup time after standby released for VCC = 16 V 5.00 -1.00 -20.0µ 100k Frequency (Hz) 15.00 Standby 12.50 Output -40°C 10.00 Output 25°C 7.50 5.00 2.50 Vcc = 16V Rl=10kΩ Cl=20pF G=1 Output 125°C 0.00 -10.0µ 0.0 10.0µ Time (s) 20.0µ 30.0µ -2.0µ 0.0 2.0µ Time (s) 4.0µ 6.0µ page 15/29 TSX920, TSX921, TSX922, TSX923 Application information 5 Application information 5.1 Operating voltages The TSX92x operational amplifiers can operate from 4 V to 16 V. The parameters are fully specified at 4.5 V, 10 V, and 16 V power supplies. However, parameters are very stable in the full VCC range. Additionally, main specifications are guaranteed in the extended temperature range from -40 to 125 °C. 5.2 Rail-to-rail input The TSX92x series is designed with two complementary PMOS and NMOS input differential pairs. The device has a rail-to-rail input and the input common mode range is extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V. However, the performance of this device is clearly optimized for the PMOS differential pairs (which means from (VCC-) - 0.1 V to (VCC+) - 2 V). Beyond (VCC+) - 2 V, the operational amplifier is still functional but with downgraded performances (see Figure 19). Performances are still suitable for a large number of applications requiring the rail-to-rail input feature. The TSX92x operational amplifiers are designed to prevent phase reversal. 5.3 Input pin voltage range The TSX92x operational amplifiers have internal ESD diode protections on the inputs. These diodes are connected between the input and each supply rail to protect MOSFETs inputs from electrostatic discharges. Thus, if the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become conductive and excessive current could flow through them. To prevent any permanent damage, this current must be limited to 10 mA. This can be done by adding a resistor in series with the input pin (Figure 38). The resistor value has to be calculated for a 10 mA current limitation on the input pins. Figure 38. Limiting input current with a series resistor TSX921 16 V R Vin 5.4 - + + - Vout Input offset voltage drift over temperature The maximum input voltage drift over the temperature variation is defined as the offset variation related to offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift over temperature is computed using Equation 1 . Equation 1 ∆V io V ( T ) – V io ( 25 °C) = ma x io ∆T T – 25 °C with T = -40 °C and 125 °C. The datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a Cpk (process capability index) greater than 2. 5.5 Long term input offset voltage drift To evaluate product reliability, two types of stress acceleration are used: • DS9502 - Rev 5 Voltage acceleration, by changing the applied voltage page 16/29 TSX920, TSX921, TSX922, TSX923 Long term input offset voltage drift • Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2. Equation 2 A FV = e β . ( VS – VU ) Where: AFV is the voltage acceleration factor β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1) VS is the stress voltage used for the accelerated test VU is the voltage used for the application The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3. Equation 3 A FT = e E 1 1 -----a- . – k TU TS Where: AFT is the temperature acceleration factor Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eV.K-1) TU is the temperature of the die when VU is used (K) TS is the temperature of the die undertemperature stress (K) The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4). Equation 4 A F = A FT × A FV AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. Equation 5 Months = A F × 1000 h × 12 months / ( 24 h × 365.25 days ) To evaluate the op amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6). Equation 6 V CC = maxV op with V icm = V CC / 2 The long term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7). Equation 7 ∆V io = V io dr ift ( month s ) Where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration. DS9502 - Rev 5 page 17/29 TSX920, TSX921, TSX922, TSX923 Capacitive load 5.6 Capacitive load Driving a large capacitive load can cause stability issues. Increasing the load capacitance produces gain peaking in the frequency response, with overshooting and ringing in the step response. It is usually considered that with a gain peaking higher than 2.3 dB the op amp might become unstable. Generally, the unity gain configuration is the worst configuration for stability and the ability to drive large capacitive loads. Figure 39. Stability criteria with a serial resistor shows the serial resistor (Riso) that must be added to the output, to make the system stable. Figure 39. Stability criteria with a serial resistor Serial Resistor (Ohm) Vcc=16V, Vicm=8V, T=25°C, Rload = 10 kΩ 100 follower configuration Stable Unstable 10 0.01 0.1 1 10 Capacitive Load (nF) 100 Figure 40. Test configuration for Riso +8 V Riso VIN + 5.7 10 kΩ Cload -8 V High-side current sensing TSX92x rail to rail input devices can be used to measure a small differential voltage on a high side shunt resistor and translate it into a ground referenced output voltage. The gain is fixed by external resistance. Figure 41. High-side current sensing configuration C1 load Rg1 Rf1 I In Rshunt Rg2 12 V DS9502 - Rev 5 Ip 12 V - + + - VOUT TSX921 Rf2 page 18/29 TSX920, TSX921, TSX922, TSX923 High-speed photodiode Vout can be expressed as follows: Equation 8 V ou t = R shun t × I 1 – R g2 R g2 + R f2 1+ R g2 × R f2 R f1 R f1 R f1 + Ip – l n × R f1 – V io 1 + × 1+ R g2 + R f2 R g1 R g1 R g1 Assuming that Rf2 = Rf1 = Rf and Rg2 = Rg1 = Rg, Equation 8 can be simplified as follows: Equation 9 V out = R shunt × I Rf Rf – V io 1 + + R f × I io Rg Rg With the TSX92x operational amplifiers, the high side current measurement must be made by respecting the common mode voltage of the amplifier: (VCC-) - 0.1 V to (VCC+) + 0.1 V. If the application requires a higher common voltage please refer to the TSC high side current sensing family. 5.8 High-speed photodiode The TSX92x series is an excellent choice for current to voltage (I-V) conversions. Due to the CMOS technology, the input bias currents are extremely low. Moreover, the low noise and high unity-gain bandwidth of the TSX92x operational amplifiers make them particularly suitable for high-speed photodiode preamplifier applications. The photodiode is considered as a capacitive current source. The input capacitance, CIN, includes the parasitic input Common mode capacitance, CCM (3 pF), and the input differential mode capacitance, CDIFF (8 pF). CIN acts in parallel with the intrinsic capacitance of the photodiode, CD. At higher frequencies, the capacitors affect the circuit response. The output capacitance of a current sensor has a strong effect on the stability of the op amp feedback loop. CF stabilizes the gain and limits the transimpedance bandwidth. To ensure good stability and to obtain good noise performance, CF can be set as shown in Equation 10. Equation 10 C IN + C D C F > ---------------------------------------------- – C SMR 2 ⋅ π ⋅ R F ⋅ F GBP where, • CIN = CCM + CDIFF = 11 pF • CDIFF is the differential input capacitance: 8 pF typical • CCM is the Common mode input capacitance: 3 pF typical • CD is the intrinsic capacitance of the photodiode • CSMR is the parasitic capacitance of the surface mount RF resistor: 0.2 pF typical • FGBP is the gain bandwidth product: 10 MHz at 16 V RF fixes the gain as shown in Equation 11. Equation 11 VOUT = RF x ID Figure 42. High-speed photodiode CF RF +VCC Photodiode I D CD Cin VOUT + -VCC DS9502 - Rev 5 page 19/29 TSX920, TSX921, TSX922, TSX923 Package information 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DS9502 - Rev 5 page 20/29 TSX920, TSX921, TSX922, TSX923 SOT23-5 package information 6.1 SOT23-5 package information Figure 43. SOT23-5 package outline Table 6. SOT23-5 mechanical data Dimensions Millimeters Ref. A Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 DS9502 - Rev 5 Inches 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.014 0.016 0.020 C 0.09 0.15 0.20 0.004 0.006 0.008 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.014 0.024 K 0 degrees 10 degrees 0 degrees 10 degrees page 21/29 TSX920, TSX921, TSX922, TSX923 SOT23-6 package information 6.2 SOT23-6 package information Figure 44. SOT23-6 package outline Table 7. SOT23-6 mechanical data Dimensions Millimeters Ref. Min. A Typ. 0.90 A1 Max. Min. 1.45 0.035 Typ. Max. 0.057 0.10 0.004 A2 0.90 1.30 0.035 0.051 b 0.35 0.50 0.013 0.019 c 0.09 0.20 0.003 0.008 D 2.80 3.05 0.110 0.120 E 1.50 1.75 0.060 0.069 e DS9502 - Rev 5 Inches 0.95 0.037 H 2.60 3.00 0.102 0.118 L 0.10 0.60 0.004 0.024 θ 0° 10 ° 0° 10 ° page 22/29 TSX920, TSX921, TSX922, TSX923 MiniSO8 package information 6.3 MiniSO8 package information Figure 45. MiniSO8 package outline Table 8. MiniSO8 package mechanical data Dimensions Millimeters Ref. Min. Typ. A Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.0006 0.033 0.80 0.016 0.024 0.95 0.037 L2 0.25 0.010 ccc 0° 0.037 0.026 L1 k DS9502 - Rev 5 Inches 8° 0.10 0° 0.031 8° 0.004 page 23/29 TSX920, TSX921, TSX922, TSX923 SO8 package information 6.4 SO8 package information Figure 46. SO8 package outline Table 9. SO8 package mechanical data Dimensions Millimeters Ref. Min. Typ. A Max. Min. Typ. 1.75 0.25 Max. 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 L1 k ccc DS9502 - Rev 5 Inches 1.04 0° 0.040 8° 0.10 0° 8° 0.004 page 24/29 TSX920, TSX921, TSX922, TSX923 DFN8 2x2 package information 6.5 DFN8 2x2 package information Figure 47. DFN8 2x2 package outline D A B 0.10 C 2x E PIN 1 INDEX AREA 0.10 C 2x TOP VIEW A A1 0.10 C C SEATING PLANE SIDE VIEW 0.08 C e b (8 plcs) PIN 1 INDEX AREA 1 0.10 4 C A B L Pin#1 ID 5 8 BOTTOM VIEW Table 10. DFN8 2x2 mechanical data Dimensions Millimeters Ref. Min. Typ. Max. Min. Typ. Max. A 0.70 0.75 0.80 0.028 0.030 0.031 A1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.20 0.25 0.006 0.008 0.010 D 2.00 0.079 E 2.00 0.079 e 0.50 0.020 L DS9502 - Rev 5 Inches 0.045 0.55 0.65 0.018 0.022 0.026 page 25/29 TSX920, TSX921, TSX922, TSX923 MiniSO10 package information 6.6 MiniSO10 package information aaa Figure 48. MiniSO10 package outline Table 11. MiniSO10 mechanical data Dimensions Millimeters Ref. Min. Typ. A Max. Min. Typ. 1.10 Max. 0.043 A1 0.05 0.10 0.15 0.002 0.004 0.006 A2 0.78 0.86 0.94 0.031 0.034 0.037 b 0.15 0.23 0.30 0.006 0.009 0.012 c 0.13 0.18 0.23 0.005 0.007 0.009 D 2.90 3.00 3.10 0.114 0.118 0.122 E 4.75 4.90 5.05 0.187 0.193 0.199 E1 2.90 3.00 3.10 0.114 0.118 0.122 e L 0.50 0.40 L1 k aaa DS9502 - Rev 5 Inches 0.55 0.020 0.70 0.016 0.95 0° 3° 0.022 0.028 0.037 6° 0.10 0° 3° 6° 0.004 page 26/29 TSX920, TSX921, TSX922, TSX923 Ordering information 7 Ordering information Table 12. Order codes Order code Temperature range TSX920ILT TSX922IDT K305 TSX922I SO8 -40 °C to 125 °C MiniSO8 Marking K304 SΟΤ23-5 TSX921IYLT (1) TSX922IST Packing SOT23-6 TSX921ILT TSX922IYDT (1) Package Tape and reel SX922IY K305 TSX922IQ2T DFN8 2x2 K26 TSX922IYST (1) MiniSO8 (automotive grade) K312 TSX922IYDT (1) SO8 (automotive grade) SX922IY TSX923IST MiniSO10 K305 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent. DS9502 - Rev 5 page 27/29 TSX920, TSX921, TSX922, TSX923 Revision history Table 13. Document revision history Date Revision 12-Apr-2013 1 Changes Initial release Added TSX920,TSX922, TSX923 devices. Added packages for TSX920,TSX922, and TSX923. 27-Jun-2013 2 Added shutdown characteristics in Table 4, Table 5, and Table 6. Added Figure 35, Figure 36, and Figure 37. Updated Table 13 for new order codes. Added long-term input offset voltage drift parameter in Table 4, Table 5, and Table 6. 10-Dec-2013 3 Added Section 5.4: Input offset voltage drift over temperature in Section 5: Application information. Added Section 5.5: Long-term input offset voltage drift section in Section 5: Application information. Updated document layout Table 4, Table 5, and Table 6: updated Vio and DVio/DT parameters 14-Jan-2016 4 Table 7: updated inches dimension "B" (typ) and "L" (typ and max) to align with rounded-off values of POA. Table 10: updated minimum mm dimensions for "k" Table 13: "Order codes": added order codes TSX922IYST and TSX922IYDT. 07-Oct-2022 DS9502 - Rev 5 5 Updated b and c dimensions in Table 11. page 28/29 TSX920, TSX921, TSX922, TSX923 IMPORTANT NOTICE – READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2022 STMicroelectronics – All rights reserved DS9502 - Rev 5 page 29/29
TSX922IQ2T 价格&库存

很抱歉,暂时无法提供与“TSX922IQ2T”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TSX922IQ2T
  •  国内价格 香港价格
  • 3000+8.052583000+0.99892
  • 6000+7.647086000+0.94862
  • 9000+7.442669000+0.92326

库存:16282

TSX922IQ2T
    •  国内价格
    • 3000+7.52399
    • 6000+7.41705

    库存:12000