TSX9291, TSX9292
16 MHz rail-to-rail CMOS 16 V operational amplifiers
Datasheet - production data
Applications
• Communications
• Process control
• Active filtering
62776;
')1[76;
• Test equipment
Description
0LQL6276;
6276;
Features
• Rail-to-rail input and output
• Wide supply voltage: 4 V - 16 V
The TSX9291 and TSX9292 operational
amplifiers (op amps) offer excellent AC
characteristics such as 16 MHz gain bandwidth,
27 V/µs slew rate, and 0.0003 % THD+N. They
are decompensated amplifiers which are stable
when used with a gain higher than 2 or lower than
-1. The rail-to-rail input and output capability of
these devices operates on a wide supply voltage
range of 4 V to 16 V. These last two features
make the TSX929x series particularly welladapted for a wide range of applications such as
communications, I/V amplifiers for ADCs, and
active filtering applications.
Table 1. Device summary
• Gain bandwidth product: 16 MHz typ at 16 V
• Low power consumption: 2.8 mA typ at 16 V
• Slew rate: 27 V/µs
Op amp version
Single
Dual
TSX9291
TSX9292
• Stable when used in gain configuration
• Low input bias current: 10 pA typ
• High tolerance to ESD: 4 kV HBM
• Extended temperature range:
-40° C to +125° C
• Automotive qualification
Related products
• See the TSX5 series for low power features
• See the TSX6 series for micro power features
• See the TSX92 series for unity gain stability
• See the TSV9 series for lower voltage
August 2022
This is information on a product in full production.
DocID024568 Rev 5
1/32
www.st.com
Contents
TSX9291, TSX9292
Contents
1
Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5
4.1
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2
Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3
Input pin voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4
Stability for gain = -1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5
Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6
Long-term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.7
Capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.8
High side current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.9
High speed photodiode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1
SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2
DFN8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3
MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4
SO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2/32
DocID024568 Rev 5
TSX9291, TSX9292
1
Package pin connections
Package pin connections
Figure 1. Pin connections (top view)
287
9&&
9&&
,1
,1
SOT23-5 (TSX9291)
287
9&&
287
9&&
,1
287
,1
287
,1
,1
,1
,1
9&&
,1
9&&
,1
DFN8 2x2 (TSX9292)
DocID024568 Rev 5
MiniSO8/SO8 (TSX9292)
3/32
32
Absolute maximum ratings and operating conditions
2
TSX9291, TSX9292
Absolute maximum ratings and operating conditions
Table 2. Absolute maximum ratings (AMR)
Symbol
VCC
Parameter
Supply voltage
(1)
Vid
Differential input voltage
Vin
Input voltage
Iin
Tstg
Rthja
Tj
Input current
(3)
Storage temperature
Thermal resistance junction to ambient
SOT23-5
DFN8 2x2
MiniSO8
SO8
MM: machine
18
V
±VCC
mV
VCC- - 0.2 to VCC++ 0.2
V
10
mA
-65 to +150
°C
250
57
190
125
150
model(6)
°C/W
°C
4000
model(7)
CDM: charged device
Unit
(4)(5)
Maximum junction temperature
HBM: human body
ESD
(2)
Value
100
model(8)
V
1500
Latch-up immunity
200
mA
1. All voltage values, except the differential voltage are with respect to network ground terminal.
2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
3. Input current must be limited by a resistor in series with the inputs.
4. Short-circuits can cause excessive heating and destructive dissipation.
5. Rth are typical values.
6. According to JEDEC standard JESD22-A114F
7. According to JEDEC standard JESD22-A115A
8. According to ANSI/ESD STM5.3.1
Table 3. Operating conditions
Symbol
4/32
Parameter
VCC
Supply voltage
Vicm
Common mode input voltage range
Toper
Operating free air temperature range
Value
4 to 16
DocID024568 Rev 5
VCC- - 0.1 to VCC+ + 0.1
-40 to +125
Unit
V
°C
TSX9291, TSX9292
3
Electrical characteristics
Electrical characteristics
Table 4. Electrical characteristics at VCC+ = +4.5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and
RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol
Vio
∆Vio/∆T
∆Vio
Iib
Iio
Parameter
Input offset voltage
Conditions
Min.
Typ.
Vicm = 2 V
Tmin < Top < Tmax
Input offset voltage drift
2
Max.
Unit
4
5
mV
10
µV/°C
nV
month
Long-term input offset
voltage drift(1)(2)
TSX9291
TSX9292
6
9
Input bias current
Vout = VCC/2
Tmin < Top < Tmax
10
100
200
Input offset current
Vout = VCC/2
Tmin < Top < Tmax
10
100
200
---------------------------
pA
RIN
Input resistance
1
TΩ
CIN
Input capacitance
8
pF
CMR
Avd
VOH
VOL
Common mode rejection
ratio 20 log (∆Vic/∆Vio)
GBP
FU
61
59
82
Vicm = -0.1 V to 4.6 V, VOUT = VCC/2
Tmin < Top < Tmax
59
57
72
RL= 2 kΩ, Vout = 0.3 V to 4.2 V
Tmin < Top < Tmax
100
90
108
RL= 10 kΩ, Vout = 0.2 V to 4.3 V
Tmin < Top < Tmax
100
90
112
dB
Large signal voltage gain
RL= 2 kΩ to VCC/2
Tmin < Top < Tmax
50
80
100
RL= 10 kΩ to VCC/2
Tmin < Top < Tmax
10
16
20
RL= 2 kΩ to VCC/2
Tmin < Top < Tmax
42
80
100
RL= 10 kΩ to VCC/2
Tmin < Top < Tmax
9
16
20
High level output voltage
Low level output voltage
mV
from
VCC+
mV
Isink
Vout = 4.5 V
Tmin < Top < Tmax
16
13
21
Isource
Vout = 0 V
Tmin < Top < Tmax
16
13
21
Supply current
(per amplifier)
No load, Vout = VCC/2
Tmin < Top < Tmax
2.9
Gain bandwidth product
RL = 10 kΩ, CL = 20 pF, G = 20 dB
15.6
Unity gain frequency
RL = 10 kΩ, CL = 20 pF
14.2
Iout
ICC
Vicm = -0.1 V to 2 V, VOUT = VCC/2
Tmin < Top < Tmax
DocID024568 Rev 5
mA
3.4
3.5
MHz
5/32
32
Electrical characteristics
TSX9291, TSX9292
Table 4. Electrical characteristics at VCC+ = +4.5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and
RL = 10 kΩ connected to VCC/2 (unless otherwise specified) (continued)
Symbol
Parameter
Conditions
Phase margin = 60 °, Rg = Rf = 1 kΩ
Min.
Typ.
Max.
Unit
-1
+2
Gain
Minimum gain for stability
SR+
Positive slew rate
Av = +1, Vout = 0.5 to 4.0 V
Measured between 10 % to 90 %
27
SR-
Negative slew rate
Av = +1, Vout = 4.0 to 0.5 V
Measured between 90 % to 10 %
22
en
Equivalent input noise
voltage
f = 10 kHz
f = 100 kHz
17.9
12.9
nV
-----------Hz
e n
Low-frequency peak-topeak input noise
Bandwidth: f = 0.1 to 10 Hz
8.1
µVpp
Total harmonic distortion +
noise
f = 1 kHz, Av = +1,
RL = 10 kΩ, Vout = 2 Vrms
0.002
%
THD+N
RL = 10 kΩ, CL = 20 pF
V/µs
1. Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Section 4.6:
Long-term input offset voltage drift.
2. When used in comparator mode, with high differential input voltage, during a long period of time with VCC close to 16V and
Vicm>VCC/2, Vio can experience a permanent drift of few mV drift. The phenomenon is particularly worsen at low
temperatures.
6/32
DocID024568 Rev 5
TSX9291, TSX9292
Electrical characteristics
Table 5. Electrical characteristics at VCC+ = +10 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and
RL= 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol
Vio
∆Vio/∆T
Parameter
Input offset voltage
Conditions
Min.
Typ.
Tmin < Top < Tmax
Input offset voltage drift
2
Max.
Unit
4
5
mV
10
µV/°C
nV
month
Long-term input offset
voltage drift(1) (2)
TSX9291
TSX9292
92
128
Iib
Input bias current
Vout = VCC/2
Tmin < Top < Tmax
10
100
200
Iio
Input offset current
Vout = VCC/2
Tmin < Top < Tmax
10
100
200
∆Vio
---------------------------
pA
RIN
Input resistance
1
TΩ
CIN
Input capacitance
8
pF
CMR
Avd
VOH
VOL
Common mode rejection
ratio 20 log (∆Vic/∆Vio)
GBP
FU
Gain
72
70
85
Vicm = -0.1 V to 10.1 V, VOUT = VCC/2
Tmin < Top < Tmax
64
62
75
RL = 2 kΩ, Vout = 0.3 V to 9.7 V
Tmin < Top < Tmax
100
90
107
RL = 10 kΩ, Vout = 0.2 V to 9.8 V
Tmin < Top < Tmax
100
90
117
dB
Large signal voltage gain
RL = 2 kΩ to VCC/2
Tmin < Top < Tmax
94
110
130
RL = 10 kΩ to VCC/2
Tmin < Top < Tmax
31
40
50
RL = 2 kΩ to VCC/2
Tmin < Top < Tmax
80
110
130
RL = 10 kΩ to VCC/2
Tmin < Top < Tmax
14
40
50
High level output voltage
Low level output voltage
mV
from
VCC+
mV
Isink
Vout = 10 V
Tmin < Top < Tmax
50
42
55
Isource
Vout = 0 V
Tmin < Top < Tmax
75
70
82
Supply current
(per amplifier)
No load, Vout = VCC/2
Tmin < Top < Tmax
3.1
Gain bandwidth product
RL = 10 kΩ, CL = 20 pF, G = 20 dB
16
Unity gain frequency
RL = 10 kΩ, CL = 20 pF
Minimum gain for stability
Phase margin = 60 °, Rg = Rf = 1 kΩ
Iout
ICC
Vicm = -0.1 V to 7 V, VOUT = VCC/2
Tmin < Top < Tmax
RL = 10 kΩ, CL = 20 pF
DocID024568 Rev 5
15.4
mA
3.6
3.6
MHz
-1
+2
7/32
32
Electrical characteristics
TSX9291, TSX9292
Table 5. Electrical characteristics at VCC+ = +10 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and
RL= 10 kΩ connected to VCC/2 (unless otherwise specified) (continued)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
Positive slew rate
Av = +1, Vout = 0.5 to 9.5 V
Measured between 10 % to 90 %
29
Negative slew rate
Av = +1, Vout = 9.5 to 0.5 V
Measured between 90 % to 10 %
30
en
Equivalent input noise
voltage
f = 10 kHz
f = 100 kHz
16.8
12
nV
-----------Hz
en
Low-frequency peak-topeak input noise
Bandwidth: f = 0.1 to 10 Hz
8.64
µVpp
THD+N
Total harmonic distortion
+ noise
f = 1 kHz, Av = +1,
RL = 10 kΩ, Vout = 2 Vrms
0.0006
%
SR+
SR-
V/µs
1. Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Section 4.6:
Long-term input offset voltage drift.
2. When used in comparator mode, with high differential input voltage, during a long period of time with VCC close to 16V and
Vicm>VCC/2, Vio can experience a permanent drift of few mV drift. The phenomenon is particularly worsen at low
temperatures.
8/32
DocID024568 Rev 5
TSX9291, TSX9292
Electrical characteristics
Table 6. Electrical characteristics at VCC+ = +16 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and
RL= 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol
Vio
∆Vio/∆T
Parameter
Input offset voltage
Conditions
Min.
Typ.
Tmin < Top < Tmax
Input offset voltage drift
2
Max.
Unit
4
5
mV
10
µV/°C
µV
month
Long-term input offset
voltage drift(1) (2)
TSX9291
TSX9292
Iib
Input bias current
Vout = VCC/2
Tmin < Top < Tmax
10
100
200
Iio
Input offset current
Vout = VCC/2
Tmin < Top < Tmax
10
100
200
∆Vio
1.73
2.26
---------------------------
pA
RIN
Input resistance
1
TΩ
CIN
Input capacitance
8
pF
CMR
SVR
Avd
VOH
VOL
Common mode rejection
ratio 20 log (∆Vic/∆Vio)
Supply voltage rejection
ratio
GBP
FU
73
71
85
Vicm = -0.1 V to 16.1 V, VOUT = VCC/2
Tmin < Top < Tmax
67
65
76
Vcc = 4.5 V to 16 V
Tmin < Top < Tmax
73
71
85
RL= 2 kΩ, Vout = 0.3 V to 15.7 V
Tmin < Top < Tmax
100
90
105
RL= 10 kΩ, Vout = 0.2 V to 15.8 V
Tmin < Top < Tmax
100
90
113
dB
Large signal voltage gain
RL= 2 kΩ to VCC/2
Tmin < Top < Tmax
150
200
230
RL= 10 kΩ to VCC/2
Tmin < Top < Tmax
43
50
70
RL= 2 kΩ to VCC/2
Tmin < Top < Tmax
140
200
230
RL= 10 kΩ to VCC/2
Tmin < Top < Tmax
30
50
70
High level output voltage
Low level output voltage
mV
from
VCC+
mV
Isink
Vout = 16 V
Tmin < Top < Tmax
45
40
50
Isource
Vout = 0 V
Tmin < Top < Tmax
65
60
74
Supply current
(per amplifier)
No load, Vout = VCC/2
Tmin < Top < Tmax
2.8
Gain bandwidth product
RL = 10 kΩ, CL = 20 pF, G = 20 dB
16
Unity gain frequency
RL = 10 kΩ, CL = 20 pF
Iout
ICC
Vicm = -0.1 V to 13 V, VOUT = VCC/2
Tmin < Top < Tmax
DocID024568 Rev 5
15.7
mA
3.4
3.4
MHz
9/32
32
Electrical characteristics
TSX9291, TSX9292
Table 6. Electrical characteristics at VCC+ = +16 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and
RL= 10 kΩ connected to VCC/2 (unless otherwise specified) (continued)
Symbol
Parameter
Conditions
Gain
Minimum gain for stability
Phase margin = 60 °, Rg = Rf = 1 kΩ
SR+
Positive slew rate
Av = +1, Vout = 0.5 to 15.5 V
Measured between 10 % to 90 %
26
SR-
Negative slew rate
Av = +1, Vout = 15.5 to 0.5 V
Measured between 90 % to 10 %
27
en
Equivalent input noise
voltage
f = 10 kHz
f = 100 kHz
16.5
11.8
nV
-----------Hz
e n
Low-frequency peak-topeak input noise
Bandwidth: f = 0.1 to 10 Hz
8.58
µVpp
THD+N
Total harmonic distortion
+ Noise
f = 1 kHz, Av = +1,
RL= 10 kΩ, Vout = 4Vrms
0.0003
%
Settling time
Gain = +1, 100 mV input voltage
0.1 % of final value
1 % of final value
245
178
ns
tS
RL = 10 kΩ, CL = 20 pF
Min.
Typ.
Max.
Unit
-1
+2
V/µs
1. Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Section 4.6:
Long-term input offset voltage drift.
2. When used in comparator mode, with high differential input voltage, during a long period of time with VCC close to 16V and
Vicm>VCC/2, Vio can experience a permanent drift of few mV drift. The phenomenon is particularly worsen at low
temperatures.
10/32
DocID024568 Rev 5
TSX9291, TSX9292
Electrical characteristics
Figure 2. Supply current vs. supply voltage
Figure 3. Distribution of input offset voltage at
VCC = 4.5 V
0
3
T=25°C
V
5
2
.
2
=
m
c
i
V
,
V
5
.
4
=
c
c
V
T=125°C
5
2
VICM=VCC/2
o
i
V
f
o
n
o
i
t
u
b
i
r
t
s
i
D
3.6
0
2
2.4
T=-40°C
1.2
5
0.6
0
3
2
1
16.0
0
14.0
)
V
m
(
e
g
a
t
l
o
V
t
e
s
f
f
O
t
u
p
n
I
6.0
8.0 10.0 12.0
Supply voltage (V)
1
-
4.0
2
-
2.0
3
-
0.0
0.0
0
1
%
n
o
i
t
a
l
u
p
o
P
1.8
5
1
Supply Current (mA)
3.0
Figure 4. Distribution of input offset voltage at Figure 5. Input offset voltage vs. temperature at
VCC = 16 V
VCC = 16 V
0
3
5
o
i
V
f
o
n
o
i
t
u
b
i
r
t
s
i
D
0
2
Input offset voltage (mV)
V
8
=
m
c
i
V
,
V
6
1
=
c
c
V
5
2
5
1
0
1
%
n
o
i
t
a
l
u
p
o
P
Vcc=16V, Vicm=8V
3
0
-3
5
0
3
2
1
0
1
-
2
-
3
-
-5
-40
-20
0
)
V
m
(
e
g
a
t
l
o
v
t
e
s
f
f
o
t
u
p
n
I
20
40
60
Temperature (°C)
Figure 6. Distribution of input offset voltage
drift over temperature
100
120
Figure 7. Input offset voltage vs. common mode
voltage at VCC = 4 V
5
2
1.0
0.8
T
/
o
iV
∆
∆
Vcc=4V
0.5
V
8
=
m
c
i
V
,
V
6
1
=
c
c
V
5
1
Input offset voltage (mV)
0
2
0
1
%
n
o
i
t
a
l
u
p
o
P
80
0.3
0.0
-0.3
-0.5
T=-40°C
-0.8
T=25°C
-1.0
5
-1.3
-1.5
T=125°C
-1.8
0
0
1
-
2
-
3
-
4
-
5
-
6
-
7
-
-2.0
0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5 2.8 3.0 3.3 3.5 3.8 4.0
)
C
°
/
V
µ
(
T
/
o
iV
∆
Common mode voltage(V)
∆
DocID024568 Rev 5
11/32
32
Electrical characteristics
TSX9291, TSX9292
Figure 9. Output current vs. output voltage at
VCC = 4 V
1.8
30
1.2
20
0.6
T=25°C
0.0
-0.6
T=-40°C
-1.2
-1.8
Output Current (mA)
Input offset voltage (mV)
Figure 8. Input offset voltage vs. common mode
voltage at VCC = 16 V
Vcc=16V
-3.0
0.0
1.5
3.0
4.5
6.0
7.5
9.0
10.5
12.0
13.5
Figure 10. Output current vs. output voltage at
VCC = 10 V
Sink
Vid=-1V
Vcc=4V
-10
50
T=125°C
T=25°C
Source
Vid=1V
0
Vcc=10V
-25
0.5
1.0
1.5
2.0
2.5
Output Voltage (V)
3.0
3.5
-50
Sink
Vid=-1V
T=-40°C
25
T=125°C
T=25°C
0
Vcc=16V
-25
-50
Source
Vid=1V
-75
0.0
1.0
2.0
3.0 4.0 5.0 6.0 7.0
Output Voltage (V)
8.0
9.0 10.0
Figure 12. Output rail linearity
Source
Vid=1V
-75
0.0
2.5
5.0
7.5
10.0
Output Voltage (V)
12.5
140
15.6
120
15.4
100
14.8
1.0
0.4
Vcc=16V
G=2
T=25°C
Rl=10kΩ
0.2
40
-20
-40
8.0
7.9
7.8
7.7
7.6
7.5
7.4
0.5
0.4
0.3
0.2
0.1
Phase
0
0.0
0.0
60
20
Rl=2kΩ
Phase (°)
80
15.0
0.6
360
320
280
240
200
160
120
80
40
0
-40
-80
-120
-160
-200
-240
-280
-320
-360
Gain
15.2
Gain (dB)
Output voltage (V)
15.8
0.8
15.0
Figure 13. Open loop gain vs. frequency
16.0
0.01
Input voltage (V)
12/32
4.0
Figure 11. Output current vs. output voltage at
VCC = 16 V
Output Current (mA)
Output Current (mA)
T=125°C
0
T=-40°C
25
T=25°C
10
-30
0.0
15.0
Common mode voltage(V)
50
T=-40°C
-20
T=125°C
-2.4
Sink
Vid=-1V
DocID024568 Rev 5
Vcc=16V, Vicm=8V,
Rl=10kΩ , Cl=20pF, VRl=Vcc/2
0.1
1
10
100
Frequency (kHz)
1000
10000
TSX9291, TSX9292
Electrical characteristics
Figure 14. Bode diagram vs. temperature for
VCC = 4 V
Figure 15. Bode diagram vs. temperature for
VCC = 10 V
250
250
Gain
200
200
Gain
150
150
T=25°C
T=125°C
0
-50
T=-40°C
50
T=125°C
0
0
-50
T=-40°C
-20
-100
Phase
100
-100
Phase
-150
-150
Vcc=4V, Vicm=2V, G=100
Rl=10kΩ , Cl=20pF, VRl=Vcc/2
-40
-200
-200
-250
-250
1
10
100
1000
1
10000
10
100
1000
10000
Frequency (kHz)
Frequency (kHz)
Figure 16. Bode diagram vs. temperature for
VCC = 16 V
Figure 17. Bode diagram at VCC = 16 V with low
common mode voltage
250
40
250
200
Gain
40
200
Gain
T=25°C
150
T=25°C
100
T=125°C
0
0
-50
T=-40°C
-20
-100
Phase
150
T=-40°C
100
50
Gain (dB)
Gain (dB)
50
T=125°C
20
Phase (°)
20
0
0
-50
-20
-100
Phase
-150
Vcc=16V, Vicm=8V, G=100
Rl=10kΩ , Cl=20pF, Vrl=Vcc/2
-40
-150
-200
Vcc=16V, Vicm=0.5V, G=100
Rl=10kΩ , Cl=20pF, VRl=Vcc/2
-40
-250
1
10
100
1000
-200
-250
10000
1
10
Frequency (kHz)
100
1000
10000
Frequency (kHz)
Figure 18. Bode diagram at VCC = 16 V with high
common mode voltage
Figure 19. Bode diagram at VCC = 16 V and
RL = 10 kΩ, CL = 47 pF
250
250
40
40
200
150
150
T=25°C
50
0
-50
-100
Phase
Gain (dB)
T=-40°C
0
-20
T=25°C
100
20
100
Phase (°)
Gain (dB)
T=125°C
200
Gain
Gain
20
50
0
0
T=125°C
T=-40°C
-20
-200
-150
Vcc=16V, Vicm=8V, G=100
Rl=10kΩ , Cl=47pF, VRl=Vcc/2
-40
-200
-250
-250
1
10
100
1000
10000
-50
-100
Phase
-150
Vcc=16V, Vicm=15.5V, G=100
Rl=10kΩ , Cl=20pF, VRl=Vcc/2
-40
Phase (°)
-40
Vcc=10V, Vicm=5V, G=100
Rl=10kΩ, Cl=20pF, VRl=Vcc/2
Phase (°)
-20
Phase (°)
Gain (dB)
50
0
T=25°C
20
100
Gain (dB)
20
Phase (°)
40
40
1
10
100
1000
10000
Frequency (kHz)
Frequency (kHz)
DocID024568 Rev 5
13/32
32
Electrical characteristics
TSX9291, TSX9292
Figure 20. Bode diagram at VCC = 16 V and
RL = 2 kΩ, CL = 20 pF
Figure 21. Slew rate vs. supply voltage and
temperature
250
40
30
200
Gain
Gain (dB)
50
0
T=-40°C
-50
-20
Slew Rate (V/µs)
100
T=125°C
0
T=25°C
Phase (°)
20
-100
Phase
-40
-200
T=125°C
T=-40°C
10
0
Vicm=VRl=Vcc/2
Rl=10kΩ, Cl=20pF
Vin from 0.5V to Vcc-0.5V
-10
-20
-150
Vcc=16V, Vicm=8V, G=100
Rl=2.2kΩ , Cl=20pF, VRl=Vcc/2
SR positive
20
150
T=25°C
SR negative
-30
-250
1
10
100
1000
4.0 5.0 6.0 7.0 8.0 9.0 10.011.0
10.0
12.013.0
12.0
14.015.016.0
14.0
16.0
Vcc (V)
10000
Frequency (kHz)
Figure 22. Small signal overshoot vs capacitive
load without feedback capacitor Cf
Figure 23. Small step response with G = +2
0.15
80
Overshoot (%)
60
50
0.10
Vcc=16V,
100mVpp,
G=-1; Rf=Rg=1kΩ
Rl=10kΩ
Output Voltage (V)
70
40
30
20
0.05
0.00
-0.05
Vcc = 16V
Rl=10kΩ;Cl=20pF
G=2; Rf=Rg=1kΩ
T=25°C
-0.10
10
0
10
-0.15
-400.0n
100
0.0
Load capacitance (pF)
Figure 24. Small step response with feedback
capacitor
Cf=0pF
2.00
Cf=5pF
Cf=8pF
Output Voltage (V)
Output Voltage (V)
1.2µ
3.00
0.05
Cf=12pF
0.00
-0.05
Vcc = 16V
Rl=10kΩ;Cl=20pF
G=-1; Rf=Rg=1kΩ
T=25°C
-0.10
-0.15
-400.0n
14/32
800.0n
Figure 25. Large step response
0.15
0.10
400.0n
Time (s)
0.0
400.0n
Time (s)
800.0n
1.00
0.00
-1.00
Vcc = 16V
Rl=10kΩ;Cl=20pF
G=-1; Rf=Rg=1kΩ
T=25°C
-2.00
1.2µ
-3.00
-400.0n
DocID024568 Rev 5
0.0
400.0n
Time (s)
800.0n
1.2µ
TSX9291, TSX9292
Electrical characteristics
Figure 26. Desaturation time
Figure 27. Peaking close loop with different Rl
20
15
1.5
Input Signal
1.0
10
0.5
5
0.0
0
10
-0.5
-5
Gain (dB)
Output signal (V)
Input signal (V)
Rl=10kΩ
Rl=2kΩ
-10
Vcc=4.5V to 16V
Vicm=Vcc/2
Rf=Rg=1kΩ
Gain=-1
Cl=20pF
-20
-10
-1.0
0
Vcc=16V, Vicm=8V, G=11
Rl=10kΩ, Cl=20pF
-1.5
0
2µ
4µ
6µ
8µ
10µ
12µ
14µ
16µ
18µ
-30
-15
20µ
1k
10k
100k
Figure 28. Output impedance vs frequency in
close loop configuration
Output Impedance (Ω )
10
Vcc=16V
Vicm=8V
Osc level=30mVRMS
G=1
Ta=25°C
1
0.1
0.01
100
1k
10k
100k
Frequency (Hz)
1M
600
Vicm=15.5V
400
Vicm=0.5V
300
Vicm=8V
200
100
0
10
100
1k
Frequency (Hz)
10
Vcc=16V
4 Vicm=8V
T=25°C
THD + N (%)
2
0
-2
-1
10
-2
10
-3
Vcc=16V
Vicm=Vcc/2
Vin=2Vrms
Gain=2
BW=80kHz
Rl=600Ω
Rl=2kΩ
-4
10
2
4
6
8
10k
Figure 31. THD+N vs. frequency at VCC = 16 V
6
Input voltage noise (µV)
Vcc=16V
T=25°C
500
10M
Figure 30. 0.1 to 10 Hz noise with 16 V
supply voltage
-6
0
10M
Figure 29. Noise vs. frequency with 16 V
supply voltage
Equivalent Input Voltage Noise (nV/VHz)
1000
100
1M
Frequency (Hz)
Time (s)
Rl=10kΩ
-4
10
Time (s)
DocID024568 Rev 5
100
1k
10k
100k
Frequency (Hz)
15/32
32
Electrical characteristics
TSX9291, TSX9292
Figure 32. THD+N vs. output voltage at
VCC = 16 V
THD + N (%)
10
0
-120
Vcc=16V
Vicm=Vcc/2
f=1kHz
Gain=2
BW=22kHz
-1
10
-2
10
-3
+PSRR
-100
PSRR (dB)
10
Figure 33. Power supply rejection ratio (PSRR)
vs. frequency
Rl=600Ω
-80
-PSRR
-60
-40
-20
Rl=10kΩ
10
Vcc=16V, Vicm=8V, G=1
Rl=10kΩ, Cl=20pF, Vripple=100mVpp
Rl=2kΩ
-4
0.1
1
0
100
10
1k
10k
100k
Frequency (Hz)
Output Voltage (Vrms)
Figure 34. Crosstalk vs. frequency between operators on TSX9292 at VCC = 16 V
0
-20
Vcc=16V
Vicm=Vcc/2
Rl=10kΩ
Cl=20pF
Vout=3.5Vrms
Crosstalk (dB)
-40
-60
-80
-100
Ch1 to Ch2
-120
-140
Ch2 to Ch1
-160
-180
1k
10k
100k
Frequency (Hz)
16/32
DocID024568 Rev 5
1M
10M
1M
TSX9291, TSX9292
Application information
4
Application information
4.1
Operating voltages
The TSX929x series of operation amplifiers can operate from 4 V to 16 V. Parameters are
fully specified at 4.5 V, 10 V, and 16 V power supplies. However, parameters are very stable
in the full VCC range. Additionally, the main specifications are guaranteed in the extended
temperature range of -40 to +125 °C.
4.2
Rail-to-rail input
The TSX9291 and TSX9292 are designed with two complementary PMOS and NMOS input
differential pairs. The devices have a rail-to-rail input and the input common mode range is
extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V. However, the performance of these devices
is clearly optimized for the PMOS differential pairs (which means from (VCC-) - 0.1 V to
(VCC+) - 2 V).
Beyond (VCC+) - 2 V, the operational amplifiers are still functional but with downgraded
performances (see Figure 19). Performances are still suitable for a large number of
applications requiring the rail-to-rail input feature.
TSX9291 and TSX9292 are designed to prevent phase reversal.
4.3
Input pin voltage range
The TSX929x series has internal ESD diode protection on the inputs. These diodes are
connected between the input and each supply rail to protect MOSFETs inputs from
electrostatic discharges.
Thus, if the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become
conductive and excessive current could flow through them. To prevent any permanent
damage, this current must be limited to 10 mA. This can be done by adding a resistor, Rs, in
series with the input pin (Figure 35). The Rs resistor value has to be calculated for a 10 mA
current limitation on the input pins.
Figure 35. Limiting input current with a series resistor
5J
5I
9
5V
9LQ
76;
9RXW
*$06&%
DocID024568 Rev 5
17/32
32
Application information
4.4
TSX9291, TSX9292
Stability for gain = -1
TSX9291 and TSX9292 can be used in gain = -1 configuration (see Figure 36). However
some precautions must be taken regarding the setting of the Rg and Rf resistors. Effectively,
the input capacitance of the TSX929x series creates a pole with Rf and Rg. In high
frequency, this pole decreases the phase margin and also causes gain peaking. This effect
has a direct impact on the stability.
Figure 37 shows the peaking, depending on the values of the gain and feedback
resistances.
Figure 36. Configuration for gain = -1
Cf
Rf
+Vcc
Rg
Vin
-
Vout
+
CL=20pF
-Vcc
Figure 37. Close loop gain vs. frequency
20
Rf=Rg=20kΩ
10
Gain (dB)
Rf=Rg=1kΩ
0
Rf=Rg=10kΩ
-10
-20
-30
1k
Vcc=16V
Vicm=Vcc/2
Gain=-1
Rl=10kΩ
Cl=20pF
10k
100k
1M
Frequency (Hz)
18/32
DocID024568 Rev 5
10M
RL=10kO
TSX9291, TSX9292
Application information
Whenever possible, it is best to choose smaller feedback resistors. It is recommended to
use 1 kΩ gain and feedback resistance (Rf and Rg) when gain = -1 is necessary. In the
application, if a large value of Rf and Rg has to be used, a feedback capacitance can be
added in parallel with Rf, to reduce or eliminate the gain peaking. Additionally, Cf helps to
compensate the input capacitance and to increase stability.
Figure 38 shows how Cf reduces the gain peaking.
Figure 38. Close loop gain vs. frequency with capacitive compensation
20
Cf=0pF
10
Gain (dB)
Cf=1pF
0
Cf=1.5pF
-10
-20
Vcc=16V
Vicm=Vcc/2
Gain=-1
Rf=Rg=10kΩ
Rl=10kΩ
Cl=20pF
-30
1k
10k
100k
1M
10M
Frequency (Hz)
4.5
Input offset voltage drift over temperature
The maximum input voltage drift over the temperature variation is defined as the offset
variation related to offset value measured at 25 °C. The operational amplifier is one of the
main circuits of the signal conditioning chain, and the amplifier input offset is a major
contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated
during production at application level. The maximum input voltage drift over temperature
enables the system designer to anticipate the effect of temperature variations.
The maximum input voltage drift over temperature is computed using Equation 1.
Equation 1
∆Vio
V io ( T ) – Vio ( 25°C )
------------ = max ------------------------------------------------∆T
T – 25°C
with T = -40 °C and 125 °C.
The datasheet maximum value is guaranteed by a measurement on a representative
sample size ensuring a Cpk (process capability index) greater than 2.
DocID024568 Rev 5
19/32
32
Application information
4.6
TSX9291, TSX9292
Long-term input offset voltage drift
To evaluate product reliability, two types of stress acceleration are used:
•
Voltage acceleration, by changing the applied voltage
•
Temperature acceleration, by changing the die temperature (below the maximum
junction temperature allowed by the technology) with the ambient temperature.
The voltage acceleration has been defined based on JEDEC results, and is defined using
Equation 2.
Equation 2
A FV = e
β ⋅ ( VS – VU )
Where:
AFV is the voltage acceleration factor
β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)
VS is the stress voltage used for the accelerated test
VU is the voltage used for the application
The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.
Equation 3
AF T = e
Ea 1
1
------ ⋅ ------ – ------
k T U T S
Where:
AFT is the temperature acceleration factor
Ea is the activation energy of the technology based on the failure rate
k is the Boltzmann constant (8.6173 x 10-5 eV.K-1)
TU is the temperature of the die when VU is used (K)
TS is the temperature of the die under temperature stress (K)
The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and
the temperature acceleration factor (Equation 4).
Equation 4
AF = A F T × A FV
AF is calculated using the temperature and voltage defined in the mission profile of the
product. The AF value can then be used in Equation 5 to calculate the number of months of
use equivalent to 1000 hours of reliable stress duration.
20/32
DocID024568 Rev 5
TSX9291, TSX9292
Application information
Equation 5
Months = A F × 1000 h × 12 months ⁄ ( 24 h × 365.25 days )
To evaluate the op amp reliability, a follower stress condition is used where VCC is defined
as a function of the maximum operating voltage and the absolute maximum rating (as
recommended by JEDEC rules).
The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at
different measurement conditions (see Equation 6).
Equation 6
V CC = maxV op with V icm = VCC ⁄ 2
The long-term drift parameter (∆Vio), estimating the reliability performance of the product, is
obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the
calculated number of months (Equation 7).
Equation 7
V io drift
∆V io = -----------------------------( months )
where Vio drift is the measured drift value in the specified test conditions after 1000 h stress
duration.
4.7
Capacitive load
Driving a large capacitive load can cause stability issues. Increasing the load capacitance
produces gain peaking in the frequency response, with overshooting and ringing in the step
response. It is usually considered that with a gain peaking higher than 2.3 dB the op amp
might become unstable. Generally, the unity gain configuration is the worst configuration for
stability and the ability to drive large capacitive loads. Figure 39 shows the serial resistor
(Riso) that must be added to the output, to make the system stable. Figure 40 shows the
test configuration for Riso.
DocID024568 Rev 5
21/32
32
Application information
TSX9291, TSX9292
Figure 39. Stability criteria with a serial resistor
Vcc=16V, Vicm=8V, T=25°C, Rl=10 kΩ
G=-1, Rf=Rg=1kΩ
100
Serial Resistor (Ohm)
Stable
Unstable
10
0.01
0.1
1
10
Capacitive Load (nF)
Figure 40. Test configuration for Riso
5I
9,1
5J
9
5LVR
9
&ORDG
N
*$06&%
22/32
DocID024568 Rev 5
100
TSX9291, TSX9292
4.8
Application information
High side current sensing
TSX9291 and TSX9292 rail to rail input devices can be used to measure a small differential
voltage on a high side shunt resistor and translate it into a ground referenced output voltage.
The gain is fixed by external resistance.
Figure 41. High side current sensing configuration
&
ORDG
5J
,
5I
,Q
5VKXQW
5J
9
,S
9
9287
76;
5I
*$06&%
VOUT can be expressed as shown in Equation 8.
Equation 8
R g2
R f1
Rg2 R f2
R f1
R f1
V out = R shunt × I 1 – ------------------------- 1 + ---------- + Ip ------------------------- × 1 + ---------- – I n xR f1 – Vio 1 + ----------
R g2 + R f2
R g1
R g2 + R f2
R g1
Rg1
Assuming that Rf2 = Rf1 = Rf and Rg2 = Rg1 = Rg, Equation 8 can be simplified as
Equation 9.
Equation 9
Rf
Rf
Vout = R shunt × I ------- – V io 1 + ------- + R f × I io
Rg
R g
With the TSX929x series, the high side current measurement must be made by respecting
the common mode voltage of the amplifier: (VCC-) - 0.1V to (VCC+) + 0.1V. If the application
requires a higher common voltage, please refer to the TSC high side current sensing family.
DocID024568 Rev 5
23/32
32
Application information
4.9
TSX9291, TSX9292
High speed photodiode
The TSX929x series is an excellent choice for current to voltage (I-V) conversions. Due to
the CMOS technology, the input bias currents are extremely low. Moreover, the low noise
and high unity-gain bandwidth of TSX9291 TSX9292 make them particularly suitable for
high-speed photodiode preamplifier applications.
The photodiode is considered as a capacitive current source. The input capacitance, CIN,
includes the parasitic input common mode capacitance, CCM (3pF), and the input differential
mode capacitance, CDIFF (8pF). CIN acts in parallel with the intrinsic capacitance of the
photodiode, CD. At higher frequencies, the capacitors affect the circuit response. The output
capacitance of a current sensor has a strong effect on the stability of the op amp feedback
loop.
CF stabilizes the gain and limits the transimpedance bandwidth. To ensure good stability
and to obtain good noise performance, CF can be set as shown in Equation 10.
Equation 10
C IN + C D
C F > ------------------------------------------ – C SMR
2 ⋅ π ⋅ R F ⋅ F GBP
where,
• CIN = CCM + CDIFF = 11 pF
• CDIFF is the differential input capacitance: 8 pF typical
• CCM is the Common mode input capacitance: 3 pF typical
• CD is the intrinsic capacitance of the photodiode
• CSMR is the parasitic capacitance of the surface mount RF resistor: 0.2 pF typical
• FGBP is the gain bandwidth product: 10 MHz at 16 V
RF fixes the gain as shown in Equation 11.
Equation 11
V OUT = R F × I D
Figure 42. High speed photodiode
&)
5)
9&&
1IPUPEJPEF
*%
&'
&LQ
9287
9&&
*$06&%
24/32
DocID024568 Rev 5
TSX9291, TSX9292
5
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
DocID024568 Rev 5
25/32
32
Package information
5.1
TSX9291, TSX9292
SOT23-5 package mechanical data
Figure 43. SOT23-5 package mechanical drawing
Table 7. SOT23-5 package mechanical data
Dimensions
Ref.
A
Millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
0.90
1.20
1.45
0.035
0.047
0.057
A1
26/32
Inches
0.15
0.006
A2
0.90
1.05
1.30
0.035
0.041
0.051
B
0.35
0.40
0.50
0.013
0.015
0.019
C
0.09
0.15
0.20
0.003
0.006
0.008
D
2.80
2.90
3.00
0.110
0.114
0.118
D1
1.90
0.075
e
0.95
0.037
E
2.60
2.80
3.00
0.102
0.110
0.118
F
1.50
1.60
1.75
0.059
0.063
0.069
L
0.10
0.35
0.60
0.004
0.013
0.023
K
0°
10 °
0°
DocID024568 Rev 5
10 °
TSX9291, TSX9292
DFN8 2x2 package information
Figure 44. DFN8 2x2 package mechanical drawing
'
$
%
& [
(
3,1,1'(;$5($
& [
7239,(:
$
&
$
&
6($7,1*
3/$1(
6,'(9,(:
&
H
ESOFV
3,1,1'(;$5($
& $ %
3LQ,'
/
5.2
Package information
%277209,(:
*$06&%
Table 8. DFN8 2x2 package mechanical data
Dimensions
Ref.
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.70
0.75
0.80
0.028
0.030
0.031
A1
0.00
0.02
0.05
0.000
0.001
0.002
b
0.15
0.20
0.25
0.006
0.008
0.010
D
2.00
0.079
E
2.00
0.079
e
0.50
0.020
L
0.045
0.55
0.65
N
0.018
0.022
0.026
8
DocID024568 Rev 5
27/32
32
Package information
5.3
TSX9291, TSX9292
MiniSO8 package information
Figure 45. MiniSO8 package mechanical drawing
Table 9.
MiniSO8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.1
A1
0
A2
0.75
b
Max.
0.043
0.15
0
0.95
0.030
0.22
0.40
0.009
0.016
c
0.08
0.23
0.003
0.009
D
2.80
3.00
3.20
0.11
0.118
0.126
E
4.65
4.90
5.15
0.183
0.193
0.203
E1
2.80
3.00
3.10
0.11
0.118
0.122
e
L
0.85
0.65
0.40
0.60
0.006
0.033
0.80
0.016
0.024
0.95
0.037
L2
0.25
0.010
ccc
0°
0.037
0.026
L1
k
28/32
Inches
8°
0.10
DocID024568 Rev 5
0°
0.031
8°
0.004
TSX9291, TSX9292
5.4
Package information
SO8 package information
Figure 46. SO8 package mechanical drawing
Table 10.
SO8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.75
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.25
Max.
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
L1
k
ccc
1.04
0°
0.040
8°
0.10
DocID024568 Rev 5
1°
8°
0.004
29/32
32
Ordering information
6
TSX9291, TSX9292
Ordering information
Table 11. Order codes
Order code
Temperature
range
TSX9291ILT
TSX9292IST
TSX9292IDT
TSX9292IYDT (1)
Packing
Marking
K28
SOT23-5
TSX9291IYLT (1)
TSX9292IQ2T
Package
-40° C to +125° C
DFN8 2x2
MiniSO8
SO8
K308
Tape and reel
K28
TSX9292I
SX9292IY
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent.
30/32
DocID024568 Rev 5
TSX9291, TSX9292
7
Revision history
Revision history
Table 12. Document revision history
Date
Revision
24-Apr-2013
1
Initial release
2
Added the dual version op amp (TSX9292) and updated
the datasheet accordingly.
Added the silhouettes, pin connections, and package
information for DFN8 2x2, MiniSO8, and SO8; updated
Table 2.
Added Figure 34.
3
Added long-term input offset voltage drift parameter in
Table 4, Table 5, and Table 6.
Added Section 4.5: Input offset voltage drift over
temperature in Section 4: Application information.
Added Section 4.6: Long-term input offset voltage drift in
Section 4: Application information.
Corrected Figure 15: Bode diagram vs. temperature for
VCC = 10 V.
28-Apr-2014
4
Table 4, Table 5, and Table 6: updated phase margin
condition for the gain parameter.
Section 4.3: Input pin voltage range: added information
concerning an Rs resistor; updated Figure 35.
Table 11: updated marking of order codes TSX9291IYLT
and TSX9291IQ2T.
04-Aug-2022
5
Updated marking column in Table 11.
01-Jul-2013
10-Dec-2013
Changes
DocID024568 Rev 5
31/32
32
TSX9291, TSX9292
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
32/32
DocID024568 Rev 5