TSZ121, TSZ122, TSZ124
Datasheet
Very high accuracy (5 µV) zero drift micropower 5 V operational amplifiers
Features
Single (TSZ121)
SC70-5
SOT23-5
•
Dual (TSZ122)
DFN8 2x2
MiniSO8
SO8
Quad (TSZ124)
QFN16 3x3
TSSOP14
Maturity status link
TSZ121
TSZ122
TSZ124
Related products
TSV711
TSV731
TSZ181
TSZ182
Continuous-time
precision amplifiers
Zero drift 3 MHz
amplifiers
•
•
•
•
•
•
•
Very high accuracy and stability: offset voltage 5 µV max at 25 °C, 8 µV over full
temperature range (-40 °C to 125 °C)
Rail-to-rail input and output
Low supply voltage: 1.8 - 5.5 V
Low power consumption: 40 µA max. at 5 V
Gain bandwidth product: 400 kHz
High tolerance to ESD: 4 kV HBM
Extended temperature range: -40 to 125 °C
Micro-packages: SC70-5, DFN8 2x2, and QFN16 3x3
Applications
•
•
•
•
Battery-powered applications
Portable devices
Signal conditioning
Medical instrumentation
Description
The TSZ12x series of high precision operational amplifiers offer very low input offset
voltages with virtually zero drift.
TSZ121 is the single version, TSZ122 the dual version, and TSZ124 the quad
version, with pinouts compatible with industry standards.
The TSZ12x series offers rail-to-rail input and output, excellent speed/power
consumption ratio, and 400 kHz gain bandwidth product, while consuming less than
40 µA at 5 V. The devices also feature an ultra-low input bias current.
These features make the TSZ12x family ideal for sensor interfaces, battery-powered
applications and portable applications.
Benefits
Higher accuracy without calibration
Accuracy virtually unaffected by
temperature change
DS9216 - Rev 11 - April 2022
For further information contact your local STMicroelectronics sales office.
www.st.com
TSZ121, TSZ122, TSZ124
Package pin connections
1
Package pin connections
Figure 1. Pin connections for each package (top view)
1.
DS9216 - Rev 11
SC70-5
SOT23-5
DFN8 2x2
MiniSO8 and SO8
QFN16 3x3
TSSOP14
The exposed pads of the DFN8 2x2 and the QFN16 3x3 can be connected to VCC- or left floating.
page 2/37
TSZ121, TSZ122, TSZ124
Absolute maximum ratings and operating conditions
2
Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings (AMR)
Symbol
Parameter
VCC
Supply voltage (1)
Vid
Differential input voltage (2)
Value
6
±VCC
Vin
Input voltage (3)
(VCC-) - 0.2 to
(VCC+) + 0.2
Iin
Input current (4)
10
Tstg
Tj
Storage temperature
mA
°C
150
Thermal resistance junction to ambient (5) (6)
SC70-5
205
SOT23-5
250
DFN8 2x2
57
MiniSO8
190
SO8
125
QFN16 3x3
39
TSSOP14
100
HBM: human body model (7)
ESD
V
-65 to 150
Maximum junction temperature
Rthja
Unit
°C/W
4
kV
MM: machine model (8)
300
V
CDM: charged device model (9)
1.5
kV
Latch-up immunity
200
mA
1. All voltage values, except the differential voltage are with respect to the network ground terminal.
2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
3. Vcc - Vin must not exceed 6 V, Vin must not exceed 6 V
4. Input current must be limited by a resistor in series with the inputs.
5. Rth are typical values.
6. Short-circuits can cause excessive heating and destructive dissipation.
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin
combinations with other pins floating.
8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device
with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to
ground.
Table 2. Operating conditions
Symbol
DS9216 - Rev 11
Parameter
VCC
Supply voltage
Vicm
Common mode input voltage range
Toper
Operating free air temperature range
Value
1.8 to 5.5
(VCC -) - 0.1 to (VCC +) + 0.1
-40 to 125
Unit
V
°C
page 3/37
TSZ121, TSZ122, TSZ124
Electrical characteristics
3
Electrical characteristics
Table 3. Electrical characteristics at VCC+ = 1.8 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to
VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
1
5
Unit
DC performance
Vio
ΔVio/ΔT
Iib
Input offset voltage
Input offset voltage drift (1)
Input bias current (Vout = VCC/2)
T = 25 °C
-40 °C < T < 125 °C
8
-40 °C < T < 125 °C
10
30
T = 25 °C
50
200 (2)
300 (2)
-40 °C < T < 125 °C
T = 25 °C
100
Iio
Input offset current (Vout = VCC/2)
Common mode rejection ratio, 20
log (ΔVicm/ΔVio), Vic = 0 V to VCC,
Vout = VCC/2, RL > 1 MΩ
T = 25 °C
110
CMR
-40 °C < T < 125 °C
110
Avd
Large signal voltage gain, Vout =
0.5 V to (VCC - 0.5 V)
T = 25 °C
118
-40 °C < T < 125 °C
110
VOH
High-level output voltage
VOL
Low-level output voltage
Isink (Vout = VCC)
Iout
Isource (Vout = 0 V)
ICC
400 (2)
nV/°C
pA
600 (2)
-40 °C < T < 125 °C
122
dB
135
T = 25 °C
30
-40 °C < T < 125 °C
70
T = 25 °C
30
-40 °C < T < 125 °C
70
T = 25 °C
7
-40 °C < T < 125 °C
6
T = 25 °C
5
-40 °C < T < 125 °C
4
Supply current (per amplifier, Vout = T = 25 °C
VCC/2, RL > 1 MΩ)
-40 °C < T < 125 °C
μV
mV
8
mA
7
28
40
40
μA
AC performance
GBP
Gain bandwidth product
400
Fu
Unity gain frequency
300
ɸm
Phase margin
Gm
Gain margin
SR
(3)
Slew rate
RL = 10 kΩ, CL = 100 pF
kHz
55
Degrees
17
dB
0.17
V/μs
To 0.1 %, Vin = 1 Vp-p, RL = 10 kΩ, CL =
100 pF
50
μs
f = 1 kHz
60
f = 10 kHz
60
ts
Setting time
en
Equivalent input noise voltage
∫en
Low-frequency peak-to-peak input
noise
Bandwidth, f = 0.1 to 10 Hz
1.1
µVpp
Cs
Channel separation
f = 100 Hz
120
dB
tinit
Initialization time
T = 25 °C
50
-40 °C < T < 125 °C
100
DS9216 - Rev 11
nV/√Hz
μs
page 4/37
TSZ121, TSZ122, TSZ124
Electrical characteristics
1. See Section 5.5 Input offset voltage drift over temperature. Input offset measurements are performed on x100 gain configuration. The
amplifiers and the gain setting resistors are at the same temperature.
2. Guaranteed by design
3. Slew rate value is calculated as the average between positive and negative slew rates.
Table 4. Electrical characteristics at VCC+ = 3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to
VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
1
5
Unit
DC performance
Vio
ΔVio/ΔT
Iib
Input offset voltage
Input offset voltage drift (1)
Input bias current (Vout = VCC/2)
T = 25 °C
-40 °C < T < 125 °C
-40 °C < T < 125 °C
10
T = 25 °C
60
T = 25 °C
120
Input offset current (Vout = VCC/2)
Common mode rejection ratio, 20
log (ΔVicm/ΔVio), Vic = 0 V to VCC,
Vout = VCC/2, RL > 1 MΩ
T = 25 °C
115
CMR
-40 °C < T < 125 °C
115
Avd
Large signal voltage gain, Vout =
0.5 V to (VCC - 0.5 V)
T = 25 °C
118
-40 °C < T < 125 °C
110
VOH
High-level output voltage
Low-level output voltage
Isink (Vout = VCC)
Iout
Isource (Vout = 0 V)
ICC
30
200
400 (2)
pA
600 (2)
-40 °C < T < 125 °C
128
dB
135
T = 25 °C
30
-40 °C < T < 125 °C
70
T = 25 °C
30
-40 °C < T < 125 °C
mV
70
T = 25 °C
15
-40 °C < T < 125 °C
12
T = 25 °C
14
-40 °C < T < 125 °C
10
Supply current (per amplifier, Vout = T = 25 °C
VCC/2, RL > 1 MΩ)
-40 °C < T < 125 °C
nV/°C
(2)
300 (2)
-40 °C < T < 125 °C
Iio
VOL
μV
8
18
mA
16
29
40
40
μA
AC performance
GBP
Gain bandwidth product
400
Fu
Unity gain frequency
300
ɸm
Phase margin
Gm
Gain margin
SR
(3)
Slew rate
RL = 10 kΩ, CL = 100 pF
kHz
56
Degrees
19
dB
0.19
V/μs
To 0.1 %, Vin = 1 Vp-p, RL = 10 kΩ, CL =
100 pF
50
μs
f = 1 kHz
40
f = 10 kHz
40
ts
Setting time
en
Equivalent input noise voltage
∫en
Low-frequency peak-to-peak input
noise
Bandwidth, f = 0.1 to 10 Hz
0.8
µVpp
Cs
Channel separation
f = 100 Hz
120
dB
DS9216 - Rev 11
nV/√Hz
page 5/37
TSZ121, TSZ122, TSZ124
Electrical characteristics
Symbol
tinit
Parameter
Initialization time
Conditions
Min.
Typ.
T = 25 °C
50
-40 °C < T < 125 °C
100
Max.
Unit
μs
1. See Section 5.5 Input offset voltage drift over temperature. Input offset measurements are performed on x100 gain configuration. The
amplifiers and the gain setting resistors are at the same temperature.
2. Guaranteed by design
3. Slew rate value is calculated as the average between positive and negative slew rates.
Table 5. Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to
VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
1
5
Unit
DC performance
Vio
ΔVio/ΔT
Iib
Input offset voltage
Input offset voltage drift (1)
Input bias current (Vout = VCC/2)
T = 25 °C
-40 °C < T < 125 °C
-40 °C < T < 125 °C
10
T = 25 °C
70
T = 25 °C
140
Input offset current (Vout = VCC/2)
Common mode rejection ratio, 20
log (ΔVicm/ΔVio), Vic = 0 V to VCC,
Vout = VCC/2, RL > 1 MΩ
T = 25 °C
115
CMR
-40 °C < T < 125 °C
115
Supply voltage rejection ratio, 20
log (ΔVCC/ΔVio), VCC = 1.8 V to 5.5
V, Vout = VCC/2, RL > 1 MΩ
T = 25 °C
120
SVR
-40 °C < T < 125 °C
120
Avd
Large signal voltage gain, Vout =
0.5 V to (VCC - 0.5 V)
T = 25 °C
120
-40 °C < T < 125 °C
110
VOH
VOL
EMI rejection rate = -20 log
(VRFpeak/ΔVio)
High-level output voltage
Low-level output voltage
Isink (Vout = VCC)
Iout
Isource (Vout = 0 V)
ICC
30
200
400 (2)
pA
600 (2)
-40 °C < T < 125 °C
136
140
135
VRF = 100 mVp, f = 400 MHz
84
VRF = 100 mVp, f = 900 MHz
87
VRF = 100 mVp, f = 1800 MHz
90
VRF = 100 mVp, f = 2400 MHz
91
dB
T = 25 °C
30
-40 °C < T < 125 °C
70
T = 25 °C
30
-40 °C < T < 125 °C
70
T = 25 °C
15
-40 °C < T < 125 °C
14
T = 25 °C
14
-40 °C < T < 125 °C
12
Supply current (per amplifier, Vout = T = 25 °C
VCC/2, RL > 1 MΩ)
-40 °C < T < 125 °C
nV/°C
(2)
300 (2)
-40 °C < T < 125 °C
Iio
EMIRR (3)
μV
8
mV
18
mA
17
31
40
40
μA
AC performance
GBP
Fu
Gain bandwidth product
Unity gain frequency
DS9216 - Rev 11
400
RL = 10 kΩ, CL = 100 pF
300
kHz
page 6/37
TSZ121, TSZ122, TSZ124
Electrical characteristics
Symbol
ɸm
Parameter
Conditions
Phase margin
Gm
Gain margin
SR
(4)
Slew rate
Min.
Typ.
Max.
Unit
53
Degrees
19
dB
0.19
V/μs
To 0.1 %, Vin = 100 mVp-p, RL = 10 kΩ, CL
= 100 pF
10
μs
f = 1 kHz
37
f = 10 kHz
37
RL = 10 kΩ, CL = 100 pF
ts
Setting time
en
Equivalent input noise voltage
∫en
Low-frequency peak-to-peak input
noise
Bandwidth, f = 0.1 to 10 Hz
0.75
µVpp
Cs
Channel separation
f = 100 Hz
120
dB
tinit
Initialization time
T = 25 °C
50
-40 °C < T < 125 °C
100
nV/√Hz
μs
1. See Section 5.5 Input offset voltage drift over temperature. Input offset measurements are performed on x100 gain configuration. The
amplifiers and the gain setting resistors are at the same temperature.
2. Guaranteed by design
3. Tested on SC70-5 package
4. Slew rate value is calculated as the average between positive and negative slew rates.
DS9216 - Rev 11
page 7/37
TSZ121, TSZ122, TSZ124
Electrical characteristic curves
4
Electrical characteristic curves
Figure 3. Input offset voltage distribution at VCC = 5 V
Figure 2. Supply current vs. supply voltage
40
60
T=-40°C
30
40
25
T=125°C
20
15
20
10
VICM=VCC/2
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Supply voltage (V)
Figure 4. Input offset voltage distribution at VCC = 3.3 V
0
-5
-4
-3
-2
-1
0
1
2
3
4
5
Input offset voltage (µV)
Figure 5. Input offset voltage distribution at VCC = 1.8 V
60
60
T=25°C
Vcc=3.3V,
Vicm=1.65V
50
T=25°C
Vcc=1.8V,
Vicm=0.6V
50
40
Population
40
Population
30
10
5
30
20
10
30
20
10
0
-5
-4
-3
-2
-1
0
1
2
3
4
0
5
-5
Input offset voltage (µV)
Figure 6. Vio temperature co-efficient distribution
(-40 °C to 25 °C)
50
-4
-3
-2
-1
0
1
2
3
4
5
Input offset voltage (µV)
Figure 7. Vio temperature co-efficient distribution
(25 °C to 125 °C)
60
60
T=-40°C to 25°C
Vcc=5V,
Vicm=2.5V
50
T=25°C to 125°C
Vcc=5V,
Vicm=2.5V
40
Population
40
Population
T=25°C
Vcc=5V,
Vicm=2.5V
50
T=25°C
Population
Supply Current (µA)
35
30
20
30
20
10
10
0
0
-0.030 -0.025 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030
-0.030 -0.025 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030
Input offset voltage drift [µV/°C]
DS9216 - Rev 11
Input offset voltage drift [µV/°C]
page 8/37
TSZ121, TSZ122, TSZ124
Electrical characteristic curves
Figure 8. Input offset voltage vs. supply voltage
Figure 9. Input offset voltage vs. input common-mode at
VCC = 1.8 V
5
5
4
4
3
1
0
-1
T=25°C
T=-40°C
-2
1
T=-40°C
0
-1
T=25°C
-2
-3
-3
Vicm=Vcc/2
-4
-5
2.0
2.3
2.5
2.8
3.0
3.3
3.5
3.8
4.0
4.3
4.5
4.8
-4
0.0
0.2
0.4
0.6
Vio (µV)
T=25°C
T=-40°C
Vcc=2.7V
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
5
4
3
3
2
1
0
-1
-2
-3
-3
-4
-5
1.4
1.6
1.8
T=25°C
T=-40°C
Vcc=5.5V
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6
Vicm (V)
Figure 13. VOH vs. supply voltage
Figure 12. Input offset voltage vs. temperature
20
8
Output swing (mV from Vcc+)
10
Limit for TSZ121
6
Input offset voltage (µV)
1.2
T=125°C
Vicm (V)
4
2
0
-2
-4
-6
-8
Vcc=5V, Vicm=2.5V
-20
0
20
40
60
Temperature (°C)
DS9216 - Rev 11
1.0
Figure 11. Input offset voltage vs. input common-mode at
VCC = 5.5 V
T=125°C
-10
-40
0.8
Vicm (V)
Figure 10. Input offset voltage vs. input common-mode at
VCC = 2.7 V
5
4
3
3
2
1
0
-1
-2
-3
-3
-4
-5
Vcc=1.8V
-5
5.0
Vcc(V)
Vio (µV)
T=125°C
2
Vio (µV)
Vio (µV)
3
T=125°C
2
80
100
120
18
15
13
10
8
T=25°C
T=125°C
T=-40°C
5
3
Rl=10kΩ
Vicm=Vcc/2
0
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4
Vcc (V)
page 9/37
TSZ121, TSZ122, TSZ124
Electrical characteristic curves
Figure 14. VOL vs. supply voltage
Figure 15. Output current vs. output voltage at VCC = 1.8 V
30
18
20
15
13
T=125°C
10
T=25°C
8
T=-40°C
5
Output Current (mA)
Output swing (mV from Vcc-)
20
T=-40°C
10
T=125°C
0
T=25°C
-10
3
Rl=10kΩ
Vicm=Vcc/2
-30
0.0
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4
T=-40°C
Vcc=1.8V
0.3
0.5
Vcc (V)
Figure 16. Output current vs. output voltage at VCC = 5.5 V
0.8
1.0
1.3
Output Voltage (V)
1.5
1.8
Figure 17. Input bias current vs. common mode at
VCC = 5 V
30
100
T=-40°C
20
T=25°C
75
50
T=125°C
10
IiBp
25
IiB (pA)
Output Current (mA)
T=125°C
-20
0
0
-10
T=25°C
T=125°C
Figure 18. Input bias current vs. common mode at
VCC = 1.8 V
Vcc=5V
T=25°C
Figure 19. Input bias current vs. temperature at VCC = 5 V
100
75
75
50
50
IiB (pA)
IiBp
-25
IiBn
Vcc=1.8V
T=25°C
-75
0.3
0
-25
-50
-50
0.0
IiBp
25
0
DS9216 - Rev 11
IiBn
-100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Common Mode Voltage (V)
100
-100
-25
-75
T=-40°C
Vcc=5.5V
-30
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Output Voltage (V)
25
0
-50
-20
IiB (pA)
T=25°C
0.5 0.8 1.0 1.3 1.5
Common Mode Voltage (V)
1.8
IiBn
-75
-100
Vcc=5V
-25
0
25
50
75
Temperature (°C)
100
125
page 10/37
TSZ121, TSZ122, TSZ124
Electrical characteristic curves
Figure 20. Bode diagram at VCC = 1.8 V
Figure 21. Bode diagram at VCC = 2.7 V
250
250
T=125°C
50
0
0
-50
Phase
1
10
0
-50
Phase
-150
Vcc=1.8V, Vicm=0.9V, G=-100
Rl=10kΩ, Cl=100pF, Vrl=Vcc/2
-40
-250
1000
100
-100
1
10
Frequency (kHz)
0
100
50
0
-50
Phase
1
10
Phase
60
Gain
40
20
0
-20
0.01
0.1
Figure 24. Positive slew rate vs. supply voltage
-20
1000
100
0.0
0.2
T=-40°C
T=25°C
T=125°C
0.1
Rl=10kΩ, Cl=100pF
Vin: from 0.3V to Vcc-0.3V
SR calculated from 10% to 90%
2.0
2.5
3.0
3.5
4.0
4.5
Supply Voltage (V)
5.0
5.5
Negative Slew Rate (V/µs)
Positive Slew Rate (V/µs)
10
Figure 25. Negative slew rate vs. supply voltage
0.3
DS9216 - Rev 11
1
Frequency (kHz)
Frequency (kHz)
0.0
0
Vcc=5V, Vicm=2.5V,
Rl=10k Ω, Cl=100pF
-200
-250
1000
40
20
-150
100
80
60
-100
Vcc=5.5V, Vicm=2.75V, G=-100
Rl=10kΩ, Cl=100pF, Vrl=Vcc/2
-40
100
80
150
Gain (dB)
Gain (dB)
T=25°C
100
200
Phase (°)
Gain
T=-40°C
-20
-250
1000
100
Figure 23. Open loop gain vs. frequency
250
40
T=125°C
-200
Frequency (kHz)
Figure 22. Bode diagram at VCC = 5.5 V
20
-150
Vcc=2.7V, Vicm=1.35V, G=-100
Rl=10kΩ, Cl=100pF, Vrl=Vcc/2
-40
-200
50
0
-20
-100
100
T=25°C
T=125°C
Phase (°)
-20
150
Phase (°)
T=25°C
20
100
200
Gain
T=-40°C
150
Gain (dB)
T=-40°C
20
Gain (dB)
200
Gain
Phase (°)
40
40
T=125°C
-0.1
T=-40°C
T=25°C
-0.2
Rl=10kΩ, Cl=100pF
Vin: from Vcc-0.3V to 0.3V
SR calculated from 10% to 90%
-0.3
2.0
2.5
3.0
3.5
4.0
4.5
Supply Voltage (V)
5.0
5.5
page 11/37
TSZ121, TSZ122, TSZ124
Electrical characteristic curves
Figure 26. 0.1 Hz to 10 Hz noise
Figure 27. Noise vs. frequency
Equivalent Input Voltage Noise (nV/√Hz)
55
50
noise density (nV/√Hz)
45
40
35
30
25
20
15
Vcc = 5.5V
Vicm=Vcc/2
T=25°C
10
100m
Noise 0.1Hz_10Hz
equivalent to 0.75 µVpp
1
Frequency (Hz)
180
160
120
100
80
20 Vcc=5.5V
100
1k
Frequency (Hz)
35
160
30
Overshoot (%)
Vicm=Vcc/2
Vcc=5.5V
100
60
125°C
25°C
25
20
15
10
40
20
10k
Figure 29. Output overshoot vs. load capacitance
180
80
Vcc=1.8V
40
40
120
Vcc=3.3V
60
200
140
Vicm=Vcc/2
Tamb=25°C
140
10
Figure 28. Noise vs. frequency and temperature
Equivalent Input Voltage Noise (nV/√Hz)
200
Vcc=5.5V
100mVpp
Rl=10kΩ
5
-40°C
100
1k
Frequency (Hz)
0
10
10k
Figure 30. Small signal
100
Load capacitance (pF)
1000
Figure 31. Large signal
0.10
Output Voltage (V)
Output Voltage (V)
2.00
0.05
0.00
Vcc = 5.5V
Rl=10kΩ
Cl=100pF
T=25°C
-0.05
-0.10
-10
DS9216 - Rev 11
0
10
20
Time (µs)
0.00
Vcc = 5.5V
Rl=10kΩ
Cl=100pF
T=25°C
-2.00
30
-100
0
100
200 300
Time (µs)
400
500
600
page 12/37
TSZ121, TSZ122, TSZ124
Electrical characteristic curves
Figure 32. Positive overvoltage recovery at VCC = 1.8 V
Figure 33. Positive overvoltage recovery at VCC = 5 V
1.0
1.0
0.00
0.00
0.5
0.0
-0.10
-1.0
Vcc=1.8V, Vicm=0.9V, G=101
Rl=10kΩ, Cl=100pF
-2.0
0
50µ
-0.10
-1.5
-0.15
Vcc=5.5V, Vicm=2.75V, G=101
Rl=10kΩ, Cl=100pF
-2.5
-0.20
-100µ -50µ
Vout
-1.0
-2.0
-0.15
-1.5
-0.05
-0.5
Vin (V)
-0.5
Vin (V)
Vout
Vout (V)
-0.05
0.0
Vout (V)
Vin
Vin
0.5
-3.0
100µ 150µ 200µ 250µ 300µ 350µ 400µ
-0.20
-100µ -50µ
0
50µ
100µ 150µ 200µ 250µ 300µ 350µ 400µ
Time (s)
Time (s)
Figure 34. Negative overvoltage recovery at VCC = 1.8 V
Figure 35. Negative overvoltage recovery at VCC = 5 V
0.5
Vout
3.0
0.20
0.15
2.5
0.15
0.10
2.0
0.0
0.00
-0.05
-0.5
Vcc=1.8V, Vicm=0.9V, G=101
Rl=10kΩ, Cl=100pF
-1.0
-100µ -50µ
0
50µ
Vout (V)
0.05
Vin (V)
Vout (V)
Vin
0.20
1.0
0.00
0.5
-0.05
0.0
-0.10
-0.15
-0.5
-0.20
-1.0
100µ 150µ 200µ 250µ 300µ 350µ 400µ
Vcc=5.5V, Vicm=2.75V, G=101
Rl=10kΩ , Cl=100pF
-0.15
-0.20
-100µ -50µ
0
50µ
100µ 150µ 200µ 250µ 300µ 350µ 400µ
Time (s)
Time (s)
Figure 36. PSRR vs. frequency
Figure 37. Output impedance vs. frequency
2000
1800
+PSRR
Output Impedance (Ω)
-80
PSRR (dB)
0.05
-0.10
-100
-60
-PSRR
-40
-20
Vcc=5.5V, Vicm=2.75V, G=1
Rl=10kΩ, Cl=100pF, Vripple=100mVpp
0
10
100
1000
10000
Frequency (Hz)
DS9216 - Rev 11
1.5
0.10
Vout
Vin
Vin (V)
1.0
100000
1600
1400
Vcc=2.7V to 5.5V
Osc level=30mVRMS
G=1
Ta=25°C
1200
1000
800
600
400
200
1000000
100
1k
10k
100k
Frequency (Hz)
1M
page 13/37
TSZ121, TSZ122, TSZ124
Application information
5
Application information
5.1
Operation theory
The TSZ121, TSZ122, and TSZ124 are high precision CMOS devices. They achieve a low offset drift and no
1/f noise thanks to their chopper architecture. Chopper-stabilized amps constantly correct low-frequency errors
across the inputs of the amplifier.
Chopper-stabilized amplifiers can be explained with respect to:
•
•
5.1.1
Time domain
Frequency domain
Time domain
The basis of the chopper amplifier is realized in two steps. These steps are synchronized thanks to a clock
running at 400 kHz.
Figure 38. Block diagram in the time domain (step 1)
Chop 1
Chop 2
Vinp
Vinn
A2(f)
A1(f)
Filter
Vo ut
Figure 39. Block diagram in the time domain (step 2)
Chop 1
Chop 2
Vinp
Vinn
A1(f)
A2 (f)
Filter
Vo ut
Figure 38. Block diagram in the time domain (step 1) shows step 1, the first clock cycle, where Vio is amplified in
the normal way.
Figure 39. Block diagram in the time domain (step 2) shows step 2, the second clock cycle, where Chop1 and
Chop2 swap paths. At this time, the Vio is amplified in a reverse way as compared to step 1.
At the end of these two steps, the average Vio is close to zero.
The A2(f) amplifier has a small impact on the Vio because the Vio is expressed as the input offset and is
consequently divided by A1(f).
In the time domain, the offset part of the output signal before filtering is shown in Figure 40. Vio cancellation
principle.
Figure 40. Vio cancellation principle
Step 1
Step 1
S tep 1
Vio
Time
Vio
Step 2
DS9216 - Rev 11
Step 2
S tep 2
page 14/37
TSZ121, TSZ122, TSZ124
Operating voltages
The low pass filter averages the output value resulting in the cancellation of the Vio offset.
The 1/f noise can be considered as an offset in low frequency and it is canceled like the Vio, thanks to the chopper
technique.
5.1.2
Frequency domain
The frequency domain gives a more accurate vision of chopper-stabilized amplifier architecture.
Figure 41. Block diagram in the frequency domain
Vinn
Chop1
A(f)
Vi np
Chop2
A(f)
Filter
Vout
Vos + Vn
1
2
3
4
The modulation technique transposes the signal to a higher frequency where there is no 1/f noise, and
demodulate it back after amplification.
1.
According to Figure 41. Block diagram in the frequency domain, the input signal Vin is modulated once
(Chop1) so all the input signal is transposed to the high frequency domain.
2.
The amplifier adds its own error (Vio (output offset voltage) + the noise Vn (1/f noise)) to this modulated
signal.
3.
This signal is then demodulated (Chop2), but since the noise and the offset are modulated only once, they
are transposed to the high frequency, leaving the output signal of the amplifier without any offset and low
frequency noise. Consequently, the input signal is amplified with a very low offset and 1/f noise.
4.
To get rid of the high frequency part of the output signal (which is useless) a low pass filter is implemented.
To further suppress the remaining ripple down to a desired level, another low pass filter may be added externally
on the output of the TSZ121, TSZ122, or TSZ124 device.
5.2
Operating voltages
TSZ121, TSZ122, and TSZ124 devices can operate from 1.8 to 5.5 V. The parameters are fully specified for 1.8
V, 3.3 V, and 5 V power supplies. However, the parameters are very stable in the full VCC range and several
characterization curves show the TSZ121, TSZ122, and TSZ124 device characteristics at 1.8 V and 5.5 V.
Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to 125 ° C.
5.3
Input pin voltage ranges
TSZ121, TSZ122, and TSZ124 devices have internal ESD diode protection on the inputs. These diodes are
connected between the input and each supply rail to protect the input MOSFETs from electrical discharge.
If the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become conductive and excessive
current can flow through them. Without limitation this over current can damage the device.
In this case, it is important to limit the current to 10 mA, by adding resistance on the input pin, as described in
Figure 42. Input current limitation.
DS9216 - Rev 11
page 15/37
TSZ121, TSZ122, TSZ124
Rail-to-rail input
Figure 42. Input current limitation
TSZ121, TSZ122, TSZ124
5V
R
Vin
5.4
-
+
+
-
Vout
Rail-to-rail input
TSZ121, TSZ122, and TSZ124 devices have a rail-to-rail input, and the input common mode range is extended
from (VCC -) - 0.1 V to (VCC+) + 0.1 V.
5.5
Input offset voltage drift over temperature
The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset
value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and
the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be
compensated during production at application level. The maximum input voltage drift over temperature enables
the system designer to anticipate the effect of temperature variations.
The maximum input voltage drift over temperature is computed using Equation 1.
Equation 1
∆V io
V ( T ) – V io ( 25 °C)
= ma x io
∆T
T – 25 °C
Where T = -40 °C and 125 °C.
The TSZ121, TSZ122, and TSZ124 datasheet maximum value is guaranteed by measurements on a
representative sample size ensuring a Cpk (process capability index) greater than 1.3.
5.6
Rail-to-rail output
The operational amplifier output levels can go close to the rails: to a maximum of 30 mV above and below the rail
when connected to a 10 kΩ resistive load to VCC/2.
5.7
Capacitive load
Driving large capacitive loads can cause stability problems. Increasing the load capacitance produces gain
peaking in the frequency response, with overshoot and ringing in the step response. It is usually considered that
with a gain peaking higher than 2.3 dB an op amp might become unstable.
Generally, the unity gain configuration is the worst case for stability and the ability to drive large capacitive loads.
Figure 43. Stability criteria with a serial resistor at VDD = 5 V and Figure 44. Stability criteria with a serial resistor
at VDD = 1.8 V show the serial resistor that must be added to the output, to make a system stable. Figure 45. Test
configuration for Riso shows the test configuration using an isolation resistor, Riso.
DS9216 - Rev 11
page 16/37
TSZ121, TSZ122, TSZ124
PCB layout recommendations
Figure 44. Stability criteria with a serial resistor at
VDD = 1.8 V
Figure 43. Stability criteria with a serial resistor at
VDD = 5 V
Figure 45. Test configuration for Riso
+VCC
Riso
VIN
+
-VCC
5.8
Cload
VOUT
10 kΩ
PCB layout recommendations
Particular attention must be paid to the layout of the PCB, tracks connected to the amplifier, load, and power
supply. The power and ground traces are critical as they must provide adequate energy and grounding for all
circuits. Good practice is to use short and wide PCB traces to minimize voltage drops and parasitic inductance.
In addition, to minimize parasitic impedance over the entire surface, a multi-via technique that connects the
bottom and top layer ground planes together in many locations is often used.
The copper traces that connect the output pins to the load and supply pins should be as wide as possible to
minimize trace resistance.
5.9
Optimized application recommendation
TSZ121, TSZ122, and TSZ124 devices are based on chopper architecture. As they are switched devices, it is
strongly recommended to place a 0.1 µF capacitor as close as possible to the supply pins.
A good decoupling has several advantages for an application. First, it helps to reduce electromagnetic
interference. Due to the modulation of the chopper, the decoupling capacitance also helps to reject the small
ripple that may appear on the output.
TSZ121, TSZ122, and TSZ124 devices have been optimized for use with 10 kΩ in the feedback loop. With this, or
a higher value of resistance, these devices offer the best performance.
5.10
EMI rejection ration (EMIRR)
The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational
amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF
signal rectification.
The TSZ121, TSZ122, and TSZ124 have been specially designed to minimize susceptibility to EMIRR and show
an extremely good sensitivity. Figure 46. EMIRR on IN+ pin shows the EMIRR IN+ of the TSZ121, TSZ122, and
TSZ124 measured from 10 MHz up to 2.4 GHz.
DS9216 - Rev 11
page 17/37
TSZ121, TSZ122, TSZ124
Application examples
Figure 46. EMIRR on IN+ pin
120
EMIRR In+(dB)
100
80
60
40
20
0
10
Vcc=5.5V, G=1
Prf=-10dBm
100
1000
Frequency (MHz)
5.11
5.11.1
Application examples
Oxygen sensor
The electrochemical sensor creates a current proportional to the concentration of the gas being measured. This
current is converted into voltage thanks to R resistance. This voltage is then amplified by TSZ121, TSZ122, and
TSZ124 devices (see Figure 47. Oxygen sensor principle schematic).
Figure 47. Oxygen sensor principle schematic
R1
R2
VCC
I
-
O2_ sensor
+
+
Vout
-
TSZ121, TSZ122, TSZ124
The output voltage is calculated using Equation 2:
Equation 2
V ou t = ( I × R – V io ) ×
R2
+1
R1
As the current delivered by the O2 sensor is extremely low, the impact of the Vio can become significant with a
traditional operational amplifier. The use of the chopper amplifier of the TSZ121, TSZ122, or TSZ124 is perfect for
this application.
In addition, using TSZ121, TSZ122, or TSZ124 devices for the O2 sensor application ensures that the
measurement of O2 concentration is stable even at different temperature thanks to a very good ΔVio/ΔT.
5.11.2
Precision instrumentation amplifier
The instrumentation amplifier uses three op amps. The circuit, shown in Figure 48. Precision instrumentation
amplifier schematic, exhibits high input impedance, so that the source impedance of the connected sensor has no
impact on the amplification.
DS9216 - Rev 11
page 18/37
TSZ121, TSZ122, TSZ124
Application examples
Figure 48. Precision instrumentation amplifier schematic
TSZ12x
V1
R2
+
-
R4
Rf
+
Rg
TSZ12x
Vout
Rf
R1
+
V2
R3
TSZ12x
The gain is set by tuning the Rg resistor. With R1 = R2 and R3 = R4, the output is given by
Section 5.11.2 Equation 3.
Equation 3
Vout = V2 − V1
R4 2Rf
R2 ⋅ Rg + 1
The matching of R1, R2 and R3, R4 is important to ensure a good common mode rejection ratio (CMR).
5.11.3
Low-side current sensing
Power management mechanisms are found in most electronic systems. Current sensing is useful for protecting
applications. The low-side current sensing method consists of placing a sense resistor between the load and
the circuit ground. The resulting voltage drop is amplified using TSZ121, TSZ122, and TSZ124 devices (see
Figure 49. Low-side current sensing schematic).
Figure 49. Low-side current sensing schematic
C1
Rg1
I
Rf1
In
Rshunt
Rg2
Ip
5V
- +
+ -
Vout
TSZ121, TSZ122, TSZ124
Rf2
Vout can be expressed as follows:
Equation 4
V ou t = R shun t × I 1 –
R g2
R g2 + R f2
1+
R g2 × R f2
R f1
R f1
R f1
+ Ip
– l n × R f1 – V io 1 +
× 1+
R g2 + R f2
R g1
R g1
R g1
Assuming that Rf2 = Rf1 = Rf and Rg2 = Rg1 = Rg, Equation 4 can be simplified as follows:
Equation 5
V out = R shunt × I
Rf
Rf
– V io 1 +
+ R f × I io
Rg
Rg
The main advantage of using the chopper of the TSZ121, TSZ122, and TSZ124, for a low-side current sensing, is
that the errors due to Vio and Iio are extremely low and may be neglected.
DS9216 - Rev 11
page 19/37
TSZ121, TSZ122, TSZ124
Application examples
Therefore, for the same accuracy, the shunt resistor can be chosen with a lower value, resulting in lower power
dissipation, lower drop in the ground path, and lower cost.
Particular attention must be paid on the matching and precision of Rg1, Rg2, Rf1, and Rf2, to maximize the
accuracy of the measurement.
DS9216 - Rev 11
page 20/37
TSZ121, TSZ122, TSZ124
Package information
6
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
DS9216 - Rev 11
page 21/37
TSZ121, TSZ122, TSZ124
SC70-5 (or SOT323-5) package information
6.1
SC70-5 (or SOT323-5) package information
Figure 50. SC70-5 (or SOT323-5) package outline
SIDE VIEW
DIMENSIONS IN MM
GAUGE PLANE
COPLANAR LEADS
SEATING PLANE
TOP VIEW
Table 6. SC70-5 (or SOT323-5) mechanical data
Dimensions
Millimeters
Ref.
Min.
A
Typ.
0.80
A1
DS9216 - Rev 11
Inches
Max.
Min.
1.10
0.032
Typ.
0.043
0.10
A2
0.80
b
0.90
Max.
0.004
1.00
0.032
0.035
0.15
0.30
0.006
0.012
c
0.10
0.22
0.004
0.009
D
1.80
2.00
2.20
0.071
0.079
0.087
E
1.80
2.10
2.40
0.071
0.083
0.094
E1
1.15
1.25
1.35
0.045
0.049
0.053
e
0.65
0.025
e1
1.30
0.051
L
0.26
<
0°
0.36
0.46
0.010
8°
0°
0.014
0.039
0.018
8°
page 22/37
TSZ121, TSZ122, TSZ124
SOT23-5 package information
6.2
SOT23-5 package information
Figure 51. SOT23-5 package outline
Table 7. SOT23-5 mechanical data
Dimensions
Millimeters
Ref.
A
Min.
Typ.
Max.
Min.
Typ.
Max.
0.90
1.20
1.45
0.035
0.047
0.057
A1
DS9216 - Rev 11
Inches
0.15
0.006
A2
0.90
1.05
1.30
0.035
0.041
0.051
B
0.35
0.40
0.50
0.014
0.016
0.020
C
0.09
0.15
0.20
0.004
0.006
0.008
D
2.80
2.90
3.00
0.110
0.114
0.118
D1
1.90
0.075
e
0.95
0.037
E
2.60
2.80
3.00
0.102
0.110
0.118
F
1.50
1.60
1.75
0.059
0.063
0.069
L
0.10
0.35
0.60
0.004
0.014
0.024
K
0 degrees
10 degrees
0 degrees
10 degrees
page 23/37
TSZ121, TSZ122, TSZ124
DFN8 2 x 2 package information
6.3
DFN8 2 x 2 package information
Figure 52. DFN8 2 x 2 package outline
Table 8. DFN8 2 x 2 mechanical data
Dimensions
Millimeters
Ref.
A
Min.
Typ.
Max.
Min.
Typ.
Max.
0.51
0.55
0.60
0.020
0.022
0.024
A1
0.05
A3
0.002
0.15
0.006
b
0.18
0.25
0.30
0.007
0.010
0.012
D
1.85
2.00
2.15
0.073
0.079
0.085
D2
1.45
1.60
1.70
0.057
0.063
0.067
E
1.85
2.00
2.15
0.073
0.079
0.085
E2
0.75
0.90
1.00
0.030
0.035
0.039
e
L
ddd
DS9216 - Rev 11
Inches
0.50
0.225
0.325
0.020
0.425
0.08
0.009
0.013
0.017
0.003
page 24/37
TSZ121, TSZ122, TSZ124
DFN8 2 x 2 package information
Figure 53. DFN8 2 x 2 recommended footprint
DS9216 - Rev 11
page 25/37
TSZ121, TSZ122, TSZ124
MiniSO8 package information
6.4
MiniSO8 package information
Figure 54. MiniSO8 package outline
Table 9. MiniSO8 package mechanical data
Dimensions
Millimeters
Ref.
Min.
Typ.
A
Max.
Min.
Typ.
1.1
A1
0
A2
0.75
b
Max.
0.043
0.15
0
0.95
0.030
0.22
0.40
0.009
0.016
c
0.08
0.23
0.003
0.009
D
2.80
3.00
3.20
0.11
0.118
0.126
E
4.65
4.90
5.15
0.183
0.193
0.203
E1
2.80
3.00
3.10
0.11
0.118
0.122
e
L
0.85
0.65
0.40
0.60
0.0006
0.033
0.80
0.016
0.024
0.95
0.037
L2
0.25
0.010
ccc
0°
0.037
0.026
L1
k
DS9216 - Rev 11
Inches
8°
0.10
0°
0.031
8°
0.004
page 26/37
TSZ121, TSZ122, TSZ124
SO8 package information
6.5
SO8 package information
Figure 55. SO8 package outline
Table 10. SO8 package mechanical data
Dimensions
Millimeters
Ref.
Min.
Typ.
A
Max.
Min.
Typ.
1.75
0.25
Max.
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
L1
k
ccc
DS9216 - Rev 11
Inches
1.04
0°
0.040
8°
0.10
0°
8°
0.004
page 27/37
TSZ121, TSZ122, TSZ124
QFN16 3x3 package information
6.6
QFN16 3x3 package information
Figure 56. QFN16 3x3 package outline
DS9216 - Rev 11
page 28/37
TSZ121, TSZ122, TSZ124
QFN16 3x3 package information
Table 11. QFN16 3x3 mechanical data
Dimensions
Millimeters
Ref.
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.80
0.90
1.00
0.031
0.035
0.039
A1
0
0.05
0
A3
0.20
b
0.18
D
2.90
D2
1.50
E
2.90
E2
1.50
e
L
3.00
3.00
0.008
0.30
0.007
3.10
0.114
1.80
0.059
3.10
0.114
1.80
0.059
0.50
0.30
0.002
0.012
0.118
0.122
0.071
0.118
0.122
0.071
0.020
0.50
0.012
0.020
Figure 57. QFN16 3x3 recommended footprint
DS9216 - Rev 11
page 29/37
TSZ121, TSZ122, TSZ124
TSSOP14 package information
6.7
TSSOP14 package information
Figure 58. TSSOP14 package outline
aaa
Table 12. TSSOP14 package mechanical data
Dimensions
Millimeters
Ref.
Min.
Typ.
A
Max.
Min.
Typ.
1.20
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0089
D
4.90
5.00
5.10
0.193
0.197
0.201
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.176
e
L
k
aaa
1.00
0.65
0.45
L1
DS9216 - Rev 11
Inches
0.60
0.0256
0.75
0.018
1.00
0°
0.024
0.030
0.039
8°
0.10
0°
8°
0.004
page 30/37
TSZ121, TSZ122, TSZ124
Ordering information
7
Ordering information
Table 13. Order codes
Order code
Temperature range
Package
Packaging
Marking
TSZ121ICT
SC70-5
K44
TSZ121ILT
SΟΤ23-5
K143
TSZ122IQ2T
DFN8 2x2
K33
MiniSO8
K208
TSZ122IDT
SO8
TSZ122I
TSZ124IQ4T
QFN16 3x3
-40 to 125 °C
TSZ122IST
TSZ124IPT
TSSOP14
K193
Tape and reel
TSZ124I
TSZ121IYCT
(1)
SC70-5
K4J
TSZ121IYLT
(1)
SΟΤ23-5
K192
SO8
K192D
TSZ122IYST (1)
MiniSO8
K192
TSZ124IYPT (1)
TSSOP14
TSZ124IY
TSZ122IYDT (1)
-40 to 125 °C automotive grade
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001
& Q002 or equivalent. For qualification status detail, check "Maturity status link" on first page ("Quality & Reliability" tab on
www.st.com).
DS9216 - Rev 11
page 31/37
TSZ121, TSZ122, TSZ124
Revision history
Table 14. Document revision history
Date
Revision
16-Aug-2012
1
Changes
Initial release.
Added dual and quad products (TSZ122 and TSZ124 respectively)
Updated title
Added following packages: DFN8 2x2, MiniSO8, QFN16 3x3, TSSOP14
Updated Features
Added Benefits and Related products
Updated Description
Updated Table 1 (Rthja, ESD)
25-Apr-2013
2
Updated Table 3 (Vio, ∆Vio/∆T, CMR, Avd, ICC, en, and Cs)
Updated Table 4 (Vio, ∆Vio/∆T, CMR, ICC, en, and Cs)
Updated Table 5 (Vio, ∆Vio/∆T, CMR, SVR, EMIRR, ICC, ts, en, and Cs)
Updated curves of Section 3: Electrical characteristics
Added Section 4.7: Capacitive load
Small update Section 4.9: Optimized application recommendation (capacitor)
Added Section 4.10: EMI rejection ration (EMIRR)
Updated Table 10: Order codes
Added SO8 package for commercial part number TSZ122IDT
Related products: added hyperlinks for TSV71x and TSV73x products
Table 1: updated CDM information
11-Sep-2013
3
Figure 6, Figure 7: updated X-axes titles
Figure 12: updated X-axis and Y-axis titles
Figure 19: updated title
Figure 26: updated X-axis (logarithmic scale)
Figure 27 and Figure 28: updated Y-axis titles
Table 1: updated ESD information
23-May-2014
4
Table 5: added footnote 3
Table 10: Order codes: added automotive qualification footnotes 1 and 2; updated marking of TSZ122IST.
Updated disclaimer
Updated document layout
09-May-2016
5
07-Feb-2017
6
Table 3, Table 4, and Table 5: added parameter "Low-frequency peak-to-peak input noise" (∫en). Figure 26:
"0.1 Hz to 10 Hz noise": updated legend (0.75 μVpp instead of 0.2 μVpp)
12-Apr-2017
7
Updated footnote related to TSZ122IYDT in Table 13: "Order codes". Minor changes throughout the
document.
18-May-2017
8
Updated package outline drawing and mechanical data in Section 6.2: SOT23-5 package information.
12-Nov-2018
9
Updated Figure 43. Stability criteria with a serial resistor at VDD = 5 V and Figure 44. Stability criteria with a
serial resistor at VDD = 1.8 V
26-Feb-2019
10
Updated Figure 43. Stability criteria with a serial resistor at VDD = 5 V and Figure 44. Stability criteria with a
serial resistor at VDD = 1.8 V
07-Apr-2022
11
Added new TSZ121IYCT order code and updated footnote in Table 13. Order codes.
DS9216 - Rev 11
Table 13: "Order codes": added new automotive grade order code TSZ122IYD, updated footnotes of other
automotive grade order codes.
page 32/37
TSZ121, TSZ122, TSZ124
Contents
Contents
1
Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4
Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
5.1
6
7
Operation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.1
Time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.2
Frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3
Input pin voltage ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4
Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5
Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.6
Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.7
Capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.8
PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.9
Optimized application recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.10
EMI rejection ration (EMIRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.11
Application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.11.1
Oxygen sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.11.2
Precision instrumentation amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.11.3
Low-side current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
6.1
SC70-5 (or SOT323-5) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2
SOT23-5 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3
DFN8 2 x 2 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4
MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.5
SO8 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.6
QFN16 3x3 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.7
TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
DS9216 - Rev 11
page 33/37
TSZ121, TSZ122, TSZ124
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Absolute maximum ratings (AMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical characteristics at VCC+ = 1.8 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to
VCC/2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical characteristics at VCC+ = 3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to
VCC/2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to
VCC/2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SC70-5 (or SOT323-5) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SOT23-5 mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DFN8 2 x 2 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MiniSO8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SO8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
QFN16 3x3 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TSSOP14 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS9216 - Rev 11
. 3
. 3
. 4
. 5
. 6
22
23
24
26
27
29
30
31
32
page 34/37
TSZ121, TSZ122, TSZ124
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
DS9216 - Rev 11
Pin connections for each package (top view) . . . . . . . . . .
Supply current vs. supply voltage . . . . . . . . . . . . . . . . . .
Input offset voltage distribution at VCC = 5 V . . . . . . . . . . .
Input offset voltage distribution at VCC = 3.3 V . . . . . . . . .
Input offset voltage distribution at VCC = 1.8 V . . . . . . . . .
Vio temperature co-efficient distribution (-40 °C to 25 °C) . .
Vio temperature co-efficient distribution (25 °C to 125 °C) .
Input offset voltage vs. supply voltage . . . . . . . . . . . . . . .
Input offset voltage vs. input common-mode at VCC = 1.8 V
Input offset voltage vs. input common-mode at VCC = 2.7 V
Input offset voltage vs. input common-mode at VCC = 5.5 V
Input offset voltage vs. temperature. . . . . . . . . . . . . . . . .
VOH vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . .
VOL vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current vs. output voltage at VCC = 1.8 V . . . . . . . .
Output current vs. output voltage at VCC = 5.5 V . . . . . . . .
Input bias current vs. common mode at VCC = 5 V. . . . . . .
Input bias current vs. common mode at VCC = 1.8 V . . . . .
Input bias current vs. temperature at VCC = 5 V . . . . . . . .
Bode diagram at VCC = 1.8 V . . . . . . . . . . . . . . . . . . . . .
Bode diagram at VCC = 2.7 V . . . . . . . . . . . . . . . . . . . . .
Bode diagram at VCC = 5.5 V . . . . . . . . . . . . . . . . . . . . .
Open loop gain vs. frequency . . . . . . . . . . . . . . . . . . . . .
Positive slew rate vs. supply voltage . . . . . . . . . . . . . . . .
Negative slew rate vs. supply voltage . . . . . . . . . . . . . . .
0.1 Hz to 10 Hz noise . . . . . . . . . . . . . . . . . . . . . . . . . .
Noise vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Noise vs. frequency and temperature . . . . . . . . . . . . . . .
Output overshoot vs. load capacitance . . . . . . . . . . . . . .
Small signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Large signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Positive overvoltage recovery at VCC = 1.8 V . . . . . . . . . .
Positive overvoltage recovery at VCC = 5 V . . . . . . . . . . .
Negative overvoltage recovery at VCC = 1.8 V . . . . . . . . .
Negative overvoltage recovery at VCC = 5 V . . . . . . . . . . .
PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output impedance vs. frequency. . . . . . . . . . . . . . . . . . .
Block diagram in the time domain (step 1) . . . . . . . . . . . .
Block diagram in the time domain (step 2) . . . . . . . . . . . .
Vio cancellation principle . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram in the frequency domain . . . . . . . . . . . . . .
Input current limitation . . . . . . . . . . . . . . . . . . . . . . . . . .
Stability criteria with a serial resistor at VDD = 5 V . . . . . . .
Stability criteria with a serial resistor at VDD = 1.8 V. . . . . .
Test configuration for Riso . . . . . . . . . . . . . . . . . . . . . . .
EMIRR on IN+ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oxygen sensor principle schematic . . . . . . . . . . . . . . . . .
Precision instrumentation amplifier schematic. . . . . . . . . .
Low-side current sensing schematic . . . . . . . . . . . . . . . .
SC70-5 (or SOT323-5) package outline . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
. 8
. 8
. 8
. 8
. 8
. 8
. 9
. 9
. 9
. 9
. 9
. 9
10
10
10
10
10
10
11
11
11
11
11
11
12
12
12
12
12
12
13
13
13
13
13
13
14
14
14
15
16
17
17
17
18
18
19
19
22
page 35/37
TSZ121, TSZ122, TSZ124
List of figures
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
DS9216 - Rev 11
SOT23-5 package outline . . . . . . .
DFN8 2 x 2 package outline . . . . . .
DFN8 2 x 2 recommended footprint .
MiniSO8 package outline . . . . . . . .
SO8 package outline . . . . . . . . . . .
QFN16 3x3 package outline . . . . . .
QFN16 3x3 recommended footprint.
TSSOP14 package outline . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
23
24
25
26
27
28
29
30
page 36/37
TSZ121, TSZ122, TSZ124
IMPORTANT NOTICE – READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
DS9216 - Rev 11
page 37/37