0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VIPER013HS

VIPER013HS

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOP10_150MIL

  • 描述:

    VIPER013HS

  • 数据手册
  • 价格&库存
VIPER013HS 数据手册
VIPer01 Datasheet Energy saving off-line high voltage converter Features • • • • • • Figure 1. Basic application schematic Din ~ AC Rin • Cin R1 800 V avalanche-rugged power MOSFET allowing ultra wide VAC input range to be covered Embedded HV startup and sense-FET Current mode PWM controller Drain current limit protection (OCP) Wide supply voltage range: 4.5 V to 30 V Self-supply option allows the auxiliary winding or bias components to be removed Minimized system input power consumption: – Less than 10 mW @ 230 VAC in no-load condition – VCC DRAIN • C2 Cs FB COMP DIS R2 D2 GND C1 Lout D1 Product status link Vout Cout • • • • • Less than 400 mW @ 230 VAC with 250 mW load Jittered switching frequency reduces the EMI filter cost: – 30 kHz ± 7% (type X) – 60 kHz ± 7% (type L) – 120 kHz ± 7% (type H) Embedded E/A with 1.2 V reference Protections with automatic restart: overload/short-circuit (OLP), line or output OVP, max. duty cycle counter, VCC clamp Pulse-skip protection to prevent flux-runaway Embedded thermal shutdown Built-in soft-start for improved system reliability VIPER01 Product label Applications • • Low power SMPS for home appliances, building and home control, small industrial, consumers, lighting, motion control Low power adapters Description The device is a high voltage converter smartly integrating an 800 V avalancherugged power MOSFET with PWM current mode control. The power MOSFET with 800 V breakdown voltage allows the extended input voltage range to be applied, as well as the size of the DRAIN snubber circuit to be reduced. This IC meets the most stringent energy-saving standards as it has very low consumption and operates in pulse frequency modulation under light load. The design of flyback, buck and buck boost converters is supported. The integrated HV startup, sense-FET, error amplifier and oscillator with jitter allow a complete application to be designed with the minimum number of components. DS11423 - Rev 2 - April 2020 For further information contact your local STMicroelectronics sales office. www.st.com VIPer01 Pin setting 1 Pin setting Figure 2. Connection diagram GND DRAIN VCC DRAIN DIS DRAIN FB DRAIN COMP DRAIN GIPD091220151050MT Table 1. Pin description SSOP10 Name GND Ground and MOSFET source. Connection of source of the internal MOSFET and the return of the bias current of the device. All groundings of bias components must be tied to a trace going to this pin and kept separate from the pulsed current return. VCC Controller supply. An external storage capacitor has to be connected across this pin and GND. The pin, internally connected to the high voltage current source, provides the VCC capacitor charging current at startup and during steady-state operation, if the self-supply mode is selected. A small bypass capacitor (0.1 μF typ.) in parallel, placed as close as possible to the IC, is also recommended, for noise filtering purpose. DIS Disable. If its voltage exceeds the internal threshold VDIS_th (1.2 V typ.) for more than tDEB time (1 ms, typ.), the PWM is disabled in auto-restart mode. An input overvoltage protection can be built by connecting a voltage divider between DIS pin and the rectified mains. In case of non-isolated topologies, with the same principle an output overvoltage protection can be implemented. If the disable function is not required, DIS pin must be soldered to GND, which excludes the function. 4 FB Direct feedback. It is the inverting input of the internal transconductance E/A, which is internally referenced to 1.2 V with respect to GND. In case of non-isolated converter, the output voltage information is directly fed into the pin through a voltage divider. In case of primary regulation, the FB voltage divider is connected to the VCC. The E/A is disabled soldering FB to GND. 5 Compensation. It is the output of the internal E/A. A compensation network is placed between this pin and GND to achieve stability and good dynamic performance of the control loop. In case of secondary COMP feedback, the internal E/A must be disabled and the COMP directly driven by the optocoupler to control the DRAIN peak current setpoint. 6 to 10 MOSFET drain. The internal high voltage current source sinks current from this pin to charge the VCC capacitor at startup and during steady-state operation. These pins are mechanically connected to the DRAIN internal metal PAD of the MOSFET in order to facilitate heat dissipation. On the PCB, copper area must be placed under these pins in order to decrease the total junction-to-ambient thermal resistance thus facilitating the power dissipation. 1 2 3 DS11423 - Rev 2 Function page 2/36 VIPer01 Electrical and thermal ratings 2 Electrical and thermal ratings Table 2. Absolute maximum ratings Symbol Parameter (1) (2) Pin Min. Max. Unit VDS 6 to 10 Drain-to-source (ground) voltage 800 V IDRAIN 6 to 10 Pulsed drain current (pulse-width limited by SOA) 2 A VCC 2 VCC voltage -0.3 Internally limited V ICC 2 VCC internal Zener current (pulsed) VDIS 3 DIS voltage -0.3 4.25 (4) V VFB 4 FB voltage -0.3 4.25 (4) V -0.3 (4) V VCOMP 5 COMP voltage PTOT Power dissipation @ Tamb < 50 °C TJ Junction temperature operating range TSTG Storage temperature 45 (3) 5.25 mA 1 (5) W -40 150 °C -55 150 °C 1. Stresses beyond those listed absolute maximum ratings may cause permanent damage to the device. 2. Exposure to absolute-maximum-rated conditions for extended periods may affect the device reliability. 3. Pulse-width limited by maximum power dissipation, PTOT. 4. The AMR value is intended when VCC ≥ 5 V, otherwise the value VCC + 0.3 V has to be considered. 5. When mounted on a standard single side FR4 board with 100 mm² (0.1552 inch) of Cu (35 μm thick). Table 3. Thermal data Symbol RTH-JC RTH-JA RTH-JC RTH-JA Parameter Thermal resistance junction to case Max. value Unit (1) (Dissipated power = 1 W) Thermal resistance junction ambient (1) (Dissipated power = 1 W) Thermal resistance junction to case (2) (Dissipated power = 1 W) Thermal resistance junction ambient (2) (Dissipated power = 1 W) 10 °C/W 155 °C/W 5 °C/W 95 °C/W 1. When mounted on a standard, single side FR4 board with minimum copper area. 2. When mounted on a standard, single side FR4 board with 100 mm2 of Cu (35 µm thick). DS11423 - Rev 2 page 3/36 VIPer01 Electrical and thermal ratings Figure 3. RthJA/(RthJA@A=100 mm²) RthJA /(RthJA @A=100 mm²) GIPD080120161117IDL 1.75 1.5 1.25 1 0.75 0.5 0.25 0 0 25 50 75 100 125 150 175 A (mm²) Table 4. Avalanche characteristics Symbol IAR Parameter Avalanche current Test conditions Pulse-width limited by TJmax Repetitive and non-repetitive. Min. Typ. Max. Unit 0.8 A 1 mJ L = 1 mH EAS Single pulse avalanche energy (1) IAS = 0.8 A VDS = 50 V RG = 47 Ω Starting TJ = 25 °C 1. Parameter derived by characterization. DS11423 - Rev 2 page 4/36 VIPer01 Electrical characteristics 2.1 Electrical characteristics Tj = -40 to 125 °C, VCC = 9 V (unless otherwise specified). Table 5. Power section Symbol Parameter Test conditions Min. Typ. Max. Unit IDRAIN = 1 mA VBVDSS Breakdown voltage VCOMP = GND 800 V TJ = 25 °C VDS = 400 V IDSS Drain-source leakage current VCOMP = GND 1 TJ = 25 °C µA VDRAIN = max. rating IOFF OFF-state drain current VCOMP = GND 45 TJ = 25 °C IDRAIN = 360 mA RDS(on) Static drainsource ONresistance 30 TJ = 25 °C Ω IDRAIN = 360 mA 60 TJ = 125 °C Table 6. Supply section Symbol Parameter Test conditions Min. Typ. Max. Unit High voltage start-up current source VBVDSS_SU Breakdown voltage of startup MOSFET VHV_START Drain-source start-up voltage TJ = 25 °C 800 V 18 V MΩ VDRAIN = 400 V RG Start-up resistor VDRAIN = 600 V 22 30 38 1.4 1.9 2.4 3.5 4.5 5.5 7.6 8.8 10 VFB > VFB_REF ICH1 VCC charging current at startup ICH2 VCC charging current at startup ICH3 (1) DS11423 - Rev 2 Max. VCC charging current in selfsupply VDRAIN = 100 V VCC = 0 V VFB > VFB_REF VDRAIN = 100 V VCC = 6 V mA VFB > VFB_REF VDRAIN =100 V VCC = 6 V page 5/36 VIPer01 Electrical characteristics Symbol Parameter Test conditions Min. Typ. Max. Unit IC supply and consumptions VCC Operating voltage range VGND = 0 V 4.5 VCCclamp Clamp voltage ICC = Iclamp_max 30 Iclamp max Clamp shutdown current (2) tclamp max Clamp time before shutdown VCCon VCC start-up threshold VCSon HV current source turn-on threshold VCCoff UVLO Iq Quiescent current 32.5 30 V 35 V 30 VFB = 1.2 V VDRAIN = 400 V VCC falling VFB = 1.2 V VDRAIN = 400 V mA 325 500 675 µs 7.5 8 8.5 V 4 4.25 4.5 V 3.75 4 4.25 V 0.3 0.45 mA 0.75 1.1 0.85 1.25 1 1.5 Not switching VFB > VFB_REF VDS = 150 V VCOMP = 1.2 V FOSC = 30 kHz Operating supply current, switching ICC VDS = 150 V VCOMP = 1.2 V mA FOSC = 60 kHz VDS = 150 V VCOMP = 1.2 V FOSC = 120 kHz 1. Current supplied during the main MOSFET OFF time only. 2. Parameter assured by design and characterization. Table 7. Controller section Symbol Parameter Test conditions Min. Typ. Max. Unit E/A DS11423 - Rev 2 VFB_REF Reference voltage 1.175 1.2 1.225 V VFB_DIS E/A disable voltage 150 180 210 mV IFB PULL UP Pull-up current 0.9 1 1.1 µA GM Transconductance 350 500 650 µA/V ICOMP1 Max. source current 65 100 135 µA ICOMP2 Max. sink current 70 105 140 µA VCOMP = 1.5 V VFB > VFB_REF VCOMP = 1.5 V VFB = 0.5 V VFB = 2 V page 6/36 VIPer01 Electrical characteristics Symbol Parameter Test conditions Min. Typ. Max. Unit VCOMP = 1.5 V RCOMP(DYN) HCOMP Dynamic resistance ΔVCOMP/ΔIDRAIN VCOMP = 2.7 V 50 58 66 VIPer011* 17 23 29 VIPer012* 9 12 15 VIPer013* 6.4 8.5 10.6 VFB = GND kΩ V/A VCOMPH Current limitation threshold 3 V VCOMPL PFM threshold 0.8 V OLP and timing TJ = 25 °C VIPer011* IDLIM Drain current limitation TJ = 25 °C VIPer012* TJ = 25 °C VIPer013* I2f Power coefficient IDLIM_TYP 2x FOSC_TYP 114 120 126 228 240 252 342 360 378 0.9 ·I2f I2f 1.1 ·I2f 23 35 47 45 65 85 60 80 100 1.15 1.2 1.25 V mA A2·kHz TJ = 25 °C VCOMP = VCOMPL VIPer011*(1) IDLIM_PFM TJ = 25 °C Drain current VCOMP = VCOMPL limitation at light load VIPer012*(1) mA TJ = 25 °C VCOMP = VCOMPL VIPer013*(1) VCC = 9 V VDISth Disable threshold voltage VCOMP = 1 V VFB = VFB_REF tDIS Debounce time before DIS protection tripping 0.65 1 1.35 ms tDIS_RESTART Restart time after DIS protection tripping 325 500 675 ms tOVL Overload delay time 45 50 55 ms 90 100 110 180 200 220 360 400 440 VIPer01*X FOSC = FOSC MIN tOVL_MAX Max. overload delay time VIPer01*L FOSC = FOSC MIN VIPer01*H DS11423 - Rev 2 ms page 7/36 VIPer01 Electrical characteristics Symbol Parameter tOVL_MAX Max. overload delay time tSS Soft-start time tON_MIN Minimum turn-on time Test conditions Min. Typ. Max. FOSC = FOSC MIN Unit ms 5 8 11 ms 360 ns s VCC = 9 V VCOMP = 1 V 250 VFB = VFB_REF tRESTART Restart time after fault 0.65 1 1.35 27 30 33 54 60 66 108 120 132 13.5 15 16.5 Oscillator TJ = 25 °C VIPer01*X FOSC Switching frequency TJ = 25 °C VIPer01*L TJ = 25 °C VIPer01*H kHz FOSC_MIN Minimum switching frequency TJ = 25 °C (2) FD Modulation depth (3) ±7 FOSC % FM Modulation frequency (3) 260 Hz DMAX Max. duty cycle (3) 70 (3) 150 80 kHz % Thermal shutdown TSD Thermal shutdown temperature 160 °C 1. See Section 4.10 Pulse frequency modulation. 2. See Section 4.7 Pulse-skipping. 3. Parameter assured by design and characterization. DS11423 - Rev 2 page 8/36 VIPer01 Typical electrical characteristics 3 Typical electrical characteristics Figure 4. IDLIM vs TJ IDLIM (norm) GIPD101220151341IDL Figure 5. FOSC vs TJ FOSC (norm) GIPD101220151343FOS IDLIM /(IDLIM @25°C) FOSC /(FOSC @25°C) 1.05 1.05 1 1 0.95 0.95 0.9 -50 -25 0 25 50 75 100 125 Tj (°C) 0.9 -50 -25 Figure 6. VHV_START vs TJ VHV_START (norm) GIPD101220151344VHV 1 1 0.95 0.975 50 75 100 125 Tj (°C) Figure 8. Quiescent current Iq vs TJ Iq (norm) GIPD101220151345QIQ GIPD101220151344VRE 0.95 -50 -25 0 1 1 0.95 0.95 DS11423 - Rev 2 50 75 100 125 Tj (°C) 75 100 125 Tj (°C) GIPD101220151346ICC ICC /(ICC @25°C) 1.05 25 50 ICC (norm) 1.05 0 25 Figure 9. Operating current ICC vs TJ Iq /(Iq @25°C) 0.9 -50 -25 75 100 125 Tj (°C) VFB_REF /(VFB_REF @25°C) 1.025 25 50 VFB_REF (norm) 1.05 0 25 Figure 7. VFB_REF vs TJ VHV_START /(VHV_START @25°C) 0.9 -50 -25 0 0.9 -50 -25 0 25 50 75 100 125 Tj (°C) page 9/36 VIPer01 Typical electrical characteristics Figure 10. ICH1 vs TJ ICH1 (norm) 1.4 GIPD101220151346I1T ICH1 /(ICH1 @25°C) 1.3 1.2 Figure 11. ICH1 vs VDRAIN ICH1 (norm) 1.1 GIPD090320161204I1V ICH1 /(ICH1 @VDRAIN =100V) 1 1.1 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.5 -50 -25 0 25 50 75 100 125 Tj (°C) 0.6 0 Figure 12. ICH2 vs TJ ICH2 (norm) GIPD101220151347I2T 1.15 ICH2 /(ICH2 @25°C) 100 200 300 400 500 600 700 VDRAIN (V) Figure 13. ICH2 vs VDRAIN ICH2 (norm) 1.1 GIPD090320161213I2V ICH2 /(ICH2 @VDRAIN =100V) 1.1 1 1.05 1 0.9 0.95 0.8 0.9 0.7 0.85 0.8 -50 -25 0 25 50 75 100 125 Tj (°C) 0.6 0 Figure 14. ICH3 vs TJ ICH3 (norm) GIPD101220151348I3T 1.15 ICH3 /(ICH3 @25°C) 100 200 300 400 500 600 700 VDRAIN (V) Figure 15. ICH3 vs VDRAIN ICH3 (norm) 1.1 GIPD090320161214I3V ICH3 /(ICH3 @VDRAIN = 100V) 1.1 1 1.05 1 0.9 0.95 0.8 0.9 0.7 0.85 0.8 -50 -25 DS11423 - Rev 2 0 25 50 75 100 125 Tj (°C) 0.6 0 100 200 300 400 500 600 700 VDRAIN (V) page 10/36 VIPer01 Typical electrical characteristics Figure 16. GM vs TJ GM (norm) GIPD101220151350GMT 1.15 Figure 17. ICOMP vs TJ ICOMP (norm) GIPD101220151351ICO ICOMP /(ICOMP @25°C) GM /(GM @25°C) 1.05 1.1 1.05 1 1 0.95 0.9 0.95 0.85 0.8 -50 -25 0 25 50 75 100 125 Tj (°C) Figure 18. RDS(on) vs TJ RDS(on) (norm) 2.25 GIPD101220151352RDS RDS(on) /(RDS(on) @25°C) 0.9 -50 -25 0 25 50 75 100 125 Tj (°C) Figure 19. Static drain-source on-resistance RDS(on) (norm) GIPD101220151353SDS RDS(on) /(RDS(on) @IDRAIN =360mA) 1.25 2 1.75 1 1.5 Tj=25 °C 0.75 1.25 1 0.5 0.75 0.5 0.25 0.25 0 -50 -25 0 25 50 75 100 125 Tj (°C) 0 0 50 100 150 200 250 300 350 IDRAIN (mA) Figure 20. Power MOSFET capacitance variation vs VDS @ VGS=0, f=1MHz DS11423 - Rev 2 page 11/36 VIPer01 Typical electrical characteristics Figure 21. VBVDSS vs TJ VBVDSS (norm) Figure 22. Output characteristic IDRAIN (mA) 1000 GIPD101220151354VBV VBVDSS /(VBVDSS @25°C) GIPD101220151355OUT Tj = -40°C 900 1.1 800 700 1.05 Tj = 25°C 600 500 1 Tj = 125°C 400 300 0.95 200 0.9 -50 -30 -10 10 30 50 70 90 110 130 Tj (°C) Figure 23. SOA SSOP10 package IDRAIN (A) (o n) is =Ron =10µs =100µs =1ms DS 10 -2 10 -3 4 6 8 10 12 14 16 18 VDS (V) EAS (mJ) 1 GIPD101220151356EAS 0.9 0.8 0.7 0.6 0.5 0.4 10 -4 10 -5 2 Figure 24. Maximum avalnche energy vs TJ GIPD080120161340SOA O lim per ite atio d n by in m thi ax s . R are a 10 -1 100 0 0 Tj=150°C TC =25°C Single pulse 10 -6 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 0.3 0.2 VDS (V) 0.1 0 0 20 40 60 80 100 120 140 Tj (°C) * When mounted on a standard single side FR4 board with 50 mm2 (0.077 sq in) of Cu (35 μm thick). DS11423 - Rev 2 page 12/36 VIPer01 General description 4 General description 4.1 Block diagram Figure 25. Block diagram VCC IHV ICH* REGULATOR 4V HV S ta rt up HV DIS ABLE LOGIC Internal supply bus COMP DRAIN Vz RG LIGHT LOAD P FM + FB - + + - TURN ON LOGIC IDLIM re f E/A VFB_REF S Q R LEB OCP tOVL filte r OCP + THERMAL DIODE (OTP ) J ITTERED OS CILLATOR S OFT S TART MAX DUTY UVLO VCC VCC CLAMP PWM P ROTECTION LOGIC tRES TART DIS LOGIC tRES T_DIS tDIS filte r OTP TS D LOGIC tRES TART R S ENS E GND DIS GIPD091220151100MT 4.2 Typical power capability Table 8. Typical power Vin: 230 VAC Adapter (1) 7W Open frame 8W Vin: 85-265 VAC (2) Adapter 4W (1) Open frame (2) 4.5 W 1. Typical continuous power in non-ventilated enclosed adapter measured at 50 °C ambient. 2. Maximum practical continuous power in an open frame design at 50 °C ambient, with adequate heat-sinking. 4.3 Primary MOSFET The primary switch is implemented with an avalanche-rugged N-channel MOSFET with minimum breakdown voltage 800 V, VBVDSS, and maximum on-resistance of 20 Ω, RDS(on). The sense-FET is embedded and it allows a virtually lossless current sensing. The MOSFET is embedded and it allows the HV voltage start-up operation. The MOSFET gate driver controls the gate current during both turn-on and turn-off in order to minimize EMI. Under UVLO conditions the embedded pull-down circuit holds the gate low in order to ensure that the MOSFET cannot be turned on accidentally. 4.4 High voltage startup The embedded high voltage startup includes both the 800 V start-up FET, whose gate is biased through the resistor RG, and the switchable HV current source, delivering the current IHV. The major portion of IHV, (ICH), charges the capacitor connected to VCC. A minor portion is sunk by the controller block. DS11423 - Rev 2 page 13/36 VIPer01 High voltage startup At startup, as the voltage across the DRAIN pin exceeds the VHV_START threshold, the HV current source is turned on, charging linearly the CS capacitor. At the very beginning of the startup, when Cs is fully discharged, the charging current is low, ICH1, in order to avoid IC damaging in case VCC is accidentally shorted to GND. As VCC exceeds 1 V, ICH is increased to ICH2 in order to speed up the charging of CS. As VCC reaches the start-up threshold VCCon (8 V typ.) the chip starts operating, the primary MOSFET is enabled to switch, the HV current source is disabled and the device is powered by the energy stored in the CS capacitor. In steady-state the IC supports two different kind of supplies: self-supply and external supply, as shown in Figure 27. IC supply modes: self-supply and external supply. Figure 26. IC supply modes: self-supply and external supply External supply Self -supply VAux VOUT VCC ICH VCC ICH VCC ICH CS CS from the output CS from auxiliary winding GIPD160720151024MT In self-supply only one capacitor CS is connected to the VCC and the device is supplied by the energy stored in CS. After the IC startup, due to its internal consumption, the VCC decays to VCCson (4.25 V, typ.) and the HV current source is turned on delivering the current ICH3 until VCC is recharged to VCCon. The HV current source is reactivated when VCC decays to VCCson again. The ICH3 is supplied during the switching OFF time only. In external supply the HV current source is always kept off by maintaining the VCC above VCSon. This can be obtained through a transformer auxiliary winding or a connection from the output, the latter in case of non-isolated topology only. In this case the residual consumption is given by the power dissipated on RG, calculated as follows: Pd = V 2 INDC RG At the nominal input voltage, 230 VAC, the typical consumption (RG = 30 MΩ) is 3.5 mW and the worst-case consumption (RG = 22 MΩ) is 4.8 mW. When the IC is disconnected from the mains, or there is a mains interruption, for some time the converter keeps on working, powered by the energy stored in the input bulk capacitor. When it is discharged below a critical value, the converter is no longer able to keep the output voltage regulated. During the power down, when the DRAIN voltage becomes too low, the HV current source (IHV) remains off and the IC is stopped as soon as the VCC drops below the UVLO threshold, VCCoff. DS11423 - Rev 2 page 14/36 VIPer01 Soft-start Figure 27. Power-ON and power-OFF VOUT Regulated output Output regulation is lost VCC Converter startup HV current source disabled * dashed line: self supply option HV current source is switched off because of a too low VDRAIN VCCon VCSon UVLO VCCoff ICH2 1V ICH1 HV current source ( ICH3 ) enabled if VCC decays to VCSon VDRAIN Power-off VIN decreases VIN_DC Output regulation is lost VHV_START Power-on HV current source enabled Time GIPD210420151352MT 4.5 Soft-start The internal soft-start function of the device progressively increases the cycle-by-cycle current limitation set point from zero up to IDLIM in 8 steps. The soft-start time, tSS, is internally set at 8 ms. This function is activated at any attempt of converter startup and at any restart after a fault event. The feature protects the system at the startup when the output load occurs like a short-circuit and the converter works at its maximum drain current limitation. Figure 28. Soft startup Soft start zone with growing IDLIM value I DRAIN t SS Steady state IDLIM time VCOMP VCOMPH time VOUT VOUT time GIPD280420151230MT DS11423 - Rev 2 page 15/36 VIPer01 Oscillator 4.6 Oscillator The IC embeds a fixed frequency oscillator with jittering feature. The switching frequency is modulated by approximately ± 7% kHz FOSC at 260 Hz rate. The purpose of the jittering is to get a spread-spectrum action that distributes the energy of each harmonic of the switching frequency over a number of frequency bands, having the same energy on the whole but smaller amplitudes. This helps to reduce the conducted emissions, especially when measured with the average detection method or, which is the same, to pass the EMI tests with an input filter of smaller size than that needed in absence of jittering feature. Three options with different switching frequencies, FOSC, are available: 30 (X type), 60 (L type) and 120 kHz (H type). 4.7 Pulse-skipping The IC embeds a pulse-skip circuit that operates in the following ways: • each time the DRAIN peak current exceeds IDLIM level within tON_MIN, the switching cycle is skipped. The cycles can be skipped until the minimum switching frequency is reached, FOSC_MIN (15 kHz). • each time the DRAIN peak current does not exceed IDLIM within tON_MIN, a switching cycle is restored. The cycles can be restored until the nominal switching frequency is reached, FOSC (30 or 60 or 120 kHz). If the converter is operated at FOSC_MIN, the IC is turned off after the time tOVL_MAX (100 ms or 200 ms or 400 ms typ., depending on FOSC) and then automatically restarted with soft-start phase, after the time tRESTART (1 s, typ.). The protection is intended to avoid the so called "flux-runaway" condition often present at converter startup and due to the fact that the primary MOSFET, which is turned on by the internal oscillator, cannot be turned off before than the minimum on-time. During the on-time, the inductor is charged by the input voltage and if it cannot be discharged by the same amount during the off-time, in every switching cycle there is an increase of the average inductor current, that can reach dangerously high values until the output capacitor is not charged enough to ensure the inductor discharge rate needed for the volt-second balance. This condition may happen at converter startup, because of the low output voltage. In the following Figure 31. Pulse-skipping during startup the effect of pulse-skipping feature on the DRAIN peak current shape is shown (solid line), compared with the DRAIN peak current shape when pulse-skipping feature is not implemented (dashed line). Providing more time for cycle-by-cycle inductor discharge when needed, this feature is effective by keeping low the maximum DRAIN peak current avoiding the flux-runaway condition. Figure 29. Pulse-skipping during startup VOUT VOUT_nom time IDRAIN Without pulse skipping With pulse skipping IDLIM time Skipped cycles GIPD280420151222MT DS11423 - Rev 2 page 16/36 VIPer01 Direct feedback 4.8 Direct feedback The IC embeds a transconductance type error amplifier (E/A) whose inverting input, ground reference and output are FB and COMP, respectively. The internal reference voltage of the E/A is VFB_REF (1.2 V typical value referred to GND). In non-isolated topologies this tightly regulates positive output voltages through a simple voltage divider applied to the output voltage terminal, FB and GND. The E/A output is scaled down and fed into the PWM comparator, where it is compared to the voltage across the sense resistor in series to the sense-FET, thus setting the cycle-by-cycle drain current limitation. An R-C network connected on the output of the E/A (COMP) is usually used to stabilize the overall control loop. The FB is provided with an internal pull-up to prevent a wrong IC behavior when the pin is accidentally left floating. The E/A is disabled if the FB voltage is lower than VFB_DIS (200 mV, typ.). 4.9 Secondary feedback When a secondary feedback is required, the internal E/A has to be disabled shorting FB to GND (VFB < VFB_DIS). With this setting, COMP is internally connected to a pre-regulated voltage through the pull-up resistor RCOMP(DYN) and the voltage across COMP is set by the current sunk. This allows the output voltage value to be set through an external error amplifier (TL431 or similar) placed on the secondary side, whose error signal is used to set the DRAIN peak current setpoint corresponding to the output power demand. If isolation is required, the error signal must be transferred through an optocoupler, with the phototransistor collector connected across COMP and GND. 4.10 Pulse frequency modulation If the output load is decreased, the feedback loop reacts lowering the VCOMP voltage, which reduces the DRAIN peak current setpoint, down to the minimum value of IDLIM_PFM when the VCOMPL threshold is reached. If the load is furtherly decreased, the DRAIN peak current value is maintained at IDLIM_PFM and some PWM cycles are skipped. This kind of operation is referred to as “pulse frequency modulation” (PFM), the number of the skipped cycles depends on the balance between the output power demand and the power transferred from the input. The result is an equivalent switching frequency which can go down to some hundreds Hz, thus reducing all the frequency-related losses. This kind of operation, together with the extremely low IC quiescent current, allows very low input power consumption in no-load and light load, while the low DRAIN peak current value, IDLIM_PFM, prevents any audible noise which could arise from low switching frequency values. When the load is increased, VCOMP increases and PFM is exited. VCOMP reaches its maximum at VCOMPH and corresponding to that value, the DRAIN current limitation (IDLIM) is reached. 4.11 Overload protection To manage the overload condition, the IC embeds the following main blocks: the OCP comparator to turn off the power MOSFET when the drain current reaches its limit (IDLIM) , the up and down OCP counter to define the turnoff delay time in case of continuous overload (tOVL = 50 ms typ.) and the timer to define the restart time after protection tripping (tRESTART = 1 s typ.). In case of short-circuit or overload, the control level on the inverting input of the PWM comparator is greater than the reference level fed into the inverting input of the OCP comparator. As a result, the cycle-by-cycle turn-off of the power switch is triggered by the OCP comparator instead of PWM comparator. Every cycle where this condition is met, the OCP counter is incremented and if the fault condition lasts longer than tOVL (corresponding to the counter end-of-count), the protection is tripped, the PWM is disabled for tRESTART, then it resumes switching with soft-start and, if the fault is still present, it is disabled again after tOVL. The OLP management prevents IC from operating indefinitely at IDLIM and the low repetition rate of the restart attempts of the converter avoids IC overheating in case of repeated fault events. After the fault removal, the IC resumes working normally. If the fault is removed earlier than the protection tripping (before tOVL), the tOVL-counter is decremented on a cycle-by-cycle basis down to zero and the protection is not tripped. If the fault is removed during tRESTART, the IC waits for the tRESTART period has elapsed before resuming switching. DS11423 - Rev 2 page 17/36 VIPer01 Max. duty cycle counter protection In fault condition the VCC ranges between VCSon and VCCon levels, due to the periodical activation of the HV current source recharging the VCC capacitor. Figure 30. Short-circuit condition VCC Overload removed Overload occurs VCCon VCSon IDRAIN time IDLIM tOVL tOVL time tRESTART tRESTART tSS tSS GIPD270420151208MT 4.12 Max. duty cycle counter protection The IC embeds a max. duty cycle counter, which disables the PWM if the MOSFET is turned off by max. duty cycle (70% min., 80% max.) for ten consecutive switching cycles. After protection tripping, the PWM is stopped for tRESTART and then activated again with soft-start phase until the fault condition is removed. In some cases (i.e. breaking of the loop) even if VCOMP is saturated high, the OLP cannot be triggered because at every switching cycle the PWM is turned off by maximum duty cycle before than DRAIN peak current reaches the IDLIM setpoint. As a result, the output voltage VOUT can increase without control by keeping a value much higher than the nominal one with the risk for the output capacitor, the output diode and the IC itself. The max. duty cycle counter protection avoids this kind of failures. 4.13 VCC clamp protection This protection can occur when the IC is supplied by auxiliary winding or diode from the output voltage, when an output overvoltage produces an increase of VCC. If VCC reaches the clamp level VCCclamp (30 V, min. referred to GND) the current injected into the pin is monitored and if it exceeds the internal threshold Iclamp_max (30 mA, typ.) for more than tclamp_max (500 µs, typ.), the PWM is disabled for tRESTART (1 s, typ.) and then activated again in soft-start phase. The protection is disabled during the soft-start time. 4.14 Disable function When the voltage across the pin is externally pulled above VDIS_th (1.2 V typ.) for more than tDEB (for instance by a voltage divider connected to some higher voltages), the PWM is disabled. If the voltage divider on the DIS pin is connected to the rectified mains, as shown in Figure 33. Connection for input overvoltage protection (isolated or non-isolated topologies), an input overvoltage protection can be built. DS11423 - Rev 2 page 18/36 VIPer01 Disable function Figure 31. Connection for input overvoltage protection (isolated or non-isolated topologies) ~ AC Din T VCC DRAIN RH C BULK Cs FB C ONTR OL COMP RL DIS GND C1 GND GIPD091120151408MT In case of non-isolated topologies, by following the same principle an output overvoltage protection can be built, as shown in Figure 34. Connection for output overvoltage protection (non-isolated topologies). Figure 32. Connection for output overvoltage protection (non-isolated topologies) Dout Vout T C out GND VCC FB Cs DRAIN R f b1 RH R f b2 RL C ONTR OL COMP C1 DIS GND GIPD110120161010MT DS11423 - Rev 2 page 19/36 VIPer01 Thermal shutdown If VOVP is the desired input/output overvoltage threshold, the resistors RH and RL of the voltage divider are to be selected according to the following formula: RH = ( VOVP /VDIS_th - 1) × RL The power dissipation associated to the DIS network is: (VIN − VDIS)2 VDIS 2 PDIS(VIN) = PRH + PRL = + RH RL in case of connection for the input overvoltage detection and (VOUT − VDIS)2 VDIS 2 PDIS(VOUT) = PRH + PRL = + RH RL in case of connection for the output overvoltage detection. 4.15 Thermal shutdown If the junction temperature becomes higher than the internal threshold TSD (160 °C, typ.), the PWM is disabled. After tRESTART time, a single switching cycle is performed, during which the temperature sensor embedded in the power MOSFET section is checked. If a junction temperature above TSD is still measured, the PWM is maintained disabled for tRESTART time, otherwise it resumes switching with soft-start phase. During tRESTART VCC is maintained between VCSon and VCCon levels by the HV current source periodical activation. Such a behavior is summarized in below figure: Figure 33. Thermal shutdown timing diagram VCC TJ > TS D TJ < TS D VCCon VCS on IDRAIN time IDLIM IP EAK tRES TART time tRES TART tS S GIPD270420151404MT DS11423 - Rev 2 page 20/36 VIPer01 Application information 5 Application information 5.1 Typical schematics Figure 34. Flyback converter (non-isolated) Optional if Vout >= 5 V Daux ~ AC Din Rin Dout Vout T Ccl Cout Cin Rcl GND DRAIN VCC Cs CONTROL FB COMP R1 DIS GND C1 R2 GIPD091120151428MT Figure 35. Flyback converter with line OVP (non-isolated) Optional if Vout > = 5 V Da ux ~ AC Din Dout Rin Vout T1 Ccl Cout Cin Rcl R3 GND DRAIN VCC Cs FB CONTROL COMP R1 DIS GND R4 C1 R2 GIPD091220151436MT DS11423 - Rev 2 page 21/36 VIPer01 Typical schematics Figure 36. Flyback converter (isolated) ~ AC Din Rin T Cin Dout Vout Ccl Cout Rcl GND Da ux R3 R1 OP TO optiona l VCC DRAIN R4 Cs FB C2 CONTROL COMP GND DIS OP TO R2 C1 GIPD091220151444MT Figure 37. Primary side regulation isolated flyback converter ~ AC Din T Rin Cin Dout Vout Cout Ccl Rcl GND Da ux VCC R1 Cs FB DRAIN CONTROL COMP DIS GND R2 C1 GIPD091220151429MT DS11423 - Rev 2 page 22/36 VIPer01 Typical schematics Figure 38. Buck converter (positive output) Din ~ AC Rin Cin Optional if Vout > = 5 V Da ux VCC DRAIN R1 FB D CONTROL COMP Cs DIS C2 GND R2 C1 Lout Vout Dout Cout GIPD091220151457MT Figure 39. Buck-boost converter (negative output) ~ AC Din Rin Cin Optional if IVout > = 5 V Da ux VCC DRAIN R1 Cs FB CONTROL COMP C2 DIS GND R2 D C1 Dout Lout Vout (< 0 V) Cout GIPD091220151501MT DS11423 - Rev 2 page 23/36 VIPer01 Energy saving performance 5.2 Energy saving performance The device allows designing applications to be compliant with the most stringent energy saving regulations. In order to show the typical performance is achievable, the active mode average efficiency and the efficiency at 10% of the rated output power of a single output flyback converter have been measured and are reported in Table 9. Power supply efficiency, VOUT = 5 V. In addition, no-load and light load consumptions are shown in Figure 45. PIN versus VIN in no-load, VOUT = 5 V and Figure 46. PIN versus VIN in light load, VOUT = 5 V. Table 9. Power supply efficiency, VOUT = 5 V VIN 10 % output load efficiency [%] Active mode average efficiency [%] Pin @ no-load [mW] 115 VAC 72.2 74.6 4.5 230 VAC 65.1 75.1 8.6 Figure 40. PIN versus VIN in no-load, VOUT = 5 V PIN (mW) GIPD101220151535PVNL 12 10 8 6 4 2 0 85 110 135 160 185 210 235 260 VIN (VAC ) Figure 41. PIN versus VIN in light load, VOUT = 5 V PIN (mW) 400 GIPD101220151402PVL POUT = 250mW 350 300 250 200 150 100 POUT = 50mW 50 POUT = 25mW 0 85 110 135 160 185 210 235 260 DS11423 - Rev 2 VIN (VAC ) page 24/36 VIPer01 Layout guidelines and design recommendations 5.3 Layout guidelines and design recommendations A proper printed circuit board layout ensures the correct operation of any switch-mode converter and this is true for the VIPer as well. The main reasons to have a proper PCB layout are: • Providing clean signals to the IC, ensuring good immunity against external and switching noises. • Reducing the electromagnetic interferences, both radiated and conducted, to pass the EMC tests more easily. If the VIPer is used to design a SMPS, the following basic rules should be considered: • Separating signal from power tracks. Generally, traces carrying signal currents should run far from others carrying pulsed currents or with fast swinging voltages. Signal ground traces should be connected to the IC signal ground, GND, using a single "star point", placed close to the IC. Power ground traces should be connected to the IC power ground, GND. The compensation network should be connected to the COMP, maintaining the trace to GND as short as possible. In case of two-layer PCB, it is a good practice to route signal traces on one PCB side and power traces on the other side. • Filtering sensitive pins. Some crucial points of the circuit need or may need filtering. A small highfrequency bypass capacitor to GND might be useful to get a clean bias voltage for the signal part of the IC and protect the IC itself during EFT/ESD tests. A low ESL ceramic capacitor (a few hundreds pF up to 0.1 μF) should be connected across VCC and GND, placed as close as possible to the IC. With flyback topologies, when the auxiliary winding is used, it is suggested to connect the VCC capacitor on the auxiliary return and then to the main GND using a single track. • Keeping power loops as confined as possible. The area circumscribed by current loops where high pulsed current flow should be minimized to reduce its parasitic self-inductance and the radiated electromagnetic field. As a consequence, the electromagnetic interferences produced by the power supply during the switching are highly reduced. In a flyback converter the most critical loops are: the one including the input bulk capacitor, the power switch, the power transformer, the one including the snubber, the one including the secondary winding, the output rectifier and the output capacitor. In a buck converter the most critical loop is the one including the input bulk capacitor, the power switch, the power inductor, the output capacitor and the free-wheeling diode. • Reducing line lengths. Any wire acts as an antenna. With the very short rise times exhibited by EFT pulses, any antenna can receive high voltage spikes. By reducing line lengths, the level of received radiated energy is reduced, and the resulting spikes from electrostatic discharges are lower. This also keeps both resistive and inductive effects to a minimum. In particular, all traces carrying high currents, especially if pulsed (tracks of the power loops) should be as short and wide as possible. • Optimizing track routing. As levels of pickup from static discharges are likely greater near the edges of the board, it is wise to keep any sensitive lines away from these areas. Input and output lines often need to reach the PCB edge at some stage, but they can be routed away from the edge as soon as possible where applicable. Since vias are to be considered inductive elements, it is recommended to minimize their number in the signal path and avoid them in the power path. • Improving thermal dissipation. An adequate copper area has to be provided under the DRAIN pins as heatsink, while it is not recommended to place large copper areas on the GND. DS11423 - Rev 2 page 25/36 VIPer01 Layout guidelines and design recommendations Figure 42. Recommended routing for flyback converter ~ AC T Din Dout Rin Cin Vout Ccl Cout Rcl Da ux GND Cs OP TO VCC FB R1 DRAIN CONTROL COMP DIS GND C1 OP TO R2 GIPD091220151526MT Figure 43. Recommended routing for buck converter ~ AC Din Rin Cin Da ux VCC DRAIN R1 Cs FB CONTROL C2 D COMP DIS R2 GND C1 Lout Dout Vout Cout GIPD091220151532MT DS11423 - Rev 2 page 26/36 VIPer01 Package information 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DS11423 - Rev 2 page 27/36 VIPer01 SSOP10 package information 6.1 SSOP10 package information Figure 44. SSOP10 package outline 8140761_2 DS11423 - Rev 2 page 28/36 VIPer01 SSOP10 package information Table 10. SSOP10 mechanical data mm Dim. Min. Typ. A Max. 1.75 A1 0.10 A2 1.25 b 0.31 0.51 c 0.17 0.25 D 4.80 4.90 5 E 5.80 6 6.20 E1 3.80 3.90 4 e 0.25 1 h 0.25 0.50 L 0.40 0.90 K 0° 8° Figure 45. SSOP10 recommended footprint 8140761_rev2_footprint DS11423 - Rev 2 page 29/36 VIPer01 Order code 7 Order code Table 11. Order code Order code DS11423 - Rev 2 IDLIM (OCP) VIPer011XS(TR) 120 mA VIPer012XS(TR) 240 mA VIPer013XS(TR) 360 mA VIPer011LS(TR) 120 mA VIPer012LS(TR) 240 mA VIPer013LS(TR) 360 mA VIPer012HS(TR) 240 mA VIPer013HS(TR) 360 mA FOSC ± jitter Package 30 kHz ± 7% 60 kHz ± 7% SSOP10 tube (tape and reel) 120 kHz ± 7% page 30/36 VIPer01 Revision history Table 12. Document revision history Date DS11423 - Rev 2 Revision Changes 09-Mar-2016 1 Initial release 16-Apr-2020 2 Updated cover image, updated Table 2, Table 3, Table 5, Table 7, add fig 20 Power MOSFET capacitance variation vs VDS @ VGS=0, f=1MHz. page 31/36 VIPer01 Contents Contents 1 Pin setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 Electrical and thermal ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Typical electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 General description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 5 6 4.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Typical power capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 Primary MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.4 High voltage startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.5 Soft-start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.6 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.7 Pulse-skipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.8 Direct feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.9 Secondary feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.10 Pulse frequency modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.11 Overload protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.12 Max. duty cycle counter protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.13 VCC clamp protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.14 Disable function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.15 Thermal shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5.1 Typical schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2 Energy saving performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3 Layout guidelines and design recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 6.1 7 SSOP10 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 DS11423 - Rev 2 page 32/36 VIPer01 Contents List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 DS11423 - Rev 2 page 33/36 VIPer01 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Pin description. . . . . . . . . . . . . . . . Absolute maximum ratings . . . . . . . Thermal data. . . . . . . . . . . . . . . . . Avalanche characteristics . . . . . . . . Power section . . . . . . . . . . . . . . . . Supply section . . . . . . . . . . . . . . . . Controller section. . . . . . . . . . . . . . Typical power . . . . . . . . . . . . . . . . Power supply efficiency, VOUT = 5 V . SSOP10 mechanical data . . . . . . . . Order code . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . DS11423 - Rev 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 . 3 . 4 . 5 . 5 . 6 13 24 29 30 31 page 34/36 VIPer01 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. DS11423 - Rev 2 Basic application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RthJA/(RthJA@A=100 mm²) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDLIM vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FOSC vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VHV_START vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VFB_REF vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quiescent current Iq vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating current ICC vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ICH1 vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ICH1 vs VDRAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ICH2 vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ICH2 vs VDRAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ICH3 vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ICH3 vs VDRAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GM vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ICOMP vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RDS(on) vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Static drain-source on-resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power MOSFET capacitance variation vs VDS @ VGS=0, f=1MHz . . . . . . . . . . VBVDSS vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SOA SSOP10 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum avalnche energy vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IC supply modes: self-supply and external supply . . . . . . . . . . . . . . . . . . . . . . Power-ON and power-OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Soft startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pulse-skipping during startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short-circuit condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connection for input overvoltage protection (isolated or non-isolated topologies). Connection for output overvoltage protection (non-isolated topologies) . . . . . . . Thermal shutdown timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flyback converter (non-isolated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flyback converter with line OVP (non-isolated) . . . . . . . . . . . . . . . . . . . . . . . . Flyback converter (isolated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Primary side regulation isolated flyback converter . . . . . . . . . . . . . . . . . . . . . . Buck converter (positive output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Buck-boost converter (negative output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PIN versus VIN in no-load, VOUT = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PIN versus VIN in light load, VOUT = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended routing for flyback converter . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended routing for buck converter . . . . . . . . . . . . . . . . . . . . . . . . . . . SSOP10 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSOP10 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 2 . 4 . 9 . 9 . 9 . 9 . 9 . 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 14 15 15 16 18 19 19 20 21 21 22 22 23 23 24 24 26 26 28 29 page 35/36 VIPer01 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2020 STMicroelectronics – All rights reserved DS11423 - Rev 2 page 36/36
VIPER013HS 价格&库存

很抱歉,暂时无法提供与“VIPER013HS”相匹配的价格&库存,您可以联系我们找货

免费人工找货