0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VL6180XV0NR/1

VL6180XV0NR/1

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LGA12_4.8X2.8MM

  • 描述:

    接近和环境光传感 (ALS) 模块

  • 数据手册
  • 价格&库存
VL6180XV0NR/1 数据手册
VL6180X Proximity and ambient light sensing (ALS) module Datasheet - production data • Two programmable GPIO – Window and thresholding functions for both ranging and ALS Applications • Smartphones/portable touchscreen devices • Tablet/laptop/gaming devices • Domestic appliances/industrial devices Features Description • Three-in-one smart optical module – Proximity sensor – Ambient Light Sensor – VCSEL light source • Fast, accurate distance ranging – Measures absolute range from 0 to above 10 cm (ranging beyond 10cm is dependent on conditions) – Independent of object reflectance – Ambient light rejection – Cross-talk compensation for cover glass • Gesture recognition – Distance and signal level can be used by host system to implement gesture recognition – Demo system available: P-NUCLEO6180X1 evaluation board • Ambient light sensor – High dynamic range – Accurate/sensitive in ultra-low light – Calibrated output value in lux • Easy integration – Single reflowable component – No additional optics – Single power supply – I2C interface for device control and data – Provided with a documented C portable API (Application Programming Interface) March 2016 This is information on a product in full production. The VL6180X is the latest product based on ST’s patented FlightSense™ technology. This is a ground-breaking technology allowing absolute distance to be measured independent of target reflectance. Instead of estimating the distance by measuring the amount of light reflected back from the object (which is significantly influenced by color and surface), the VL6180X precisely measures the time the light takes to travel to the nearest object and reflect back to the sensor (Time-of-Flight). Combining an IR emitter, a range sensor and an ambient light sensor in a three-in-one ready-touse reflowable package, the VL6180X is easy to integrate and saves the end-product maker long and costly optical and mechanical design optimizations. The module is designed for low power operation. Ranging and ALS measurements can be automatically performed at user defined intervals. Multiple threshold and interrupt schemes are supported to minimize host operations. Host control and result reading is performed using an I2C interface. Optional additional functions, such as measurement ready and threshold interrupts, are provided by two programmable GPIO pins. DocID026171 Rev 7 1/87 www.st.com Contents VL6180X Contents 1 2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Technical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 System block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Device pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Recommended solder pad dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . .11 1.6 Recommended reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Ranging pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 System state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Software overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.1 Polling mode - single shot range/ALS measurement . . . . . . . . . . . . . . . 20 2.5.2 Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 VL6180x_RangeConfigInterrupt() or VL6180x_AlsConfigInterrupt() . . . . . . . . . . . 22 Continuous mode limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5.3 Asynchronous mode - single shot range measurement . . . . . . . . . . . . 23 2.5.4 Interleaved mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6 History buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.7 Range Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.7.1 Range timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.7.2 Range error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.7.3 Range checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Early convergence estimate (ECE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Range ignore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Signal-to-noise ratio (SNR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.8 2.7.4 Manual/autoVHV calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.7.5 Wrap Around Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.7.6 Maximum ranging distance (DMAX) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Other ranging system considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.8.1 2/87 Part-to-part range offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DocID026171 Rev 7 VL6180X Contents 2.9 2.10 3 2.8.2 Cross-talk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.8.3 Offset calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.8.4 Cross-talk calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.8.5 Cross-talk limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.8.6 Cross-talk vs air gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.9.1 Ranging current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.9.2 Current consumption calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.9.3 Current distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Ambient light sensor (ALS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.10.1 Field of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.10.2 Spectral response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.10.3 ALS dynamic range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.10.4 ALS count to lux conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.10.5 Integration period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.10.6 ALS gain selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.10.7 Scaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Performance specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1 Proximity ranging (0 to 100mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1.1 3.2 4 6 ALS performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 I2C control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1 5 Max range vs. ambient light level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 I2C interface - timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 Normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Device registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1 Register encoding formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2 Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2.1 IDENTIFICATION__MODEL_ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2.2 IDENTIFICATION__MODEL_REV_MAJOR . . . . . . . . . . . . . . . . . . . . . 51 DocID026171 Rev 7 3/87 5 Contents 4/87 VL6180X 6.2.3 IDENTIFICATION__MODEL_REV_MINOR . . . . . . . . . . . . . . . . . . . . . 51 6.2.4 IDENTIFICATION__MODULE_REV_MAJOR . . . . . . . . . . . . . . . . . . . . 52 6.2.5 IDENTIFICATION__MODULE_REV_MINOR . . . . . . . . . . . . . . . . . . . . 52 6.2.6 IDENTIFICATION__DATE_HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.2.7 IDENTIFICATION__DATE_LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2.8 IDENTIFICATION__TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2.9 SYSTEM__MODE_GPIO0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2.10 SYSTEM__MODE_GPIO1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2.11 SYSTEM__HISTORY_CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.2.12 SYSTEM__INTERRUPT_CONFIG_GPIO . . . . . . . . . . . . . . . . . . . . . . 57 6.2.13 SYSTEM__INTERRUPT_CLEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2.14 SYSTEM__FRESH_OUT_OF_RESET . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2.15 SYSTEM__GROUPED_PARAMETER_HOLD . . . . . . . . . . . . . . . . . . . 58 6.2.16 SYSRANGE__START . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2.17 SYSRANGE__THRESH_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2.18 SYSRANGE__THRESH_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2.19 SYSRANGE__INTERMEASUREMENT_PERIOD . . . . . . . . . . . . . . . . 60 6.2.20 SYSRANGE__MAX_CONVERGENCE_TIME . . . . . . . . . . . . . . . . . . . 60 6.2.21 SYSRANGE__CROSSTALK_COMPENSATION_RATE . . . . . . . . . . . . 61 6.2.22 SYSRANGE__CROSSTALK_VALID_HEIGHT . . . . . . . . . . . . . . . . . . . 61 6.2.23 SYSRANGE__EARLY_CONVERGENCE_ESTIMATE . . . . . . . . . . . . . 61 6.2.24 SYSRANGE__PART_TO_PART_RANGE_OFFSET . . . . . . . . . . . . . . 62 6.2.25 SYSRANGE__RANGE_IGNORE_VALID_HEIGHT . . . . . . . . . . . . . . . 62 6.2.26 SYSRANGE__RANGE_IGNORE_THRESHOLD . . . . . . . . . . . . . . . . . 62 6.2.27 SYSRANGE__MAX_AMBIENT_LEVEL_MULT . . . . . . . . . . . . . . . . . . 63 6.2.28 SYSRANGE__RANGE_CHECK_ENABLES . . . . . . . . . . . . . . . . . . . . . 63 6.2.29 SYSRANGE__VHV_RECALIBRATE . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.2.30 SYSRANGE__VHV_REPEAT_RATE . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.2.31 SYSALS__START . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2.32 SYSALS__THRESH_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2.33 SYSALS__THRESH_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.2.34 SYSALS__INTERMEASUREMENT_PERIOD . . . . . . . . . . . . . . . . . . . 66 6.2.35 SYSALS__ANALOGUE_GAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2.36 SYSALS__INTEGRATION_PERIOD . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2.37 RESULT__RANGE_STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.2.38 RESULT__ALS_STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2.39 RESULT__INTERRUPT_STATUS_GPIO . . . . . . . . . . . . . . . . . . . . . . . 70 DocID026171 Rev 7 VL6180X Contents 6.2.40 RESULT__ALS_VAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.2.41 RESULT__HISTORY_BUFFER_x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.2.42 RESULT__RANGE_VAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.2.43 RESULT__RANGE_RAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.2.44 RESULT__RANGE_RETURN_RATE . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.2.45 RESULT__RANGE_REFERENCE_RATE . . . . . . . . . . . . . . . . . . . . . . . 73 6.2.46 RESULT__RANGE_RETURN_SIGNAL_COUNT . . . . . . . . . . . . . . . . . 73 6.2.47 RESULT__RANGE_REFERENCE_SIGNAL_COUNT . . . . . . . . . . . . . 74 6.2.48 RESULT__RANGE_RETURN_AMB_COUNT . . . . . . . . . . . . . . . . . . . . 74 6.2.49 RESULT__RANGE_REFERENCE_AMB_COUNT . . . . . . . . . . . . . . . . 74 6.2.50 RESULT__RANGE_RETURN_CONV_TIME . . . . . . . . . . . . . . . . . . . . 75 6.2.51 RESULT__RANGE_REFERENCE_CONV_TIME . . . . . . . . . . . . . . . . . 75 6.2.52 READOUT__AVERAGING_SAMPLE_PERIOD . . . . . . . . . . . . . . . . . . 75 6.2.53 FIRMWARE__BOOTUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.2.54 FIRMWARE__RESULT_SCALER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.2.55 I2C_SLAVE__DEVICE_ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.2.56 INTERLEAVED_MODE__ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7 Outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 8 Laser safety considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 8.1 9 Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 9.1 Traceability and identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 9.2 Part marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 9.3 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 9.3.1 Package labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 9.4 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9.5 ROHS compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 10 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 DocID026171 Rev 7 5/87 5 List of tables VL6180X List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. 6/87 Technical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 VL6180X pin numbers and signal descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Recommended reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power-up timing constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 API supported operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 VL6180X range operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 VL6180X ALS operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Non API operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Interleaved mode limits (10 Hz operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 History buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Typical range convergence time (ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Range error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Typical current consumption in different operating states . . . . . . . . . . . . . . . . . . . . . . . . . 35 Breakdown of current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Current consumption on AVDD and AVDD_VCSEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ALS dynamic range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Actual gain values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Ranging specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Worst case max range vs. ambient 0 to 100mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ALS performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 I2C interface - timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Digital I/O electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Register groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 32-bit register example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 9.7 and 4.4 register formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Delivery format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Storage conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 DocID026171 Rev 7 VL6180X List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. VL6180X block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VL6180X pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Root part number 1 schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Recommended solder pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Recommended reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Typical ranging performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 ALS linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Ranging pipe architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 System state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Power-up timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Simple ALS routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Simple range routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Range polling mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ALS polling mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Range Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ALS Interrupt mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Asynchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Interleaved mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Interleaved mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Total range execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Early convergence estimate (ECE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Wrap around - far target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Part-to-part range offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Cross-talk compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Cross-talk vs air gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Typical ranging current consumption (10 Hz sampling rate). . . . . . . . . . . . . . . . . . . . . . . . 35 VCSEL pulse duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ALS angular response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ALS spectral response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Serial interface data transfer protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 I2C device address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Single location, single write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Single location, single read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Multiple location write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Multiple location read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 I2 C timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Outline drawing (page 1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Outline drawing (page 2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Class 1 laser product label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Part marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Tape and reel packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Package labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 DocID026171 Rev 7 7/87 7 Overview 1 VL6180X Overview This datasheet is applicable to the final VL6180X ROM code revision. 1.1 Technical specification Table 1. Technical specification Feature Detail Package Optical LGA12 Size 4.8 x 2.8 x 1.0 mm Ranging 0 to 100 mm(1) Ambient light sensor < 1 Lux up to 100 kLux(2) 16-bit output(3) 8 manual gain settings Operating voltage: • Functional range • Optimum range(4) 2.6 to 3.0 V 2.7 to 2.9 V Operating temperature: • • Functional range Optimum -20 to 70°C -10 to 60°C range(4) Typical power consumption Hardware standby (GPIO0 = 0): < 1 μA(5) Software standby: < 1 μA(5.) ALS: 300 μA Ranging: 1.7 mA (typical average)(6) IR emitter 850 nm I2C 400 kHz serial bus Address: 0x29 (7-bit) 1. Ranging beyond 100mm is dependent on target reflectance and external conditions (ambient light level, temperature, voltage) 2. When used under a cover glass with 10% transmission in the visible spectrum 3. Digital output easily converted to Lux 4. Please refer to Table 18.: Ranging specification 5. GPIO0, GPIO1, SCL and SDA are pulled up to AVDD (2.8V) 6. Assumes 10 Hz sampling rate, 17% reflective target at 50 mm 8/87 DocID026171 Rev 7 VL6180X 1.2 Overview System block diagram Figure 1. VL6180X block diagram VL6180X module VL6180X silicon GPIO-0 Ranging GPIO-1 ALS Microcontroller SDA NVM SCL RAM IR emitter driver IR- AVDD AVDD_VCSEL AVSS AVSS_VCSEL IR+ IR emitter 1.3 Device pinout Figure 2 shows the pinout of the VL6180X. Figure 2. VL6180X pinout VL6180X 1 12 AVSS NC 2 11 NC NC 3 10 AVDD GPIO0 4 9 AVSS_VCSEL SCL 5 8 AVDD_VCSEL SDA 6 7 NC GPIO1 DocID026171 Rev 7 9/87 86 Overview VL6180X Table 2. VL6180X pin numbers and signal descriptions 1.4 Pin number Signal name Signal type Signal description 1 GPIO1 Digital I/O Interrupt output. Open-drain. If used, it should be pulled high with 47 kΩ resistor, otherwise left unconnected. 2 NC No connect 3 NC No connect 4 GPIO0/CE Digital I/O 5 SCL Digital input I2C serial clock 6 SDA Digital I/O I2C serial data 7 NC 8 AVDD_VCSEL Supply VCSEL power supply 2.6 to 3.0 V 9 AVSS_VCSEL Ground VCSEL ground 10 AVDD Supply Digital/analog power supply 2.6 to 3.0 V 11 NC 12 AVSS Power-up default is chip enable (CE). It should be pulled high with a 47 kΩ resistor. No connect No connect Ground Digital/analog ground Typical application schematic Figure 3 shows a typical application schematic of the VL6180X. Figure 3. Root part number 1 schematic 9RU9 9 9/;   *3,2     *3,2 1& 1& *3,2  6&/  6'$  6&/  6'$ *1'  *3,2 1&  $9''   $966B9&6(/  $9''B9&6(/  1& Q) X) 1. Open drain. If pin is used, then 47 kΩ recommended, otherwise leave floating 2. Open drain, 47 kΩ recommended 3. Open drain. Pull up resistors typically fitted once per I2C bus at host Note: 10/87 Capacitors on AVDD and AVDD_VCSEL should be placed as close as possible to the supply pads. DocID026171 Rev 7 VL6180X 1.5 Overview Recommended solder pad dimensions Figure 4. Recommended solder pattern Pad pitch 0.75 mm 1.40 mm 0.60 mm 0.55 mm 1.6 Same as device pad dimensions Recommended reflow profile The recommend reflow profile is shown in Figure 5 and Table 3. Figure 5. Recommended reflow profile Table 3. Recommended reflow profile Profile Note: Ramp to strike Temperature gradient in preheat (T= 70 - 180°C): 0.9 +/- 0.1°C/s Temperature gradient (T= 200 - 225°C): 1.1 - 3.0°C/s Peak temperature in reflow 237°C - 245°C Time above 220°C 50 +/- 10 seconds Temperature gradient in cooling -1 to -4 °C/s (-6°C/s maximum) Time from 50 to 220°C 160 to 220 seconds As the VL6180X package is not sealed, only a dry re-flow process should be used (such as convection re-flow). Vapor phase re-flow is not suitable for this type of optical component. The VL6180X is an optical component and as such, it should be treated carefully. This would typically include using a ‘no-wash’ assembly process. DocID026171 Rev 7 11/87 86 Functional description 2 VL6180X Functional description This section gives an overview of the key features of the VL6180X and describes the different modes of operation of the ALS and proximity sensor. A complete API is also associated to the device which consists of a set of C functions controlling the VL6180X to enable fast development of end-user applications. This API is structured in a way that it can be complied on any kind of platform through a well isolated platform layer (mainly for low level I2C access). It is available for download from www.st.com. It is assumed in the rest of the document that the host application is controlling the VL6180X device through its C API. For a more detailed explanation of the API functions please refer to the documentation that is supplied with the API. Typical ranging performance of the VL6180X is shown in Figure 6. This demonstrates the reflectance independence and range accuracy of the VL6180X from 0 to 100 mm for 3%, 5%, 17% and 88% reflective targets. The example shown here is with ST cover glass and a 1.0 mm air gap. Figure 7 shows typical ALS linearity vs gain over a wide dynamic range. More details about the ambient light sensor can be found in Section 2.10. Figure 6. Typical ranging performance 12/87 DocID026171 Rev 7 VL6180X Functional description Figure 7. ALS linearity ϭϬϬϬϬϬ 'ĂŝŶϭ ϭϬϬϬϬ Z^h>dͺͺ>^ͺs> 'ĂŝŶϭ͘Ϯϱ 'ĂŝŶϭ͘ϲϳ 'ĂŝŶϮ͘ϱ ϭϬϬϬ 'ĂŝŶϱ 'ĂŝŶϭϬ 'ĂŝŶϮϬ ϭϬϬ 'ĂŝŶϰϬ ^ĂƚƵƌĂƚŝŽŶ>ŝŵŝƚ YƵĂŶƚŝƐĂƚŝŽŶ>ŝŵŝƚ ϭϬ ϭ ϭϬ ϭϬϬ ϭϬϬϬ ϭϬϬϬϬ >ŝŐŚƚůĞǀĞů;>ƵdžͿ 2.1 Ranging pipe The VL6180X uses a simple architecture to achieve range measurement. Figure 8. Ranging pipe architecture 2.2 System state diagram Figure 9 describes the main operating states of the VL6180X. Hardware standby is the reset state (GPIO0=0)(a). The device is held in reset until GPIO0 is de-asserted. Note that the device will not respond to I2C communication in this mode. When GPIO0=1, the device enters software standby after the internal MCU boot sequence has completed. DocID026171 Rev 7 13/87 86 Functional description VL6180X From customer application point of view, the following sequence must be followed at the power-up stage • Set GPIO0 to 0 • Set GPIO0 to 1 • Wait for a minimum of 400μs • Call VL6180x_WaitDeviceBooted()(b) API function (or wait for 1ms to ensure device is ready). Then, at this stage, through API functions calls, it is possible to: 1. Configure the device to start single-shot ranging or ALS measurements. 2. Configure the device into continuous mode where the device uses an internal timer to schedule range/ALS measurements at specified intervals. See Section 2.5.4: Interleaved mode. Figure 9. System state diagram Power off AVDD on GPIO0=0 AVDD off AVDD on GPIO0=1 Hardware standby AVDD off GPIO0=1 GPIO0=0 MCU boot Software standby range_start Range measurement als_start done done mode= continuous stop ALS measurement start auto auto Continuous modes(*) (*) Device is placed in a low power state between measurements a. Use of GPIO0 is optional b. Warning: The VL6180x_WaitDeviceBooted() function expects the device to be fresh out of reset. Calling this function when the device is not fresh out of reset will result in an infinite loop. 14/87 DocID026171 Rev 7 VL6180X 2.3 Functional description Timing diagram Figure 10 and Table 4.show the Root part number 1 power-up timing constraints. Note: • AVDD_VCSEL must be applied before or at the same time as AVDD. • GPIO0 defaults to an active low shutdown input. When GPIO0 = 0, the device is in hardware standby. If GPIO0 is not used it should be connected to AVDD. • The internal microprocessor (MCU) boot sequence commences when AVDD is up and GPIO0 is high whichever is the later. • GPIO1 power-up default is output low. It is tri-stated during the MCU boot sequence. In hardware standby, GPIO1 is output low and will sink current through any pull-up resistor. This leakage can be minimized by increasing the value of the pull-up resistor. • After the MCU boot sequence the device enters software standby. Host initialization can commence immediately after entering software standby. Figure 10. Power-up timing 'W/KϭƚƌŝͲƐƚĂƚĞĚ͕ŽŶůLJŚŝŐŚŝĨƉƵůůͲƵƉĨŝƚƚĞĚ Table 4. Power-up timing constraints Symbol Parameter Min Max Unit - 0 ms 100 - ns t1 AVDD_VCSEL power applied after AVDD t2 Minimum reset on GPIO0 t3 GPIO1 output low after hardware standby - 400 μs t4 MCU boot - 1 ms t5 Software standby to host initialization - 0 ms DocID026171 Rev 7 15/87 86 Functional description 2.4 VL6180X Software overview Figure 11 shows a simple start-up routine from initialization to completing an ALS measurement while Figure 12 shows a simple start-up routine from initialization to completing a range measurement. Figure 11. Simple ALS routine 2.5 Figure 12. Simple range routine 3RZHUXS 3RZHUXS —VGHOD\ —VGHOD\ 9/[B :DLW'HYLFH%RRWHGRU PVGHOD\ 9/[B :DLW'HYLFH%RRWHGRU PVGHOD\ 6RIWZDUHVWDQGE\ 6RIWZDUHVWDQGE\ 9/[B,QLW'DWD 9/[B,QLW'DWD 9/[B3UHSDUH 9/[B3UHSDUH 9/[B$/63ROO0H DVXUHPHQW 9/[B5DQJH3ROO 0HDVXUHPHQW Operating modes The VL6180X device can operate in 2 different modes: Single-shot measurement or Continuous measurement for both ranging and ALS. From these 2 device modes, the Vl6180X API enables 3 different typical operating range modes: Polling, interrupt or asynchronous. And 3 different ALS modes: Polling, interrupt and interleaved. Table 5. describes the operating modes of this device supported by the API. 16/87 • Modes 1 and 2 are single-shot range and ALS measurements. • Modes 3 and 4 are continuous range and ALS operation. • Mode 5 allows both ALS and range measurements to be scheduled at regular intervals. The ALS measurement is completed first immediately followed by a range measurement. Interleaved mode is described in more detail in Section 2.5.4. DocID026171 Rev 7 VL6180X Functional description Table 5. API supported operating modes Range Mode Priority Single Note: ALS Function 1 Range single-shot 2 ALS single-shot 3 Range continuous 4 ALS continuous 5 Interleaved mode: Range Continuous and ALS Continuous Continuous Single Continuous • Range • ALS • Range • • ALS • - Single-shot ALS and range operations cannot be performed simultaneously. Only one of these operations should be performed at any one time and once started must be allowed to complete before another measurement is started. This is because any current operation will be aborted if another is started. Wrap Around Filter is not available in Continuous range measurement mode. Table 6. VL6180X range operating modes API operating mode Polling Interrupt Asynchro nous Description API functions VL6180X mode Comments Host requests single shot measurement and waits for the result VL6180x_RangePollMeasurement Single shot Recommended for first API porting or debug Ranging results are retrieved from interrupts VL6180x_RangeSetInterMeasPeriod VL6180x_SetupGPIO1 VL6180x_RangeConfigInterrupt (VL6180x_RangeSetThreshold) Continuous VL6180x_RangeStartContinuousMode VL6180x_RangeGetMeasurement VL6180x_ClearAllInterrupt Recommended for User Detection applications where CPU is interrupted by VL6180X so can be asleep when no target is detected (power saving) VL6180x_RangeStartSingleShot VL6180x_RangeGetMeasurement IfReady Recommended for AFAssist applications, Android OS-based system where CPU is synchronized by EOF/SOF from camera or by a timer so that top application controls measurement periods Host requests a single shot measurement and regularly checks to see if result is ready or not DocID026171 Rev 7 Single shot 17/87 86 Functional description VL6180X Table 7. VL6180X ALS operating modes API operating mode Polling Interrupt Interrupt Description API functions VL6180X mode Comments Host requests single shot measurement and waits for the result VL6180x_ALSPollMeasurement Single shot Recommended for first API porting or debug ALS results are retrieved from interrupts VL6180x_SetupGPIO1 VL6180x_AlsConfigInterrupt (VL6180x_AlsSetThresholds) VL6180x_AlsSetSystemMode(Mode_Singl Single shot eShot) VL6180x_AlsGetMeasurement VL6180x_ClearAllInterrupt Recommended for AFAssist applications, where it is used along side ranging. ALS results are retrieved from interrupts VL6180x_AlsSetInterMeasurementPeriod VL6180x_SetupGPIO1 VL6180x_AlsConfigInterrupt (VL6180x_AlsSetThresholds) VL6180x_AlsStartContinuousMode VL6180x_AlsGetMeasurement VL6180x_ClearAllInterrupt New ALS value available once per Continuous inter-measurement period as defined by user VL6180x_AlsConfigInterrupt VL6180x_AlsSetInterMeasurementPeriod VL6180x_StartInterleavedMode (calls VL6180x_AlsStartContinuousMode) VL6180x_AlsGetMeasurement VL6180x_RangeGetMeasurement VL6180x_AlsStopInterleavedMode (calls VL6180x_AlsStopContinuousMode) New ALS and Range values available once Continuous per inter-measurement period as defined by user. See Figure 9 ALS and ranging Interleaved results are retrieved from interrupts Although not supported by the API, it is possible to do a mix of continuous Range and single shot ALS measurements or continuous ALS and single shot Range measurements, as shown below. 18/87 • Mode 6 is mixed continuous range and single-shot ALS operation where regular ranging measurements are required with only the occasional ALS measurement. • Mode 7 is mixed continuous ALS and single-shot range operation where regular ALS measurements are required with only the occasional range measurement. DocID026171 Rev 7 VL6180X Functional description Table 8. Non API operating modes Range Mode ALS Function Priority Single 6 Range continuous and ALS single-shot 7 ALS continuous and Range single-shot Continuous Single • • • Continuous ALS • Range In modes 6 and 7, single-shot operation takes the priority i.e. if a scheduled measurement is in progress when the host requests a single-shot measurement, the scheduled measurement will be aborted and will resume on the next available time slot. DocID026171 Rev 7 19/87 86 Functional description 2.5.1 VL6180X Polling mode - single shot range/ALS measurement Host calls a blocking API function that requests a single shot measurement and waits for the result. CPU is blocked during this measurement request. Figure 13. Range polling mode Wh s>ϲϭϴϬy /ŶŝƚĂƚĂ;Ϳ͕WƌĞƉĂƌĞ;Ϳ ZĂŶŐĞWŽůůDĞĂƐƵƌĞŵĞŶƚ;Ϳ ZĂŶŐŝŶŐ Figure 14. ALS polling mode Wh s>ϲϭϴϬy /ŶŝƚĂƚĂ;Ϳ͕WƌĞƉĂƌĞ;Ϳ >^WŽůůDĞĂƐƵƌĞŵĞŶƚ;Ϳ 20/87 DocID026171 Rev 7 >^DĞĂƐƵƌĞŵĞŶƚ VL6180X 2.5.2 Functional description Interrupt mode The host programs the device in continuous mode and ranging or ALS results are retrieved from interrupts. Figure 15. Range Interrupt mode Wh s>ϲϭϴϬy /ŶŝƚĂƚĂ;Ϳ͕WƌĞƉĂƌĞ;Ϳ ZĂŶŐĞ^Ğƚ/ŶƚĞƌDĞĂƐWĞƌŝŽĚ;Ϳ ^ĞƚƵƉ'W/Kϭ;Ϳ ZĂŶŐĞŽŶĨŝŐ/ŶƚĞƌƌƵƉƚ;Ϳ ZĂŶŐĞ^ƚĂƌƚŽŶƚŝŶƵŽƵƐDŽĚĞ;Ϳ ZĂŶŐŝŶŐ WhĐĂŶďĞŝĚůĞŽƌĚŽŝŶŐ ŽƚŚĞƌƚĂƐŬƐǁŚŝůĞǁĂŝƚŝŶŐ ŽŶs>ϲϭϴϬyŝŶƚĞƌƌƵƉƚ 'W/Kϭ/Ed ZĂŶŐĞ'ĞƚDĞĂƐƵƌĞŵĞŶƚ;Ϳ Figure 16. ALS Interrupt mode Wh s>ϲϭϴϬy /ŶŝƚĂƚĂ;Ϳ͕WƌĞƉĂƌĞ;Ϳ ůƐ^Ğƚ/ŶƚĞƌDĞĂƐƵƌĞŵĞŶƚWĞƌŝŽĚ;Ϳ ^ĞƚƵƉ'W/Kϭ;Ϳ ůƐŽŶĨŝŐ/ŶƚĞƌƌƵƉƚ;Ϳ ůƐ^ƚĂƌƚŽŶƚŝŶƵŽƵƐDŽĚĞ;Ϳ >^ŵĞĂƐƵƌĞŵĞŶƚ WhĐĂŶďĞŝĚůĞŽƌĚŽŝŶŐ ŽƚŚĞƌƚĂƐŬƐǁŚŝůĞǁĂŝƚŝŶŐ ŽŶs>ϲϭϴϬyŝŶƚĞƌƌƵƉƚ 'W/Kϭ/Ed ůƐ'ĞƚDĞĂƐƵƌĞŵĞŶƚ;Ϳ DocID026171 Rev 7 21/87 86 Functional description VL6180X It is not recommended to run range and ALS continuous modes simultaneously (i.e. asynchronously). Instead, mode 7 ‘interleaved mode’ in Table 5. should be used. In ‘interleaved mode’, scheduled range and ALS measurements operate off a single timer with a range measurement proceeding immediately after every ALS measurement. VL6180x_RangeConfigInterrupt() or VL6180x_AlsConfigInterrupt() The VL6180X can be configured to generate a range or ALS interrupt flag under any of the following conditions: • New sample ready • Level low (range/ALS value < low threshold) • Level high (range/ALS value > high threshold) • Out of window (range/ALS value < low threshold) OR (range/ALS value > high threshold) In new sample ready mode (continuous mode - WAF disabled), an interrupt flag will be raised at the end of every measurement irrespective of whether the measurement is valid or if an error has occurred. In level interrupt mode the system will raise an interrupt flag if either a low or high programmable threshold has been crossed. Out of window interrupt mode activates both high and low level thresholds allowing a window of operation to be specified. Range interrupt modes are selected via VL6180x_RangeConfigInterrupt() with VL6180x_RangeSetThresholds() used to set thresholds. Use VL6180x_RangeGetInterruptStatus() to return the ranging interrupt status. ALS interrupt modes are selected via VL6180x_AlsConfigInterrupt() with VL6180x_AlsSetThresholds() used to set thresholds. Use VL6180x_AlsGetInterruptStatus() to return the ALS interrupt status. Note: In level or window interrupt modes range errors will only trigger an interrupt if the logical conditions described above are met. Continuous mode limits To take account of oscillator tolerances and internal processing overheads it is necessary to place the following constraints on continuous mode operations. The following equations define the minimum inter-measurement period to ensure correct operation: Continuous range: VL6180x_RangeSetMaxConvergenceTime() + 5 ≤ VL6180x_RangeSetInterMeasPeriod() * 0.9 Continuous ALS: VL6180x_AlsSetIntegrationPeriod() * 1.1 ≤ VL6180x_AlsSetInterMeasurementPeriod() * 0.9 Interleaved mode: (VL6180x_RangeSetMaxConvergenceTime() + 5) + (VL6180x_AlsSetIntegrationPeriod() * 1.1) ≤ VL6180x_AlsSetInterMeasurementPeriod() * 0.9 22/87 DocID026171 Rev 7 VL6180X Functional description Table 9. gives an example how to apply these limits in continuous interleaved mode operating at a sampling rate of 10 Hz. Table 9. Interleaved mode limits (10 Hz operation) Parameter 2.5.3 Period (ms) VL6180x_AlsSetInterMeasurementPeriod() 100 Effective ALS INTERMEASUREMENT PERIOD 90 VL6180x_RangeSetMaxConvergenceTime() 30 Total RANGE EXECUTION TIME 35 VL6180x_AlsSetIntegrationPeriod() 50 Total ALS INTEGRATION TIME 55 TOTAL EXECUTION TIME 90 Asynchronous mode - single shot range measurement Host requests a single shot measurement and can either check regularly to see if result is ready or wait for an interrupt then call RangeGetMeasurementIfReady(). Figure 17. Asynchronous mode Wh s>ϲϭϴϬy /ŶŝƚĂƚĂ;Ϳ͕WƌĞƉĂƌĞ;Ϳ ZĂŶŐĞ^ƚĂƌƚ^ŝŶŐůĞ^ŚŽƚ;Ϳ WhŵƵƐƚƌĞŐƵůĂƌůLJĐĂůů ƚŚĞ ZĂŶŐĞ'ĞƚDĞĂƐƵƌĞŵĞŶƚ/Ĩ ZĞĂĚLJĨƵŶĐƚŝŽŶƚŽĐŚĞĐŬ ĨŽƌƌĂŶŐĞŵĞĂƐƵƌĞŵĞŶƚ z^ ZĂŶŐĞ'ĞƚDĞĂƐƵƌĞŵĞ Ŷƚ/ĨZĞĂĚLJ;Ϳ ZĂŶŐŝŶŐ EK DocID026171 Rev 7 ZĂŶŐĞĂŶĚ ƐƚĂƚƵƐĚĂƚĂ 23/87 86 Functional description 2.5.4 VL6180X Interleaved mode Figure 19. describes the continuous interleaved mode of operation where an ALS measurement is immediately followed by a range measurement and repeated after an interval specified by the ALS inter-measurement period. Figure 18. Interleaved mode Wh s>ϲϭϴϬy /ŶŝƚĂƚĂ;Ϳ͕WƌĞƉĂƌĞ;Ϳ ůƐŽŶĨŝŐ/ŶƚĞƌƌƵƉƚ;Ϳ ůƐ^Ğƚ/ŶƚĞƌDĞĂƐƵƌĞŵĞŶƚWĞƌŝŽĚ;Ϳ ůƐ^ƚĂƌƚ/ŶƚĞƌůĞĂǀĞĚDŽĚĞ;Ϳ >^ŵĞĂƐƵƌĞŵĞŶƚ WhĐĂŶďĞŝĚůĞŽƌĚŽŝŶŐ ŽƚŚĞƌƚĂƐŬƐǁŚŝůĞǁĂŝƚŝŶŐ ŽŶs>ϲϭϴϬyŝŶƚĞƌƌƵƉƚ 'W/Kϭ/Ed ůƐ'ĞƚDĞĂƐƵƌĞŵĞŶƚ;Ϳ WhĐĂŶďĞŝĚůĞŽƌĚŽŝŶŐ ŽƚŚĞƌƚĂƐŬƐǁŚŝůĞǁĂŝƚŝŶŐ ŽŶs>ϲϭϴϬyŝŶƚĞƌƌƵƉƚ ZĂŶŐŝŶŐ 'W/Kϭ/Ed ZĂŶŐĞ'ĞƚDĞĂƐƵƌĞŵĞŶƚ;Ϳ Note: 24/87 Continuous range settings have no effect in this mode. DocID026171 Rev 7 VL6180X Functional description Figure 19. Interleaved mode ALS inter-measurement period ALS inter-measurement period ALS ALS ALS Range Range Range Interrupt flags Note: To ensure correct operation in any of the continuous modes, the user must ensure that the inter-measurement period is sufficient for the operation to be completed within the intermeasurement period. Failure to do so could result in unpredictable behavior. 2.6 History buffer History buffer not yet implemented in API. The history buffer is a 8 x 16-bit memory which can be used to store the last 16 range measurements (8-bit) or 8 ALS samples (16-bit). Use of the history buffer is controlled via register SYSTEM__HISTORY_CTRL{0x12}. There are 3 basic functions: • enable • range or ALS selection • clear buffer The buffer is read via eight 16-bit registers (RESULT__HISTORY_BUFFER_0{0x52} to RESULT__HISTORY_BUFFER_7{0x60}). The buffer holds the last 16 x 8-bit range or 8 x 16-bit ALS results as shown in Table 10. Table 10. History buffer Range ALS History buffer (High byte) (Low byte) (Word) 0 Range [15] (newest) Range [14] ALS [7] (newest) 1 Range [13] Range [12] ALS [6] 2 Range [11] Range [10] ALS [5] 3 Range [9] Range [8] ALS [4] 4 Range [7] Range [6] ALS [3] 5 Range [5] Range [4] ALS [2] 6 Range [3] Range [2 ALS [1] 7 Range [1] Range [0] (oldest) ALS [0] (oldest) DocID026171 Rev 7 25/87 86 Functional description Note: VL6180X Only one data stream (ALS or range) can be buffered at one time. There is no associated time stamp information. The clear buffer command is not immediate; it takes effect on the next range or ALS start command. The history buffer works independently of interrupt control i.e. the history buffer records all new samples; its operation is unchanged in threshold and window modes. 2.7 Range Sensor The VL6180X contains a range sensor capable of measuring distance up to 10cm (ranging beyond 10cm is condition dependent). This section describes the main features of the range sensor. The range sensor performance specification can be found in Section 3.1. 2.7.1 Range timing Figure 20 gives a breakdown of total execution time for a single range measurement. • The pre-calibration phase is fixed (3.2 ms). • The range convergence time is variable and depends on target distance/reflectance (see Table 11). • The recommended readout averaging period is 4.3 ms. Readout averaging helps to reduce measurement noise. The recommended setting for READOUT__AVERAGING_SAMPLE_PERIOD{0x10A} is 48(c) but is programmable in the range 0-255. Note however that lower settings will result in increased noise. Register READOUT__AVERAGING_SAMPLE_PERIOD{0x10A} is not programmable via the API. Note: When a target is detected the API returns the actual range convergence time. The convergence time returned by the API does not include the readout average. Range convergence and readout averaging must be completed within the specified max convergence time. VL6180x_RangeSetMaxConvergenceTime() - sets maximum time to run measurement in all ranging modes. Range = 1 - 63 ms; measurement aborted when limit reached. Effective max convergence time depends on the actual convergence time plus readout averaging sample period setting. Figure 20. Total range execution time Pre-cal c. 26/87 Range convergence Readout averaging Convergence time (variable) 4.3 ms Default readout averaging period is calculated as follows: 1300 µs + (48 x 64.5 µs) = 4.3 ms DocID026171 Rev 7 VL6180X Functional description Table 11. Typical range convergence time (ms) Target reflectance Range (mm) 2.7.2 3% 5% 17% 88% 10 0.43 0.33 0.18 0.18 20 0.94 0.73 0.28 0.18 30 1.89 1.40 0.51 0.18 40 3.07 2.25 0.81 0.18 50 4.35 3.24 1.18 0.24 60 5.70 4.22 1.60 0.32 70 7.07 5.35 2.07 0.49 80 8.41 6.45 2.58 0.50 90 9.58 7.56 3.14 0.61 100 10.73 8.65 3.69 0.73 Range error codes Before using a measurement returned with a range API function, the application must first check that the function call has succeeded (returned 0) and then check the Range.errorStatus for possible error codes. Table 12 gives a summary of the error codes. Calling VL6180x_RangeGetStatusErrString() will also return the range error code/description. Table 12. Range error codes Bits [7:4] 0 Error code Description No error Valid measurement System error System error detected (can only happen on power on). No measurement possible. 6 Early convergence estimate ECE check failed 7 Max convergence System did not converge before the specified max. convergence time limit 8 Range ignore Ignore threshold check failed Not used - Signal to Noise (SNR) Ambient conditions too high. Measurement not valid Range underflow Range value < 0 If the target is very close (0-10mm) and the offset is not correctly calibrated it could lead to a small negative value 1-5 9-10 11 12/14 DocID026171 Rev 7 27/87 86 Functional description VL6180X Table 12. Range error codes (continued) Bits [7:4] Error code Description Range overflow Range value out of range. This occurs when the target is detected by the device but is placed at a high distance (> 200mm) resulting in internal variable overflow. 16 Ranging_Filtered(1) Distance filtered by Wrap Around Filter (WAF). Occurs when a high reflectance target is detected between 600mm to 1.2m 17 Not used - 18 Data_Not_Ready Error returned by VL6180x_RangeGetMeasurementIfReady() when ranging data is not ready. 13/15 1. Errors 16 & 18 require VL6180X API. 2.7.3 Range checks Error codes 6, 8 and 11 in Table 12 are configurable by the user (SNR, error 11, has not yet been integrated into the API). Early convergence estimate (ECE) Early convergence estimate (ECE) is a programmable feature designed to minimize power consumption when there is no target in the field-of-view (FOV). The system is said to have ‘converged’ (i.e. range acquired), when the convergence threshold(d) is reached before the max. convergence time limit (see Figure 21). This ratio specifies the minimum return signal rate required for convergence. If there is no target in the FOV, the system will continue to operate until the max. convergence time limit is reached before switching off thereby consuming power. With ECE enabled, the system estimates the return signal rate 0.5 ms after the start of every measurement. If it is below the ECE threshold, the measurement is aborted and an ECE error is flagged. Figure 21. Early convergence estimate (ECE) Return count convergence threshold converged m in n ur et .r s n ig al ra ECE threshold te measurement aborted ECE (0.5 ms) time max. convergence d. For standard ranging, the convergence threshold is set to 15360. The convergence threshold register is not accessible by the user. 28/87 DocID026171 Rev 7 VL6180X Functional description ECE is enabled by setting VL6180x_RangeSetEceState() and configured with VL6180x_RangeSetEceFactor(). This allows the user to change the ECE threshold from the default of 15% below minimum convergence rate. As shown by the example below. 85% × 0.5 × 10240 ECE threshold = -------------------------------------------------------------------------------Max convergence time (in ms) If the max convergence time is set to 30 ms (using VL6180x_RangeSetMaxConvergenceTime()), then the ECE threshold is 196. That is, if the return count is less than 196 after 0.5 ms, the measurement will be aborted. Note: The optimum value for the ECE threshold should be determined in the final application. Range ignore In a system with cover glass, the return signal from the glass (cross-talk) may be sufficient to cause the system to converge and return a valid range measurement even when there is no target present. The range ignore feature is designed to ensure that the system does not range on the glass. (Cross-talk is described in more detail in Section 2.8.2). The ignore threshold is enabled with VL6180x_RangeIgnoreSetEnable(). If enabled, the ignore threshold and valid height must be specified, this is set with VL6180x_RangeIgnoreConfigure(). A range ignore error will be flagged if the return signal rate is less than the ignore threshold. Note: The optimum value for the ignore threshold should be determined in the final application. Signal-to-noise ratio (SNR) SNR function not yet implemented in API. In high ambient conditions range accuracy can be impaired so the SNR threshold is used as a safety limit to invalidate range measurements where the ambient/signal ratio is considered too high.The default ambient/signal ratio limit is 10 (i.e. an SNR of 0.1) which is then encoded in 4.4 format as follows: SYSRANGE__MAX_AMBIENT_LEVEL_MULT{0x2C}= 10 x 16 = 160 To enable the SNR check, set bit 4 in SYSRANGE__RANGE_CHECK_ENABLES (0x02D). A lower setting results in a more aggressive filter which will result in a lower effective range but greater accuracy. A higher setting results in a less aggressive filter which will result in a greater effective range but lower accuracy. The SNR value can be calculated as follows: RESULT__RANGE_RETURN_SIGNAL_COUNT{0x6C} SNR = -------------------------------------------------------------------------------RESULT__RANGE_RETURN_AMB_COUNT{0x74} * 6 Note: The SNR value is the inverse of the ambient/signal ratio limit {0x2C}. Note: The optimum value for SNR threshold should be determined in the final application. DocID026171 Rev 7 29/87 86 Functional description 2.7.4 VL6180X Manual/autoVHV calibration Manual/auto VHV not yet implemented in API. SPAD(e) sensitivity is temperature dependent so VHV(f) calibration is used to regulate SPAD sensitivity over temperature in order to minimize signal rate variation. VHV calibration is performed either manually by the host processor or automatically by internal firmware. Execution time is typically 200 μs so has no impact on normal operation. A VHV calibration is run once at power-up and then automatically after every N range measurements defined by the SYSRANGE__VHV_REPEAT_RATE{0x31} register. AutoVHV calibration is disabled by setting this register to 0. Default is 255. If autoVHV is disabled it is recommended to run a manual VHV calibration periodically to recalibrate for any significant temperature variation. A manual VHV calibration is performed by setting SYSRANGE__VHV_RECALBRATE{0x2E} to 1. This register auto-clears. This operation should only be performed in software standby. 2.7.5 Wrap Around Filter Wrap-around is an effect linked to the ratio between the VCSEL pulse period and the photon return pulse. Figure 22. Wrap around - far target sĐƐĞůƉƵůƐĞ ZĞƚƵƌŶƉŚŽƚŽŶƐ ƐƐŽĐŝĂƚĞĚƌĞƚƵƌŶƉŚŽƚŽŶ Highly reflective targets (like mirrors) placed at a far distance (>600mm) from the VL6180X can still produce enough return signal for the VL6180X to declare a valid target and meet the wrap-around condition resulting in a wrong (under-estimated) returned distance. The WAF implemented in the API is able to automatically detect if a target is in the wraparound condition and filter it by returning an invalid distance (Range.errorStatus = 16). The WAF is enabled/disabled via VL6180x_FilterSetState() and read with VL6180x_FilterGetState(). 2.7.6 Maximum ranging distance (DMAX) A target placed in front of the VL6180X device may not be detected because it is too far away for the given ambient light conditions. When ambient light level increases, max detection range (Dmax) decreases. e. Photon detectors - Single Photon Avalanche Diodes f. 30/87 VHV is an adjustable SPAD bias voltage and stands for Very High Voltage (typically around 14 V). Also sometimes referred to as CP (Charge Pump). DocID026171 Rev 7 VL6180X Functional description When no target is detected (no valid distance), the VL6180X API is able to estimate Dmax as the maximum distance up to which a 17% target would have been detected with the current ambient light level. When no target is detected by the VL6180X, the application can interpret the Dmax value as no target is detected and there is no 17% (or above) target between 0 and Dmax mm. DMAX is enabled/disabled by VL6180x_DMaxSetState() and read with VL6180x_DMaxGetState(). Note: Dmax is estimated for a 17% reflectance target. If the real target has a lower reflectance, then the Dmax calculated by the API could be overestimated. Note: DMAX requires a large amount of software computation, that may represent a high time overhead for some low MHz CPU. It should be disabled if not required. DocID026171 Rev 7 31/87 86 Functional description 2.8 VL6180X Other ranging system considerations This section describes part-to-part range offset and system cross-talk. In addition, a procedure for cross-talk calibration is given. 2.8.1 Part-to-part range offset The VL6180X is factory calibrated to produce an absolute linear range output as shown in Figure 23. The part-to-part range offset is calibrated during manufacture and stored in NVM. Use VL6180x_GetOffsetCalibrationData() to read offset from device (immediately after VL6180x_InitData() this will be the NBVM programmed value). The API always returns the range with the part-to-part offset already applied. Measured range Figure 23. Part-to-part range offset p2p_offset calibration Actual Range 2.8.2 Cross-talk Cross-talk is defined as the signal return from the cover glass. The magnitude of the crosstalk depends on the type of glass, air gap and filter material. Cross-talk results in a range error (see Figure 24) which is proportional to the ratio of the cross-talk to the signal return from the target. The true range is recovered by applying automatic cross-talk compensation. Measured range Figure 24. Cross-talk compensation cross-talk compensation Actual Range Cross-talk compensation is enabled by using VL6180x_SetXTalkCompensationRate(). A cross-talk calibration procedure is described in Section 2.8.4. 32/87 DocID026171 Rev 7 VL6180X 2.8.3 Functional description Offset calibration procedure Complete steps 1-4 to see if part-to-part offset calibration is required. 1. Turn off WAF VL6180x_FilterSetState() = 0, turn off range ignore features VL6180x_RangeIgnoreSetEnable() = 0 and clear all interrupts VL6180x_ClearAllInterrupt(). 2. Position a white target (88% reflectance(g)) at a distance of 50mm from the top of the cover glass. 3. Perform a minimum of 10 range measurements and compute the average range using VL6180x_RangePollMeasurement(). 4. If the average range is within target distance ± 3 mm, offset calibration is not required. Otherwise, complete the calibration procedure. 5. Set VL6180x_SetOffsetCalibrationData() = 0. 6. Perform a minimum of 10 range measurements and compute the average range from VL6180x_RangePollMeasurement(). 7. Calculate the part-to-part offset as follows: part-to-part offset = target distance(mm) – average range(mm) 8. 2.8.4 The new offset value should be stored on system and written to the VL6180X by using VL6180x_SetOffsetCalibrationData() each time the device is reset. Cross-talk calibration procedure This section describes a procedure for calibrating system cross-talk. 1. Note: Perform offset calibration if required (see Section 2.8.3) and write the value to the device by using VL6180x_SetOffsetCalibrationData(). If the offset is incorrectly calibrated, cross-talk calibration will be inaccurate. 2. Turn off WAF VL6180x_FilterSetState() = 0, turn off range ignore features VL6180x_RangeIgnoreSetEnable() = 0 and clear all interrupts VL6180x_ClearAllInterrupt(). 3. Position a black target (3% reflectance(h)) at a distance of 100mm from the top of the cover glass. 4. Write 0 to VL6180x_SetXTalkCompensationRate(). 5. Perform a minimum of 10 range measurements and compute the average return rate and range value from VL6180x_RangePollMeasurement(). 6. Calculate the cross-talk factor as follows: average range(mm) cross-talk (in Mcps) = average return rate ×  1 – -----------------------------------------------------  target distance(mm) 7. Note: The cross-talk value should be stored on system and written to the VL6180X by using VL6180x_SetXTalkCompensationRate() each time the device is reset. Cross-talk compensation is only applied to targets above 20 mm. This is to ensure that cross-talk correction is not applied to near targets where the signal rate is decreasing. g. Target reflectance should be high but absolute value is not critical. h. Target reflectance should be low but absolute value is not critical. DocID026171 Rev 7 33/87 86 Functional description 2.8.5 VL6180X Cross-talk limit A practical limit for cross-talk is < 3.0 Mcps for standard ranging. This is based on two factors: 2.8.6 1. The return rate for a 3% reflective target at 100 mm without glass is typically around 1.5 Mcps. If glass is added with a cross-talk of 3.0 Mcps, the resultant return rate will be 4.5 Mcps. This results in a cross-talk correction factor of x3 so for a 100 mm target the raw range will be in the region of 30 mm. To ensure the cross-talk valid height restriction is not breached, the minimum raw range allowing for noise margin is around 30 mm. 2. A cross-talk correction factor of x3 also means that any range noise will be multiplied by 3 so noise also becomes a limiting factor. Cross-talk vs air gap Figure 25 shows the typical cross-talk vs air gap using low cross-talk cover glass. Above 1.5 mm, the cross-talk rises rapidly. Figure 25. Cross-talk vs air gap 34/87 DocID026171 Rev 7 VL6180X 2.9 Functional description Current consumption Table 13. gives an overview of current consumption in different operating states. Table 13. Typical current consumption in different operating states Mode Current Conditions Hardware standby < 1 μA Shutdown (GPIO0 = 0). No I2C comms Software standby < 1 μA After MCU boot. Device ready ALS 300 μA During integration Ranging 1.7 mA Average consumption during ranging(1) 1. 10 Hz sampling rate, 17% reflective target at 50 mm. 2.9.1 Ranging current consumption Figure 26. shows typical ranging current consumption of the VL6180X. Current consumption depends on target distance, target reflectance and sampling rate. The example shown here is based on default settings and a sampling rate of 10 Hz. The average current consumption for a 17% reflective target at 50 mm operating at 10 Hz is 1.7 mA. At different sampling rates the current consumption scales accordingly i.e. the average current consumption at 1 Hz under the same conditions would be 0.17 mA. Figure 26. Typical ranging current consumption (10 Hz sampling rate) ƵƌƌĞŶƚĐŽŶƐƵŵƉƚŝŽŶ;ŵͿ ϰ͘ϱϬ ϰ͘ϬϬ ϯ͘ϱϬ ϯ͘ϬϬ Ϯ͘ϱϬ ϯй Ϯ͘ϬϬ ϱй ϭ͘ϱϬ ϭϳй ϭ͘ϬϬ ϴϴй Ϭ͘ϱϬ Ϭ͘ϬϬ Ϭ ϭϬ ϮϬ ϯϬ ϰϬ ϱϬ ϲϬ ϳϬ ϴϬ ϵϬ ϭϬϬ ZĂŶŐĞ;ŵŵͿ The minimum average current consumption in Figure 26. is 1.5 mA, 0.5 mA of which comes from pre-calibration before each measurement and 1.0 mA from post-processing (readout averaging). Pre-calibration is a fixed overhead but readout averaging can be reduced or effectively disabled by setting the READOUT__AVERAGING_SAMPLE_PERIOD{0x10A} to zero (default setting is 48). Note: Decreasing the READOUT__AVERAGING_SAMPLE_PERIOD will increase sampling noise. It is recommended that any change in setting be properly evaluated in the end application. Minimum current consumption scales with sampling rate i.e. at a sampling rate of 1 Hz the current consumption associated with pre- and post-processing will be 0.15 μA. DocID026171 Rev 7 35/87 86 Functional description 2.9.2 VL6180X Current consumption calculator Table 14. gives a breakdown of typical current consumption for pre-calibration, ranging and readout averaging. Table 14. Breakdown of current consumption Label Phase I (mA) t (ms) Q (μC) = I x t Q1 Pre-calibration 13.0 3.2 41.6 Q2 Ranging 22.0 per ms 22.0 per ms Q3 Readout averaging 25.0 per ms 25.0 per ms Current consumption can then be calculated as follows: I (μA) = sampling_rate * [Q1 + (Q2 * RESULT__RANGE_RETURN_CONV_TIME in ms) + Q3 * (1.3 + (READOUT__AVERAGING_SAMPLE_PERIOD * 0.0645 ms))] Table 11. gives typical convergence times for different target reflectance. So, for example, RESULT__RANGE_RETURN_CONV_TIME for a 3% target at 50 mm is 4.35 ms. At 10 Hz sampling rate this gives: I (μA) = 10 * [41.6 + (22 * 4.35) + 25 * (1.3 + (48 * 0.0645))] = 2472 μA 2.9.3 Current distribution Table 15. shows how current consumption is distributed between the two supplies in ranging mode. AVDD_VCSEL supplies the VCSEL current and AVDD supplies all other functions. Angle of divergent laser emission is 25° +/- 5°. The condition of divergent angle of 25° laser emission is 1/e2 of the peak intensity Note: The VCSEL driver is pulsed at 100 MHz with a 33% duty cycle (see Figure 27.) so average current consumption on AVDD_VCSEL is one third of the peak. Table 15. Current consumption on AVDD and AVDD_VCSEL Power supply(1) Current AVDD 14 mA AVDD_VCSEL 8 mA(2) Note Average during active ranging Average during active ranging (33% duty cycle). 1. Normally, both supplies will be driven from a common source giving a peak instantaneous current demand of 38 mA. 2. Peak emitter current during ranging is 24 mA. Peak power is 14mW. Figure 27. VCSEL pulse duty cycle 10 ns 24 mA peak current/14mW peak power 8 mA average current 33% duty cycle 36/87 DocID026171 Rev 7 VL6180X 2.10 Functional description Ambient light sensor (ALS) The VL6180X contains an ambient light sensor capable of measuring the ambient light level over a wide dynamic range. This section describes the main features of the ALS. The ALS performance specification can be found in Section 3.2. 2.10.1 Field of view Figure 28 shows the ALS field of view which is typically 42 degrees (half angle, 40% of peak) in both X and Y. Figure 28. ALS angular response ϭ͘Ϯ ϭ Ϭ͘ϴ Ϭ͘ϲ Ϭ͘ϰ Ϭ͘Ϯ Ϭ ͲϲϬ ͲϱϬ ͲϰϬ ͲϯϬ ͲϮϬ ͲϭϬ Ϭ ϭϬ ϮϬ ϯϬ ϰϬ ϱϬ ϲϬ ŶŐůĞ;ΣͿ 2.10.2 Spectral response The spectral response of the ALS compared to photopic response is shown in Figure 29. Figure 29. ALS spectral response 120% 100% 80% 60% Photopic VL6180X 40% 20% 0% 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 Wavelength (nm) DocID026171 Rev 7 37/87 86 Functional description 2.10.3 VL6180X ALS dynamic range Table 16 shows the range of measurable light at all gains both with and without glass. In most applications operating at a single gain setting should be possible. Table 16. ALS dynamic range(1) Analogue gain setting Dynamic range (no glass) Dynamic range (10% transmissive glass) Min. (Lux)(2) Max. (Lux) 1 3.20 20800 32.0 >100,000 1.25 2.56 16640 25.6 >100,000 1.67 1.93 12530 19.3 >100,000 2.5 1.28 8320 12.8 83,200 5 0.64 4160 6.4 41,600 10 0.32 2080 3.2 20,800 20 0.16 1040 1.6 10,400 40 0.08 520 0.8 5,200 Minimum (Lux) Maximum (Lux) 1. ALS lux resolution = 0.32 lux/count 2. Minimum of 10 counts 2.10.4 ALS count to lux conversion The output from the ambient light sensor is a 16 bit count value, this count output is proportional to the light level and is converted into lux with VL6180x_AlsGetLux(). The ALS read measurement functions VL6180x_AlsPollMeasurement() & VL6180x_AlsGetMeasurement() both call this function. The conversion from count to lux is dependent on the ALS lux resolution, ALS gain and integration period: ALS count 100 ms Light level (in lux) = ALS lux resolution × ------------------------------- × -----------------------------------------------------Analog gain ALS integration time The factory calibrated ALS lux resolution is 0.32 lux/count for an analog gain of 1 & 100ms integration time (calibrated without glass). The current lux resolution value can be read by using VL6180x_AlsGetLuxResolutionFactor(). The ALS lux resolution will require re-calibration in the final system where cover glass is used. This can be done by reading the lux value with and without glass under the same conditions and multiplying the ALS lux resolution by the ratio of the two values as shown below. The new value can be written to the device by using VL6180x_AlsSetLuxResolutionFactor(). LuxValue (without glass) ALS lux resolution (with glass) = -------------------------------------------------------------------- × ALS lux resolution (without glass) LuxValue (with glass) 38/87 DocID026171 Rev 7 VL6180X 2.10.5 Functional description Integration period The integration period (VL6180x_AlsSetIntegrationPeriod()) is the time over which a single ALS measurement is made. The default integration period is 100ms. Integration times in the range 50-100 ms are recommended to reduce impact of light flicker from artificial lighting. 2.10.6 ALS gain selection Eight analog gain settings (VL6180x_AlsSetAnalogueGain()) are available which can be selected manually depending on the range and resolution required. shows the actual characterized gains versus the design targets. If a gain setting other than gain 20 is used, marginally greater accuracy can be achieved by using the actual gain values in the light level equation in Section 2.10.4 when calculating the lux light level. Table 17. Actual gain values 2.10.7 VL6180x_Als SetAnalogueGain Analog gain setting Actual gain values 0x46 1 1.01 0x45 1.25 1.28 0x44 1.67 1.72 0x43 2.5 2.60 0x42 5 5.21 0x41 10 10.32 0x40 20 20 0x47 40 40 Scaler In addition to analogue gain, the VL6180X has a scaler that multiplies the ALS count prior to the result being read. This value, in addition to the analogue gain is useful in very low light conditions to increase the dynamic range. The scaler can be a value between 1 to 16 (default 1) and is set with VL6180x_ALSSetScaler() and read with VL6180x_ALSGetScaler(). DocID026171 Rev 7 39/87 86 Performance specification VL6180X 3 Performance specification 3.1 Proximity ranging (0 to 100mm) The following table specifies ranging performance up to 100mm. Ranging beyond 100mm is possible with certain target reflectances and ambient conditions but not guaranteed. These results are derived from characterization of both typical and corner samples (representative of worst case process conditions). Unless specified otherwise, all results were performed at room temperature (23°C), nominal voltage (2.8V) and in the dark. Results are based on the average of 100 measurements for a 17% reflective target @ 50mm. Table 18. Ranging specification Parameter Noise(1) Range offset error(2) Temperature dependent drift Voltage dependent drift (3) (4) Convergence time (5) Min. Typ. Max. Unit - - 2.0 mm - - 13 mm - 9 15 mm - 3 5 mm - - 15 ms 1. Maximum standard deviation of 100 measurements 2. Maximum offset drift after 3 reflow cycles. This error can be removed by re-calibration in the final system 3. Tested over optimum operating temperature range (see Table 23.: Normal operating conditions) 4. Tested over optimum operating voltage range (see Table 23.: Normal operating conditions) 5. Based on a 3% reflective target @ 100 mm 3.1.1 Max range vs. ambient light level The data shown in this section is worst case data for reference only. Table 19 shows the worst case maximum range achievable under different ambient light conditions . Table 19. Worst case max range vs. ambient 0 to 100mm(1)(2) Target reflectance In the dark(3) Worst case indoor light High ambient light (1 kLux diffuse halogen) (5 kLux diffuse halogen) 3% > 100 > 80 > 40 mm 5% > 100 > 90 > 45 mm 17% > 100 > 100 > 60 mm 88% > 100 > 100 > 70 mm Unit 1. Tested in an integrating sphere (repeatable lab test, not representative of real world ambient light) at 1 kLux and 5 kLux (halogen light source) using 80 x 80 mm targets. Due to high IR content, 5 kLux halogen light approximates to 10 kLux to 15 kLux natural sunlight. 2. SNR limit of 0.1 applied. Note: maximum range could be increased by reducing the SNR limit to 0.06 3. Also applicable to lighting conditions with low IR content e.g typical office fluorescent lighting 40/87 DocID026171 Rev 7 VL6180X 3.2 Performance specification ALS performance The following table specifies ALS performance. These results are derived from characterization of typical samples (without cover glass). Unless specified otherwise, all tests were performed at room temperature (23°C), nominal voltage (2.8V) and using a halogen light source. Table 20. ALS performance Parameter Min. Typ. Max. Unit 0.28 0.32 0.36 Lux/count Angular response - 42 - degrees Spectral response - photopic - - 0.002 - 20971 Lux - - 5 % - - 10 % Gain error (@ gain 20) - - 1 % Gain error (gains 1 to 10) - - 7 % ALS sensitivity(1) (2) Dynamic Range(3) Linearity error (1 to 300 lux)(4) Linearity error (300 to 7500 lux)(4) 1. 535nm LED @ 1 kLux. Measured @ gain 20. 2. Half angle. 40% transmission. 3. Minimum of one count at gain 40 and 400 ms ALS integration time. 4. Test conditions: -10°C to +60°C; analog gains 1 to 20 DocID026171 Rev 7 41/87 86 I2C control interface 4 VL6180X I2C control interface The VL6180X is controlled over an I2C interface. The default I2C address is 0x29 (7-bit). This section describes the I2C protocol. Figure 30. Serial interface data transfer protocol Acknowledge Start condition SDA MSB SCL S LSB 1 2 3 4 5 P 8 7 6 As/Am Address or data byte Stop condition Information is packed in 8-bit packets (bytes) always followed by an acknowledge bit, As for sensor acknowledge and Am for master acknowledge. The internal data is produced by sampling SDA at a rising edge of SCL. The external data must be stable during the high period of SCL. The exceptions to this are start (S) or stop (P) conditions when SDA falls or rises respectively, while SCL is high. A message contains a series of bytes preceded by a start condition and followed by either a stop or repeated start (another start condition but without a preceding stop condition) followed by another message. The first byte contains the device address (0x52) and also specifies the data direction. If the least significant bit is low (0x52) the message is a master write to the slave. If the lsb is set (0x53) then the message is a master read from the slave. Figure 31. I2C device address LSBit MSBit 0 1 0 1 0 0 1 R/W All serial interface communications with the sensor must begin with a start condition. The sensor acknowledges the receipt of a valid address by driving the SDA wire low. The state of the read/write bit (lsb of the address byte) is stored and the next byte of data, sampled from SDA, can be interpreted. During a write sequence the second and third bytes received provide a 16-bit index which points to one of the internal 8-bit registers. Figure 32. Single location, single write) Start S Acknowledge from sensor Sensor acknowledges valid address ADDRESS[7:0] As INDEX[15:8] As 0x52 (write) 42/87 INDEX[7:0] As DATA[7:0] As P Stop DocID026171 Rev 7 I2C control interface VL6180X As data is received by the slave it is written bit by bit to a serial/parallel register. After each data byte has been received by the slave, an acknowledge is generated, the data is then stored in the internal register addressed by the current index. During a read message, the contents of the register addressed by the current index is read out in the byte following the device address byte. The contents of this register are parallel loaded into the serial/parallel register and clocked out of the device by the falling edge of SCL. Figure 33. Single location, single read 0x52 (write) ADDRESS[7:0] S INDEX[15:8] As INDEX[7:0] As As P 0x53 (read) ADDRESS[7:0] S As DATA[7:0] Am P At the end of each byte, in both read and write message sequences, an acknowledge is issued by the receiving device (that is, the sensor for a write and the master for a read). A message can only be terminated by the bus master, either by issuing a stop condition or by a negative acknowledge (that is, not pulling the SDA line low) after reading a complete byte during a read operation. The interface also supports auto-increment indexing. After the first data byte has been transferred, the index is automatically incremented by 1. The master can therefore send data bytes continuously to the slave until the slave fails to provide an acknowledge or the master terminates the write communication with a stop condition. If the auto-increment feature is used the master does not have to send address indexes to accompany the data bytes. Figure 34. Multiple location write 0x52 (write) S ADDRESS[7:0] DATA[7:0] As As INDEX[15:8] DATA[7:0] DocID026171 Rev 7 As As INDEX[7:0] DATA[7:0] As As P 43/87 86 I2C control interface VL6180X Figure 35. Multiple location read 0x52 (write) ADDRESS[7:0] S INDEX[15:8] As INDEX[7:0] As As P 0x53 (read) S ADDRESS[7:0] DATA[7:0] 44/87 As Am DATA[7:0] DATA[7:0] DocID026171 Rev 7 Am Am DATA[7:0] DATA[7:0] Am Am P I2C control interface VL6180X 4.1 I2C interface - timing characteristics Timing characteristics are shown in Table 21. Please refer to Figure 36 for an explanation of the parameters used. Table 21. I2C interface - timing characteristics Symbol Parameter Minimum Typical Maximum Unit FI2C Operating frequency 0 - 400(1) kHz tLOW Clock pulse width low 0.5 - - μs tHIGH Clock pulse width high 0.26 - - μs tSP Pulse width of spikes which are suppressed by the input filter - - 50 ns tBUF Bus free time between transmissions 0.5 - - μs tHD.STA Start hold time 0.26 - - μs tSU.STA Start set-up time 0.26 - - μs tHD.DAT Data in hold time 0 - - μs tSU.DAT Data in set-up time 50 - - ns tR SCL/SDA rise time - - 120 ns tF SCL/SDA fall time - - 120 ns tSU.STO Stop set-up time 0.26 - - μs Ci/o Input/output capacitance (SDA) - - 4 pF Cin Input capacitance (SCL) - - 4 pF CL Load capacitance - 125 - pF 1. The maximum bus speed may also be limited by the combination of load capacitance and pull-up resistor. Please refer to the I2C specification for further information. Figure 36. I2C timing characteristics stop start start ... SDA tBUF SCL tLOW tR VIH VIL tHD.STA tF VIH stop ... VIL tHD.STA tHD.DAT tHIGH tSU.DAT tSU.STA tSU.STO All timing characteristics are measured with respect to VIL_MAX or VIH_MIN. DocID026171 Rev 7 45/87 86 Electrical characteristics VL6180X 5 Electrical characteristics 5.1 Absolute maximum ratings Table 22. Absolute maximum ratings Parameter Min. Typ. Max. Unit AVDD -0.5 - 3.6 V AVDD_VCSEL -0.5 - 3.6 V SCL, SDA, GPIO0 and GPIO1 -0.5 - 3.6 V VESD (Electrostatic discharge model) Human body model(1) Charge device model(2) -2 -500 2 500 KV V Temperature (storage - manufacturing test) -40 +85 °C - 1. HBM tests are performed in compliance with ESDA/JEDEC JS-001-2010 (ex: JESD22-A114) MM test is performed in compliance with JESD22-A115. 2. CDM ESD tests are performed in compliance with JESD22-C101. Note: Stresses above those listed in Table 22. may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 5.2 Normal operating conditions Table 23. Normal operating conditions Parameter Min. Typ. Max. Unit Voltage (optimum operating) 2.7 2.8 2.9 V Voltage (functional operating) 2.6 2.8 3.0 V +60 °C +70 °C Voltage (AVDD and AVDD_VCSEL) Temperature 46/87 Temperature (optimum operating) -10 Temperature (functional operating) -20 DocID026171 Rev 7 - VL6180X 5.3 Electrical characteristics Electrical characteristics Table 24. Digital I/O electrical characteristics Symbol Parameter Minimum Typical Maximum Unit CMOS digital I/O (SDA, SCL, GPIO0 and GPIO1) VIL Low level input voltage -0.5 - 0.6 V VIH High level input voltage 1.12 - AVDD+0.5 V VOL Low level output voltage (8mA load) - - 0.4 V VOH High level output voltage (8mA load) AVDD-0.4 - - V IIL Low level input current - - -10 µA IIH High level input current - - 10 µA DocID026171 Rev 7 47/87 86 Device registers 6 VL6180X Device registers This section describes in detail all user accessible device registers. Registers are grouped by function as shown in Table 25. to make them easier to read but also to simplify multi-byte read/write I2C accesses (burst mode). More details in Section 4. Reset values are given for each register which denotes the register value in software standby. Table 25. Register groups Register group Address range IDENTIFICATION 0x00 - 0x0F SYSTEM SETUP 0x10 - 0x17 RANGE SETUP 0x18 - 0x37 ALS SETUP 0x38 - 0x40 RESULTS 0x4D - 0x80 Note that registers can be 8-,16- or 32-bit. Multi-byte registers are always addressed in ascending order with MSB first as shown in Table 26. Table 26. 32-bit register example Register address Byte Address 6.1 MSB Address + 1 .. Address + 2 .. Address + 3 LSB Register encoding formats Some registers are encoded to allow rational numbers to be expressed efficiently. Table 27 gives an explanation of 9.7 and 4.4 encoding formats. Table 27. 9.7 and 4.4 register formats Format 48/87 Description 4.4 8 bits = 4 integer bits + 4 fractional bits (stored as 1 byte) Encoding example: the value 4.2 is multiplied by 16 (24) rounded and stored as 67 decimal. Decoding example: 67 is divided by 16 = 4.19. 9.7 16 bits = 9 integer bits + 7 fractional bits (stored over 2 bytes) Encoding example: the value 4.2 is multiplied by 128 (27) rounded and stored as 537 decimal. Decoding example: 537 is divided by 128 = 4.19. DocID026171 Rev 7 VL6180X Device registers Table 28. Register summary Offset Register name Reference 0x000 IDENTIFICATION__MODEL_ID Section 6.2.1 on page 51 0x001 IDENTIFICATION__MODEL_REV_MAJOR Section 6.2.2 on page 51 0x002 IDENTIFICATION__MODEL_REV_MINOR Section 6.2.3 on page 51 0x003 IDENTIFICATION__MODULE_REV_MAJOR Section 6.2.4 on page 52 0x004 IDENTIFICATION__MODULE_REV_MINOR Section 6.2.5 on page 52 0x006 IDENTIFICATION__DATE_HI Section 6.2.6 on page 52 0x007 IDENTIFICATION__DATE_LO Section 6.2.7 on page 53 0x008:0x009 IDENTIFICATION__TIME Section 6.2.8 on page 53 0x010 SYSTEM__MODE_GPIO0 Section 6.2.9 on page 54 0x011 SYSTEM__MODE_GPIO1 Section 6.2.10 on page 55 0x012 SYSTEM__HISTORY_CTRL Section 6.2.11 on page 56 0x014 SYSTEM__INTERRUPT_CONFIG_GPIO Section 6.2.12 on page 57 0x015 SYSTEM__INTERRUPT_CLEAR Section 6.2.13 on page 57 0x016 SYSTEM__FRESH_OUT_OF_RESET Section 6.2.14 on page 58 0x017 SYSTEM__GROUPED_PARAMETER_HOLD Section 6.2.15 on page 58 0x018 SYSRANGE__START Section 6.2.16 on page 59 0x019 SYSRANGE__THRESH_HIGH Section 6.2.17 on page 59 0x01A SYSRANGE__THRESH_LOW Section 6.2.18 on page 60 0x01B SYSRANGE__INTERMEASUREMENT_PERIOD Section 6.2.19 on page 60 0x01C SYSRANGE__MAX_CONVERGENCE_TIME Section 6.2.20 on page 60 0x01E SYSRANGE__CROSSTALK_COMPENSATION_RATE Section 6.2.21 on page 61 0x021 SYSRANGE__CROSSTALK_VALID_HEIGHT Section 6.2.22 on page 61 0x022 SYSRANGE__EARLY_CONVERGENCE_ESTIMATE Section 6.2.23 on page 61 0x024 SYSRANGE__PART_TO_PART_RANGE_OFFSET Section 6.2.24 on page 62 0x025 SYSRANGE__RANGE_IGNORE_VALID_HEIGHT Section 6.2.25 on page 62 0x026 SYSRANGE__RANGE_IGNORE_THRESHOLD Section 6.2.26 on page 62 0x02C SYSRANGE__MAX_AMBIENT_LEVEL_MULT Section 6.2.27 on page 63 0x02D SYSRANGE__RANGE_CHECK_ENABLES Section 6.2.27 on page 63 0x02E SYSRANGE__VHV_RECALIBRATE Section 6.2.29 on page 64 0x031 SYSRANGE__VHV_REPEAT_RATE Section 6.2.30 on page 64 0x038 SYSALS__START Section 6.2.31 on page 65 0x03A SYSALS__THRESH_HIGH Section 6.2.32 on page 65 0x03C SYSALS__THRESH_LOW Section 6.2.33 on page 66 DocID026171 Rev 7 49/87 86 Device registers VL6180X Table 28. Register summary (continued) Offset Register name 0x03E SYSALS__INTERMEASUREMENT_PERIOD Section 6.2.34 on page 66 0x03F SYSALS__ANALOGUE_GAIN Section 6.2.35 on page 67 0x040 SYSALS__INTEGRATION_PERIOD Section 6.2.36 on page 67 0x04D RESULT__RANGE_STATUS Section 6.2.37 on page 68 0x04E RESULT__ALS_STATUS Section 6.2.38 on page 69 0x04F RESULT__INTERRUPT_STATUS_GPIO Section 6.2.39 on page 70 0x050 RESULT__ALS_VAL Section 6.2.40 on page 70 0x052:0x060 RESULT__HISTORY_BUFFER_x (0x2) 50/87 Reference Section 6.2.41 on page 71 0x062 RESULT__RANGE_VAL Section 6.2.42 on page 72 0x064 RESULT__RANGE_RAW Section 6.2.43 on page 72 0x066 RESULT__RANGE_RETURN_RATE Section 6.2.44 on page 72 0x068 RESULT__RANGE_REFERENCE_RATE Section 6.2.45 on page 73 0x06C RESULT__RANGE_RETURN_SIGNAL_COUNT Section 6.2.46 on page 73 0x070 RESULT__RANGE_REFERENCE_SIGNAL_COUNT Section 6.2.47 on page 74 0x074 RESULT__RANGE_RETURN_AMB_COUNT Section 6.2.48 on page 74 0x078 RESULT__RANGE_REFERENCE_AMB_COUNT Section 6.2.49 on page 74 0x07C RESULT__RANGE_RETURN_CONV_TIME Section 6.2.50 on page 75 0x080 RESULT__RANGE_REFERENCE_CONV_TIME Section 6.2.51 on page 75 0x10A READOUT__AVERAGING_SAMPLE_PERIOD Section 6.2.52 on page 75 0x119 FIRMWARE__BOOTUP Section 6.2.52 on page 75 0x120 FIRMWARE__RESULT_SCALER Section 6.2.53 on page 76 0x212 I2C_SLAVE__DEVICE_ADDRESS Section 6.2.55 on page 76 0x2A3 INTERLEAVED_MODE__ENABLE Section 6.2.56 on page 77 DocID026171 Rev 7 VL6180X Device registers 6.2 Register descriptions 6.2.1 IDENTIFICATION__MODEL_ID 7 6 5 4 3 2 1 0 identification__model_id R/W Address: 0x000 Type: R/W Reset: 0xB4 Description: [7:0] 6.2.2 identification__model_id: Device model identification number. 0xB4 = VL6180X IDENTIFICATION__MODEL_REV_MAJOR 7 6 5 4 3 2 1 RESERVED identification__model_rev_major R R/W Address: 0x001 Type: R/W Reset: 0x1, register default overwritten at boot-up by NVM contents. 0 Description: [2:0] 6.2.3 identification__model_rev_major: Revision identifier of the Device for major change. IDENTIFICATION__MODEL_REV_MINOR 7 6 5 4 3 2 1 RESERVED identification__model_rev_minor R R/W Address: 0x002 Type: R/W Reset: 0x3, register default overwritten at boot-up by NVM contents. 0 Description: [2:0] identification__model_rev_minor: Revision identifier of the Device for minor change. IDENTIFICATION__MODEL_REV_MINOR = 3 for latest ROM revision DocID026171 Rev 7 51/87 86 Device registers 6.2.4 VL6180X IDENTIFICATION__MODULE_REV_MAJOR 7 6 5 4 3 2 1 RESERVED identification__module_rev_major R R/W Address: 0x003 Type: R/W Reset: 0x1, register default overwritten at boot-up by NVM contents. 0 Description: [2:0] 6.2.5 identification__module_rev_major: Revision identifier of the Module Package for major change. Used to store NVM content version. Contact ST for current information. IDENTIFICATION__MODULE_REV_MINOR 7 6 5 4 3 2 1 RESERVED identification__module_rev_minor R R/W Address: 0x004 Type: R/W Reset: 0x2, register default overwritten at boot-up by NVM contents. 0 Description: [2:0] 6.2.6 identification__module_rev_minor: Revision identifier of the Module Package for minor change. Used to store NVM content version. Contact ST for current information. IDENTIFICATION__DATE_HI 7 6 5 4 3 2 1 identification__year identification__month R/W R/W Address: 0x006 Type: R/W Reset: 0xYY, register default overwritten at boot-up by NVM contents. Description: Part of the register set that can be used to uniquely identify a module. 52/87 [7:4] identification__year: Last digit of manufacturing year (bits[3:0]). [3:0] identification__month: Manufacturing month (bits[3:0]). DocID026171 Rev 7 0 VL6180X 6.2.7 Device registers IDENTIFICATION__DATE_LO 7 6 5 4 3 2 1 0 identification__day identification__phase R/W R/W Address: 0x007 Type: R/W Reset: 0xYY, register default overwritten at boot-up by NVM contents. Description: Part of the register set that can be used to uniquely identify a module. [7:3] identification__day: Manufacturing day (bits[4:0]). [2:0] identification__phase: Manufacturing phase identification (bits[2:0]). 6.2.8 IDENTIFICATION__TIME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 identification__time R/W Address: 0x008:0x009 Type: R/W Reset: 0xYYYY, register default overwritten at boot-up by NVM contents. Description: Part of the register set that can be used to uniquely identify a module. [15:0] identification__time: Time since midnight (in seconds) = register_value * 2 DocID026171 Rev 7 53/87 86 Device registers 6.2.9 VL6180X SYSTEM__MODE_GPIO0 2 1 0 RESERVED 3 system__gpio0_select 4 system__gpio0_polarity 5 system__gpio0_is_xshutdown 6 RESERVED 7 R R/W R/W R/W R/W Address: 0x010 Type: R/W Reset: 0x60 Description: [6] system__gpio0_is_xshutdown: Priority mode - when enabled, other bits of the register are ignored. GPIO0 is main XSHUTDOWN input. 0: Disabled 1: Enabled - GPIO0 is main XSHUTDOWN input. [5] system__gpio0_polarity: Signal Polarity Selection. 0: Active-low 1: Active-high [4:1] [0] 54/87 system__gpio0_select: Functional configuration options. 0000: OFF (Hi-Z) 1000: GPIO Interrupt output Reserved. Write 0. DocID026171 Rev 7 VL6180X 6.2.10 Device registers SYSTEM__MODE_GPIO1 3 2 1 0 RESERVED 4 system__gpio1_select 5 system__gpio1_polarity 6 RESERVED 7 R R/W R/W R/W Address: 0x011 Type: R/W Reset: 0x20 Description: [5] [4:1] [0] system__gpio1_polarity: Signal Polarity Selection. 0: Active-low 1: Active-high system__gpio1_select: Functional configuration options. 0000: OFF (Hi-Z) 1000: GPIO Interrupt output Reserved. Write 0. DocID026171 Rev 7 55/87 86 Device registers SYSTEM__HISTORY_CTRL Address: 0x012 Type: R/W Reset: 0x0 4 3 2 1 0 system__history_buffer_enable 5 system__history_buffer_mode 6 system__history_buffer_clear 7 RESERVED 6.2.11 VL6180X R R/W R/W R/W Description: 56/87 [2] system__history_buffer_clear: User-command to clear history (FW will auto-clear this bit when clear has completed). 0: Disabled 1: Clear all history buffers [1] system__history_buffer_mode: Select mode buffer results for: 0: Ranging (stores the last 8 ranging values (8-bit) 1: ALS (stores the last 8 ALS values (16-bit) [0] system__history_buffer_enable: Enable History buffering. 0: Disabled 1: Enabled DocID026171 Rev 7 VL6180X 6.2.12 Device registers SYSTEM__INTERRUPT_CONFIG_GPIO 7 6 5 4 3 2 1 RESERVED als_int_mode range_int_mode R R/W R/W Address: 0x014 Type: R/W Reset: 0x0 0 Description: [5:3] als_int_mode: Interrupt mode source for ALS readings: 0: Disabled 1: Level Low (value < thresh_low) 2: Level High (value > thresh_high) 3: Out Of Window (value < thresh_low OR value > thresh_high) 4: New sample ready [2:0] range_int_mode: Interrupt mode source for Range readings: 0: Disabled 1: Level Low (value < thresh_low) 2: Level High (value > thresh_high) 3: Out Of Window (value < thresh_low OR value > thresh_high) 4: New sample ready 6.2.13 SYSTEM__INTERRUPT_CLEAR 7 6 Address: 0x015 Type: R/W Reset: 0x0 5 4 3 2 1 RESERVED int_clear_sig R R/W 0 Description: [2:0] int_clear_sig: Interrupt clear bits. Writing a 1 to each bit will clear the intended interrupt. Bit [0] - Clear Range Int Bit [1] - Clear ALS Int Bit [2] - Clear Error Int. DocID026171 Rev 7 57/87 86 Device registers SYSTEM__FRESH_OUT_OF_RESET 6 Address: 0x016 Type: R/W Reset: 0x1 5 4 3 2 1 0 fresh_out_of_reset 7 RESERVED 6.2.14 VL6180X R R/W Description: [0] SYSTEM__GROUPED_PARAMETER_HOLD 6 Address: 0x017 Type: R/W Reset: 0x0 5 4 3 2 1 0 grouped_parameter_hold 7 RESERVED 6.2.15 fresh_out_of_reset: Fresh out of reset bit, default of 1, user can set this to 0 after initial boot and can therefore use this to check for a reset condition R R/W Description: [0] 58/87 grouped_parameter_hold: Flag set over I2C to indicate that data is being updated 0: Data is stable - FW is safe to copy 1: Data being updated - FW not safe to copy Usage: set to 0x01 first, write any of the registers listed below, then set to 0x00 so that the settings are used by the firmware at the start of the next measurement. SYSTEM__INTERRUPT_CONFIG_GPIO SYSRANGE__THRESH_HIGH SYSRANGE__THRESH_LOW SYSALS__INTEGRATION_PERIOD SYSALS__ANALOGUE_GAIN SYSALS__THRESH_HIGH SYSALS__THRESH_LOW DocID026171 Rev 7 VL6180X SYSRANGE__START Address: 0x018 Type: R/W Reset: 0x0 5 4 3 2 1 0 sysrange__startstop 6 sysrange__mode_select 7 RESERVED 6.2.16 Device registers R R/W R/W Description: [1] sysrange__mode_select: Device Mode select 0: Ranging Mode Single-Shot 1: Ranging Mode Continuous [0] sysrange__startstop: StartStop trigger based on current mode and system configuration of device_ready. FW clears register automatically. Setting this bit to 1 in single-shot mode starts a single measurement. Setting this bit to 1 in continuous mode will either start continuous operation (if stopped) or halt continuous operation (if started). This bit is auto-cleared in both modes of operation. 6.2.17 SYSRANGE__THRESH_HIGH 7 6 5 4 3 2 1 0 sysrange__thresh_high R/W Address: 0x019 Type: R/W Reset: 0xFF Description: [7:0] sysrange__thresh_high: High Threshold value for ranging comparison. Range 0-255mm. DocID026171 Rev 7 59/87 86 Device registers 6.2.18 VL6180X SYSRANGE__THRESH_LOW 7 6 5 4 3 2 1 0 sysrange__thresh_low R/W Address: 0x01A Type: R/W Reset: 0x0 Description: [7:0] 6.2.19 sysrange__thresh_low: Low Threshold value for ranging comparison. Range 0-255mm. SYSRANGE__INTERMEASUREMENT_PERIOD 7 6 5 4 3 2 1 0 sysrange__intermeasurement_period R/W Address: 0x01B Type: R/W Reset: 0xFF Description: [7:0] 6.2.20 sysrange__intermeasurement_period: Time delay between measurements in Ranging continuous mode. Range 0-254 (0 = 10ms). Step size = 10ms. SYSRANGE__MAX_CONVERGENCE_TIME 7 6 5 4 3 2 RESERVED sysrange__max_convergence_time R R/W Address: 0x01C Type: R/W Reset: 0x31 1 0 Description: [5:0] 60/87 sysrange__max_convergence_time: Maximum time to run measurement in Ranging modes. Range 1 - 63 ms (1 code = 1 ms); Measurement aborted when limit reached to aid power reduction. For example, 0x01 = 1ms, 0x0a = 10ms. Note: Effective max_convergence_time depends on readout_averaging_sample_period setting. DocID026171 Rev 7 VL6180X 6.2.21 15 Device registers SYSRANGE__CROSSTALK_COMPENSATION_RATE 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 sysrange__crosstalk_compensation_rate R/W Address: 0x01E Type: R/W Reset: 0x0 Description: [15:0] 6.2.22 sysrange__crosstalk_compensation_rate: User-controlled crosstalk compensation in Mcps (9.7 format). SYSRANGE__CROSSTALK_VALID_HEIGHT 7 6 5 4 3 2 1 0 sysrange__crosstalk_valid_height R/W Address: 0x021 Type: R/W Reset: 0x14 Description: [7:0] 6.2.23 15 sysrange__crosstalk_valid_height: Minimum range value in mm to qualify for cross-talk compensation. SYSRANGE__EARLY_CONVERGENCE_ESTIMATE 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 sysrange__early_convergence_estimate R/W Address: 0x022 Type: R/W Reset: 0x0 Description: [15:0] FW carries out an estimate of convergence rate 0.5ms into each new range measurement. If convergence rate is below user input value, the operation aborts to save power. Note: This register must be configured otherwise ECE should be disabled via SYSRANGE__RANGE_CHECK_ENABLES. DocID026171 Rev 7 61/87 86 Device registers 6.2.24 VL6180X SYSRANGE__PART_TO_PART_RANGE_OFFSET 7 6 5 4 3 2 1 0 1 0 sysrange__part_to_part_range_offset R/W Address: 0x024 Type: R/W Reset: 0xYY, register default overwritten at boot-up by NVM contents. Description: [7:0] 6.2.25 sysrange__part_to_part_range_offset: 2s complement format. SYSRANGE__RANGE_IGNORE_VALID_HEIGHT 7 6 5 4 3 2 sysrange__range_ignore_valid_height R/W Address: 0x025 Type: R/W Reset: 0x0, register default overwritten at boot-up by NVM contents. Description: [7:0] 6.2.26 15 sysrange__range_ignore_valid_height: Range below which ignore threshold is applied. Aim is to ignore the cover glass i.e. low signal rate at near distance. Should not be applied to low reflectance target at far distance. Range in mm. Note: It is recommended to set this register to 255 if the range ignore feature is used. SYSRANGE__RANGE_IGNORE_THRESHOLD 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 sysrange__range_ignore_threshold R/W Address: 0x026 Type: R/W Reset: 0x00 Description: [15:0] 62/87 sysrange__range_ignore_threshold: User configurable min threshold signal return rate. Used to filter out ranging due to cover glass when there is no target above the device. Mcps 9.7 format. Note: Register must be initialized if this feature is used. DocID026171 Rev 7 VL6180X 6.2.27 Device registers SYSRANGE__MAX_AMBIENT_LEVEL_MULT 7 6 5 4 3 2 1 0 sysrange__max_ambient_level_mult R/W Address: 0x02C Type: R/W Reset: 0xA0, register default overwritten at boot-up by NVM contents. Description: [7:0] 6.2.28 sysrange__max_ambient_level_mult: User input value to multiply return_signal_count for AMB:signal ratio check. If (amb counts * 6) > return_signal_count * mult then abandon measurement due to high ambient (4.4 format). SYSRANGE__RANGE_CHECK_ENABLES 1 0 sysrange__early_convergence_enable 2 sysrange__range_ignore_enable 3 0 4 0 5 sysrange__signal_to_noise_enable 6 RESERVED 7 R R/W R/W R R/W R/W Address: 0x02D Type: R/W Reset: 0x11, register default overwritten at boot-up by NVM contents. Description: [4] sysrange__signal_to_noise_enable: Measurement enable/disable [1] sysrange__range_ignore_enable: Measurement enable/disable [0] sysrange__early_convergence_enable: Measurement enable/disable DocID026171 Rev 7 63/87 86 Device registers SYSRANGE__VHV_RECALIBRATE Address: 0x02E Type: R/W Reset: 0x0 5 4 3 2 1 0 sysrange__vhv_recalibrate 6 sysrange__vhv_status 7 RESERVED 6.2.29 VL6180X R R/W R/W Description: [1] sysrange__vhv_status: FW controlled status bit showing when FW has completed auto-vhv process. 0: FW has finished autoVHV operation 1: During autoVHV operation [0] sysrange__vhv_recalibrate: User-Controlled enable bit to force FW to carry out recalibration of the VHV setting for sensor array. FW clears bit after operation carried out. 0: Disabled 1: Manual trigger for VHV recalibration. Can only be called when ALS and ranging are in STOP mode 6.2.30 SYSRANGE__VHV_REPEAT_RATE 7 6 5 4 3 2 1 0 sysrange__vhv_repeate_rate R/W Address: 0x031 Type: R/W Reset: 0x0 Description: [7:0] 64/87 sysrange__vhv_repeat_rate: User entered repeat rate of auto VHV task (0 = off, 255 = after every 255 measurements) DocID026171 Rev 7 VL6180X SYSALS__START 5 Address: 0x038 Type: R/W Reset: 0x0 4 3 2 1 0 sysals__startstop 6 sysals__mode_select 7 RESERVED 6.2.31 Device registers R R/W R/W Description: [1] sysals__mode_select: Device Mode select 0: ALS Mode Single-Shot 1: ALS Mode Continuous [0] sysals__startstop: Start/Stop trigger based on current mode and system configuration of device_ready. FW clears register automatically. Setting this bit to 1 in single-shot mode starts a single measurement. Setting this bit to 1 in continuous mode will either start continuous operation (if stopped) or halt continuous operation (if started). This bit is auto-cleared in both modes of operation. See 6.2.56: INTERLEAVED_MODE__ENABLE for combined ALS and Range operation. 6.2.32 15 SYSALS__THRESH_HIGH 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 sysals__thresh_high R/W Address: 0x03A Type: R/W Reset: 0xFFFF Description: [15:0] sysals__thresh_high: High Threshold value for ALS comparison. Range 0-65535 codes. DocID026171 Rev 7 65/87 86 Device registers 6.2.33 15 VL6180X SYSALS__THRESH_LOW 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 sysals__thresh_low R/W Address: 0x03C Type: R/W Reset: 0x0 Description: [15:0] 6.2.34 sysals__thresh_low: Low Threshold value for ALS comparison. Range 0-65535 codes. SYSALS__INTERMEASUREMENT_PERIOD 7 6 5 4 3 2 1 0 sysals__intermeasurement_period R/W Address: 0x03E Type: R/W Reset: 0xFF Description: [7:0] 66/87 sysals__intermeasurement_period: Time delay between measurements in ALS continuous mode. Range 0-254 (0 = 10ms). Step size = 10ms. DocID026171 Rev 7 VL6180X 6.2.35 Device registers SYSALS__ANALOGUE_GAIN 7 6 5 Address: 0x03F Type: R/W Reset: 0x06 4 3 2 1 0 RESERVED sysals__analogue_gain_light R R/W Description: [2:0] 6.2.36 15 sysals__analogue_gain_light: ALS analogue gain (light channel) 0: ALS Gain = 20 1: ALS Gain = 10 2: ALS Gain = 5.0 3: ALS Gain = 2.5 4: ALS Gain = 1.67 5: ALS Gain = 1.25 6: ALS Gain = 1.0 7: ALS Gain = 40 Controls the “light” channel gain. Note: Upper nibble should be set to 0x4 i.e. For ALS gain of 1.0 write 0x46. SYSALS__INTEGRATION_PERIOD 14 13 12 11 10 9 8 7 6 5 4 3 RESERVED sysals__integration_period R R/W Address: 0x040 Type: R/W Reset: 0x0 2 1 0 Description: [8:0] sysals__integration_period: Integration period for ALS mode. 1 code = 1 ms (0 = 1 ms). Recommended setting is 100 ms (0x63). DocID026171 Rev 7 67/87 86 Device registers 3 2 1 0 result__range_max_threshold_hit result__range_measurement_ready result__range_device_ready 7 result__range_min_threshold_hit RESULT__RANGE_STATUS result__range_error_code 6.2.37 VL6180X 6 5 R R R R R Address: 0x04D Type: R Reset: 0x1 4 Description: [7:4] 68/87 result__range_error_code: Specific error codes 0000: No error 0001: VCSEL Continuity Test 0010: VCSEL Watchdog Test 0011: VCSEL Watchdog 0100: PLL1 Lock 0101: PLL2 Lock 0110: Early Convergence Estimate 0111: Max Convergence 1000: No Target Ignore 1001: Not used 1010: Not used 1011: Max Signal To Noise Ratio 1100: Raw Ranging Algo Underflow 1101: Raw Ranging Algo Overflow 1110: Ranging Algo Underflow 1111: Ranging Algo Overflow [3] result__range_min_threshold_hit: Legacy register - DO NOT USE Use instead 6.2.39: RESULT__INTERRUPT_STATUS_GPIO [2] result__range_max_threshold_hit: Legacy register - DO NOT USE Use instead 6.2.39: RESULT__INTERRUPT_STATUS_GPIO [1] result__range_measurement_ready: Legacy register - DO NOT USE Use instead 6.2.39: RESULT__INTERRUPT_STATUS_GPIO [0] result__range_device_ready: Device Ready. When set to 1, indicates the device mode and configuration can be changed and a new start command will be accepted. When 0, indicates the device is busy. DocID026171 Rev 7 VL6180X 3 2 1 0 result__als_max_threshold_hit result__als_measurement_ready result__als_device_ready 7 result__als_min_threshold_hit RESULT__ALS_STATUS result__als_error_code 6.2.38 Device registers 6 5 R R R R R Address: 0x04E Type: R Reset: 0x1 4 Description: [7:4] result__als_error_code: Specific error and debug codes 0000: No error 0001: Overflow error 0002: Underflow error [3] result__als_min_threshold_hit: Legacy register - DO NOT USE Use instead 6.2.39: RESULT__INTERRUPT_STATUS_GPIO [2] result__als_max_threshold_hit: Legacy register - DO NOT USE Use instead 6.2.39: RESULT__INTERRUPT_STATUS_GPIO [1] result__als_measurement_ready: Legacy register - DO NOT USE Use instead 6.2.39: RESULT__INTERRUPT_STATUS_GPIO [0] result__als_device_ready: Device Ready. When set to 1, indicates the device mode and configuration can be changed and a new start command will be accepted. When 0, indicates the device is busy. DocID026171 Rev 7 69/87 86 Device registers 6.2.39 VL6180X RESULT__INTERRUPT_STATUS_GPIO 7 6 5 4 3 2 1 0 result_int_error_gpio result_int_als_gpio result_int_range_gpio R R R Address: 0x04F Type: R Reset: 0x0 Description: [7:6] result_int_error_gpio: Interrupt bits for Error: 0: No error reported 1: Laser Safety Error 2: PLL error (either PLL1 or PLL2) [5:3] result_int_als_gpio: Interrupt bits for ALS: 0: No threshold events reported 1: Level Low threshold event 2: Level High threshold event 3: Out Of Window threshold event 4: New Sample Ready threshold event [2:0] result_int_range_gpio: Interrupt bits for Range: 0: No threshold events reported 1: Level Low threshold event 2: Level High threshold event 3: Out Of Window threshold event 4: New Sample Ready threshold event 6.2.40 15 RESULT__ALS_VAL 14 13 12 11 10 9 8 7 6 5 4 3 2 1 result__als_ambient_light R Address: 0x050 Type: R Reset: 0x0 Description: [15:0] 70/87 result__als_ambient_light: 16 Bit ALS count output value. Lux value depends on Gain and integration settings and calibrated lux/count setting. DocID026171 Rev 7 0 VL6180X 6.2.41 Device registers RESULT__HISTORY_BUFFER_x 15 14 13 12 11 10 9 8 7 6 RESULT__HISTOR Y_BUFFER_0 result__history_buffer_0 RESULT__HISTOR Y_BUFFER_1 result__history_buffer_1 RESULT__HISTOR Y_BUFFER_2 result__history_buffer_2 RESULT__HISTOR Y_BUFFER_3 result__history_buffer_3 RESULT__HISTOR Y_BUFFER_4 result__history_buffer_4 RESULT__HISTOR Y_BUFFER_5 result__history_buffer_5 RESULT__HISTOR Y_BUFFER_6 result__history_buffer_6 RESULT__HISTOR Y_BUFFER_7 result__history_buffer_7 5 4 3 2 1 0 R Address: 0x052 + x * 0x2 (x=0 to 7) Type: R Reset: 0x0 Description: See also 6.2.11: SYSTEM__HISTORY_CTRL RESULT__HISTOR result__history_buffer_0: Range/ALS result value. Y_BUFFER_0: Range mode; Bits[15:8] range_val_latest; Bits[7:0] range_val_d1; [15:0] ALS mode; Bits[15:0] als_val_latest RESULT__HISTOR result__history_buffer_1: Range/ALS result value. Y_BUFFER_1: Range mode; Bits[15:8] range_val_d2; Bits[7:0] range_val_d3; [15:0] ALS mode; Bits[15:0] als_val_d1 RESULT__HISTOR result__history_buffer_2: Range/ALS result value. Y_BUFFER_2: Range mode; Bits[15:8] range_val_d4; Bits[7:0] range_val_d5; [15:0] ALS mode; Bits[15:0] als_val_d2 RESULT__HISTOR result__history_buffer_3: Range/ALS result value. Y_BUFFER_3: Range mode; Bits[15:8] range_val_d6; Bits[7:0] range_val_d7; [15:0] ALS mode; Bits[15:0] als_val_d3 RESULT__HISTOR result__history_buffer_4: Range/ALS result value. Y_BUFFER_4: Range mode; Bits[15:8] range_val_d8; Bits[7:0] range_val_d9; [15:0] ALS mode; Bits[15:0] als_val_d4 RESULT__HISTOR result__history_buffer_5: Range/ALS result value. Y_BUFFER_5: Range mode; Bits[15:8] range_val_d10; Bits[7:0] range_val_d11; [15:0] ALS mode; Bits[15:0] als_val_d5 RESULT__HISTOR result__history_buffer_6: Range/ALS result value. Y_BUFFER_6: Range mode; Bits[15:8] range_val_d12; Bits[7:0] range_val_d13; [15:0] ALS mode; Bits[15:0] als_val_d6 RESULT__HISTOR result__history_buffer_7: Range/ALS result value. Y_BUFFER_7: Range mode; Bits[15:8] range_val_d14; Bits[7:0] range_val_d15; [15:0] ALS mode; Bits[15:0] als_val_d7 DocID026171 Rev 7 71/87 86 Device registers 6.2.42 VL6180X RESULT__RANGE_VAL 7 6 5 4 3 2 1 0 result__range_val R Address: 0x062 Type: R Reset: 0x0 Description: [7:0] 6.2.43 result__range_val: Final range result value presented to the user for use. Unit is in mm. RESULT__RANGE_RAW 7 6 5 4 3 2 1 0 result__range_raw R Address: 0x064 Type: R Reset: 0x0 Description: [7:0] 6.2.44 15 result__range_raw: Raw Range result value with offset applied (no cross-talk compensation applied). Unit is in mm. RESULT__RANGE_RETURN_RATE 14 13 12 11 10 9 8 7 6 5 4 3 2 1 result__range_return_rate R Address: 0x066 Type: R Reset: 0x0 Description: [15:0] 72/87 result__range_return_rate: sensor count rate of signal returns correlated to IR emitter. Computed from RETURN_SIGNAL_COUNT / RETURN_CONV_TIME. Mcps 9.7 format DocID026171 Rev 7 0 VL6180X 6.2.45 15 Device registers RESULT__RANGE_REFERENCE_RATE 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 result__range_reference_rate R Address: 0x068 Type: R Reset: 0x0 Description: [15:0] 6.2.46 result__range_reference_rate: sensor count rate of reference signal returns. Computed from REFERENCE_SIGNAL_COUNT / RETURN_CONV_TIME. Mcps 9.7 format Note: Both arrays converge at the same time, so using the return array convergence time is correct. RESULT__RANGE_RETURN_SIGNAL_COUNT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 result__range_return_signal_count R Address: 0x06C Type: R Reset: 0x0 Description: [31:0] result__range_return_signal_count: sensor count output value attributed to signal correlated to IR emitter on the Return array. DocID026171 Rev 7 73/87 86 Device registers 6.2.47 VL6180X RESULT__RANGE_REFERENCE_SIGNAL_COUNT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2 1 0 result__range_reference_signal_count R Address: 0x070 Type: R Reset: 0x0 Description: [31:0] 6.2.48 result__range_reference_signal_count: sensor count output value attributed to signal correlated to IR emitter on the Reference array. RESULT__RANGE_RETURN_AMB_COUNT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 result__range_return_amb_count R Address: 0x074 Type: R Reset: 0x0 Description: [31:0] 6.2.49 result__range_return_amb_count: sensor count output value attributed to uncorrelated ambient signal on the Return array. Must be multiplied by 6 if used to calculate the ambient to signal threshold. RESULT__RANGE_REFERENCE_AMB_COUNT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 result__range_reference_amb_count R Address: 0x078 Type: R Reset: 0x0 Description: [31:0] 74/87 result__range_reference_amb_count: sensor count output value attributed to uncorrelated ambient signal on the Reference array. DocID026171 Rev 7 0 VL6180X 6.2.50 Device registers RESULT__RANGE_RETURN_CONV_TIME 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 result__range_return_conv_time R Address: 0x07C Type: R Reset: 0x0 Description: [31:0] 6.2.51 result__range_return_conv_time: sensor count output value attributed to signal on the Return array. RESULT__RANGE_REFERENCE_CONV_TIME 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 result__range_reference_conv_time R Address: 0x080 Type: R Reset: 0x0 Description: [31:0] 6.2.52 result__range_reference_conv_time: sensor count output value attributed to signal on the Reference array. READOUT__AVERAGING_SAMPLE_PERIOD 7 6 5 4 3 2 1 0 readout__averaging_sample_period R/W Address: 0x10A Type: R/W Reset: 0x30 Description: [7:0] readout__averaging_sample_period: The internal readout averaging sample period can be adjusted from 0 to 255. Increasing the sampling period decreases noise but also reduces the effective max convergence time and increases power consumption: Effective max convergence time = max convergence time - readout averaging period (see Section 2.7.1: Range timing). Each unit sample period corresponds to around 64.5 µs additional processing time. The recommended setting is 48 which equates to around 4.3 ms. DocID026171 Rev 7 75/87 86 Device registers FIRMWARE__BOOTUP 6 5 Address: 0x119 Type: R/W Reset: 0x1 4 3 2 1 0 firmware__bootup 7 RESERVED 6.2.53 VL6180X R R/W Description: [0] 6.2.54 firmware__bootup: FW must set bit once initial boot has been completed. FIRMWARE__RESULT_SCALER 7 6 5 4 3 2 1 RESERVED firmware__als_result_scaler R R/W Address: 0x120 Type: R/W Reset: 0x1 0 Description: [3:0] 6.2.55 firmware__als_result_scaler: Bits [3:0] analogue gain 1 to 16x I2C_SLAVE__DEVICE_ADDRESS 7 6 5 4 3 RESERVED super_i2c_slave__device_address R R/W Address: 0x212 Type: R/W Reset: 0x29 2 1 0 Description: [6:0] 76/87 super_i2c_slave__device_address: User programmable I2C address (7-bit). Device address can be re-designated after power-up. DocID026171 Rev 7 VL6180X 6.2.56 Device registers INTERLEAVED_MODE__ENABLE 7 6 5 4 3 2 1 0 interleaved_mode__enable R/W Address: 0x2A3 Type: R/W Reset: 0x0 Description: [7:0] Interleaved mode enable: Write 0x1 to this register to select ALS+Range interleaved mode. Use SYSALS__START and SYSALS__INTERMEASUREMENT_PERIOD to control this mode. A range measurement is automatically performed immediately after each ALS measurement. DocID026171 Rev 7 77/87 86 78/87 DocID026171 Rev 7 F E D C B  3267,215(7851 $3(5785(  $/6$3(5785( VENT ONLY 2 “   1 Linear 0 Place Decimals 0 ±0.05 1 Place Decimals 0.0 ±0.05 2 Place Decimals 0.00 ±0.05 Angular ±0.25 degrees Diameter +0.05 0.10 Position Surface Finish 1.6 microns Tolerances, unless otherwise stated 2 3 Interpret drawing per BS8888, 3RD Angle Projection -  Finish - 4  /,*+7(0,66,21 $3(5785( Material GATE - COSMETIC (SUPPLIER DEPENDENT) 3 127(6   ',0(16,2160$5.('7+86$5(72%(86(' $6,163(&7,21',0(16,216  “ 5 % 6 8432884 Part No. 14 DEC 12 Date Do Not Scale 7 '$7(   8 2 25:1 Scale VL6180 BABYBEAR CUT 1.0 Sheet VL6180X MODULE OUTLINE DRAWING 1 OF Title STMicroelectronics Imaging Division Drawn All dimensions DAVID MCARDLE in mm 8 SEE SHEET 2 1(:'5$:,1*)5$0(216+7$7*5,'5()' ',0(16,21'(/(7(',1/+9,(:*$7($''(' '(6&5,37,21 83'$7('287/,1(725(029(*$7(,//8675$7,21 % 5(9,6,216 7 5(9 AREA RESERVED FOR PART MARKING “ 6 F E D C B A 7 “ A 1 Outline drawing VL6180X Outline drawing Figure 37. Outline drawing (page 1/2) DocID026171 Rev 7  1 Linear 0 Place Decimals 0 ±0.05 1 Place Decimals 0.0 ±0.05 2 Place Decimals 0.00 ±0.05 Angular ±0.25 degrees +0.05 Diameter Position 0.10 Surface Finish 1.6 microns Tolerances, unless otherwise stated 3$'1R )81&7,21  *3,2  1&  1&  *3,2  6&/  6'$ E  1&  $9''B9&6(/  $966B9&6(/  $9''  1&  *1' F  2 3  4 Finish - Material -  &21($3(; 5 PROXIMITY SENSOR ALS CONE PROXIMITY SENSOR VIEW CONE  “ PIN INDICATOR  ,1326  “ Interpret drawing per BS8888, 3RD Angle Projection TOLERANCE 0.03 APPLIES UNLESS OTHERWISE STATED  D &211(&7,217$%/( C   B 3   ,1326  A 2  1 6 6  &21($3(; PROXIMITY SENSOR ILLUMINATION CONE 8432884 Part No. 14 DEC 12 Do Not Scale 7 8 VL6180 BABYBEAR CUT 1.0 VL6180X MODULE OUTLINE DRAWING Title STMicroelectronics Imaging Division Drawn All dimensions DAVID MCARDLE in mm Date 8 B1 2 OF 2 Sheet 25:1 Scale REV ƒ )8//)29   $0%,(1775$160,66,21 ƒ ,1326 7 F E D C B A VL6180X Outline drawing Figure 38. Outline drawing (page 2/2) 79/87 86 Laser safety considerations 8 VL6180X Laser safety considerations The VL6180X contains a laser emitter and corresponding drive circuitry. The laser output is designed to remain within Class 1 laser safety limits under all reasonably foreseeable conditions including single faults in compliance with IEC 60825-1:2007. The laser output will remain within Class 1 limits as long as the STMicroelectronics recommended device settings are used and the operating conditions specified in this datasheet are respected. The laser output power must not be increased by any means and no optics should be used with the intention of focusing the laser beam. Figure 39. Class 1 laser product label 8.1 Compliance Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No.50, dated June 24, 2007. 80/87 DocID026171 Rev 7 VL6180X 9 Ordering information Ordering information VL6180X is currently available in the following format. More detailed information is available on request. Table 29. Delivery format Order code VL6180XV0NR/1 9.1 Description Tape and reel (5000 units in a reel) Traceability and identification Latest ROM revision can be identified as follows: 0x002 IDENTIFICATION__MODEL_REV_MINOR = 3 The minimum information required for traceability is the content of the following registers: 0x006 - IDENTIFICATION__DATE_HI 0x007 - IDENTIFICATION__DATE_LO 0x008 - IDENTIFICATION__TIME (16-bit) 0x00A - IDENTIFICATION__CODE With this information, the module can be uniquely identified. Preferably, all the IDENTIFICATION register contents should be provided for traceability. 9.2 Part marking Devices are marked on the underside as shown below. 1st line is the product ID. 2nd line is the manufacturing info. (circled in green), where the 1st four letters are the lot ID and the last 3 digits are the year + week number. Here: 338 is 2013 wk38. The final letter, circled in red, is the ROM revision (‘E’). Figure 40. Part marking DocID026171 Rev 7 81/87 86 Ordering information 9.3 VL6180X Packaging The Root part number 1 is available in tape and reel packaging as shown in Figure 41. Figure 41. Tape and reel packaging 4.0 (Po) 1.55+ - 0.1 (Do) 2.0 (P2) B 1.75 (E) 5.5 + - 0.05 (F) 5.10 (Bo) 5° 12.0+ - 0.3 (W) 0.30 + - 0.05 (T) A A B 1.20 (Ko) 8.0 (P1) 1.6 + - 0.05 (D1) SECTION B-B 3.10 (Ao) SECTION A-A Ao + - 0.1 Bo +-0.1 Ko +-0.1 3.10 9.3.1 5.10 1.20 E+ - 0.1 1.75 USER FEED DIRECTION F+ - 0.05 Po +-0.1 P1 +-0.1 P2 +-0.1 Do +-0.1 T+- 0.05 W+-0.3 5.5 4.0 8.0 2.0 1.55 0.30 12.0 Package labeling The labeling on the packing carton is shown in Figure 42. The latest ROM revision is indicated alongside the order code (shaded green) and also after the product marking (shaded pink). Figure 42. Package labeling 82/87 DocID026171 Rev 7 VL6180X 9.4 Ordering information Storage The Root part number 1 is a MSL 3 package. Table 30. Storage conditions Floor Life (out of bag) at Factory Level 3 Ambient
VL6180XV0NR/1 价格&库存

很抱歉,暂时无法提供与“VL6180XV0NR/1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
VL6180XV0NR/1
  •  国内价格
  • 1+14.98053
  • 30+14.42155
  • 100+13.30360
  • 500+12.18565
  • 1000+11.62668

库存:171