0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VN5E160MSTR-E

VN5E160MSTR-E

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC8

  • 描述:

    IC PWR SWITCH N-CHANNEL 1:1 8SO

  • 数据手册
  • 价格&库存
VN5E160MSTR-E 数据手册
VN5E160MS-E Single-channel high-side driver with analog for automotive applications Features Max supply voltage VCC Operating voltage range VCC 4.5 V to 28 V Max ON-state resistance (per ch.) RON 160 mΩ Current limitation (typ) ILIMH 10 A IS 2 µA(1) OFF-state supply current 41 V 1. Typical value with all loads connected. ■ ■ ■ General – Inrush current active management by power limitation – Very low standby current – 3.0 V CMOS compatible inputs – Optimized electromagnetic emission – Very low electromagnetic susceptibility – In compliance with the 2002/95/EC european directive – Very low current sense leakage Diagnostic functions – Proportional load current sense – High-precision current sense for wide currents range – Current sense disable – Overload and short to ground (power limitation) indication – Thermal shutdown indication Protections – Undervoltage shutdown – Overvoltage clamp – Load current limitation – Self-limiting of fast thermal transients – Protection against loss of ground and loss of VCC – Overtemperature shutdown with autorestart (thermal shutdown) – Reverse battery protected September 2013 62 ("1($'5 – Electrostatic discharge protection Applications ■ All types of resistive, inductive and capacitive loads ■ Suitable as LED driver Description The VN5E160MS-E is a single-channel high-side driver manufactured in the ST proprietary VIPower™ M0-5 technology and housed in the tiny SO-8 package. The VN5E160MS-E is designed to drive 12 V automotive grounded loads delivering protection, diagnostics and easy 3 V and 5 V CMOS compatible interface with any microcontroller. The device integrates advanced protective functions such as load current limitation, inrush and overload active management by power limitation, overtemperature shut-off with auto-restart and overvoltage active clamp. A dedicated analog current sense pin is associated with every output channel in order to provide enhanced diagnostic functions including fast detection of overload and short-circuit to ground through power limitation indication and overtemperature indication. The current sensing and diagnostic feedback of the whole device can be disabled by pulling the CS_DIS pin high to allow sharing of the external sense resistor with other similar devices. Doc ID 15730 Rev 4 1/34 www.st.com 1 Contents VN5E160MS-E Contents 1 Block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1 4 3.1.1 Solution 1: resistor in the ground line (RGND only) . . . . . . . . . . . . . . . . 22 3.1.2 Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . 23 3.2 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Current sense and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Maximum demagnetization energy (VCC = 13.5 V) . . . . . . . . . . . . . . . . . 25 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 5 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 22 SO-8 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3 Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2/34 Doc ID 15730 Rev 4 VN5E160MS-E List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Pin function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Switching (VCC = 13 V; Tj = 25 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Protection and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Current sense (8 V < VCC < 18 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrical transient requirements (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical transient requirements (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical transient requirements (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Doc ID 15730 Rev 4 3/34 List of figures VN5E160MS-E List of figures Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 3. Current and voltage conventions(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 4. Current sense delay characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 5. Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 6. Output voltage drop limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 7. Delay response time between rising edge of ouput current and rising edge of current sense (CS enabled)14 Figure 8. IOUT/ISENSE vs IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 9. Maximum current sense ratio drift vs load current(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 10. Normal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 11. Overload or short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 12. Intermittent overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 13. TJ evolution in overload or short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 14. OFF-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 15. High-level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 16. Input voltage clamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 17. Low-level input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 18. High-level input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 19. Hysteresis input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 20. ON-state resistance vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 21. ON-state resistance vs. VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 22. Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 23. Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 24. ILIMH vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 25. Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 26. High-level CS_DIS voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 27. CS_DIS voltage clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 28. Low-level CS_DIS voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 29. Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 30. Current sense and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 31. Maximum turn-off current versus inductance (for each channel)(1) . . . . . . . . . . . . . . . . . . 25 Figure 32. SO-8 PC board(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 33. Rthj-amb vs. PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . 26 Figure 34. SO-8 thermal impedance junction ambient single pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 35. Thermal fitting model of an HSD in SO-8(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 36. SO-8 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 37. SO-8 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 38. SO-8 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4/34 Doc ID 15730 Rev 4 VN5E160MS-E 1 Block diagram and pin configuration Block diagram and pin configuration Figure 1. Block diagram 9&& 6LJQDO&ODPS 8QGHUYROWDJH ,1 &RQWURO 'LDJQRVWLF 3RZHU &ODPS '5,9(5 921 /LPLWDWLRQ 2YHU WHPSHUDWXUH &XUUHQW /LPLWDWLRQ &6B',6 96(16( + &6 &XUUHQW 6HQVH 287 29(5/ 2$'3527(&7,21 $&7,9(32:(5/,0,7$7,21 /2*,& *1' *$3*&)7 Table 1. Pin function Name Function VCC Battery connection OUT Power output GND Ground connection. Must be reverse battery protected by an external diode/resistor network IN Voltage-controlled input pin with hysteresis, CMOS compatible. Controls output switch state CS Analog current sense pin, delivers a current proportional to the load current CS_DIS Active high CMOS compatible pin, to disable the current sense pin Doc ID 15730 Rev 4 5/34 Block diagram and pin configuration Figure 2. VN5E160MS-E Configuration diagram (top view) 9&&  287  287 9&&   62 Table 2. 6/34    &6B',6  *1' &6 ,1 *$3*&)7 Suggested connections for unused and not connected pins Connection / pin Current sense N.C. Output Input CS_DIS Floating Not allowed X X X X To ground Through 1 kΩ resistor X Not allowed Doc ID 15730 Rev 4 Through 10 kΩ Through 10 kΩ resistor resistor VN5E160MS-E 2 Electrical specifications Electrical specifications Figure 3. Current and voltage conventions(1) ,6 9&& ,&6' 9) ,287 287 &6B',6 9287 9&6' ,,1 9&& ,1 ,6(16( &6 9,1 *1' 96(16( ,*1' *$3*&)7 1. VF = VOUT - VCC during reverse battery condition. 2.1 Absolute maximum ratings Stressing the device above the ratings listed in the Table 3: Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in the Table 3: Absolute maximum ratings for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE program and other relevant quality documents. Table 3. Absolute maximum ratings Symbol Parameter Value Unit VCC DC supply voltage 41 V -VCC Reverse DC supply voltage 0.3 V - IGND DC reverse ground pin current 200 mA Internally limited A 6 A DC input current -1 to 10 mA DC current sense disable input current -1 to 10 mA 200 mA VCC - 41 +VCC V V IOUT - IOUT IIN ICSD DC output current Reverse DC output current -ICSENSE DC reverse CS pin current VCSENSE Current sense maximum voltage Doc ID 15730 Rev 4 7/34 Electrical specifications Table 3. Absolute maximum ratings (continued) Symbol Parameter Unit 36 mJ Maximum switching energy (single pulse) (L = 8 mH; RL = 0 Ω; Vbat = 13.5 V; Tjstart = 150 °C; IOUT = IlimL(Typ.) ) VESD Electrostatic discharge (human body model: R = 1.5 KΩ; C = 100 pF) – IN – CS – CS_DIS – OUT – VCC 4000 2000 4000 5000 5000 V V V V V VESD Charge device model (CDM-AEC-Q100-011) 750 V Junction operating temperature -40 to 150 °C Storage temperature -55 to 150 °C Tstg Thermal data Table 4. Symbol Rthj-pins Thermal data Parameter Thermal resistance junction-pins Rthj-amb Thermal resistance junction-ambient 8/34 Value EMAX Tj 2.2 VN5E160MS-E Doc ID 15730 Rev 4 Max value Unit 30 °C/W See Figure 33 °C/W VN5E160MS-E 2.3 Electrical specifications Electrical characteristics Values specified in this section are for 8 V < VCC < 28 V; -40 °C < Tj < 150 °C, unless otherwise stated. Table 5. Power section Symbol Parameter Test conditions VCC Operating supply voltage VUSD VUSDhyst RON Vclamp IS IL(off1) VF Min. Typ. Max. Unit 13 28 V Undervoltage shutdown 3.5 4.5 V Undervoltage shutdown hysteresis 0.5 ON-state resistance Voltage clamp 4.5 IOUT = 1 A, Tj = 25 °C 160 IOUT = 1 A, Tj = 150 °C 320 IOUT = 1 A, VCC = 5 V, Tj = 25 °C 210 IS = 20 mA Supply current OFF-state output current Output - VCC diode voltage V 41 mΩ 46 52 V OFF-state: VCC = 13 V, VIN = VOUT = 0 V, Tj = 25 °C 2(1) 5(1) µA ON-state: VIN = 5 V, VCC = 13 V, IOUT = 0 A 1.9 3.5 mA 0.01 3 VIN = VOUT = 0 V, VCC = 13 V, Tj = 25 °C 0 VIN = VOUT = 0 V, VCC = 13 V, Tj = 125 °C 0 µA -IOUT = 1 A, Tj = 150 °C 5 0.7 V 1. PowerMOS leakage included. Table 6. Symbol Switching (VCC = 13 V; Tj = 25 °C) Parameter Test conditions Min. Typ. Max. Unit td(on) Turn-on delay time RL = 13 Ω (see Figure 5) — 10 — µs td(off) Turn-off delay time RL = 13 Ω (see Figure 5) — 10 — µs dVOUT/dt(on) Turn-on voltage slope RL = 13 Ω — See Figure 23 — V/µs dVOUT/dt(off) Turn-off voltage slope RL = 13 Ω — See Figure 25 — V/µs WON Switching energy losses during twon RL = 13 Ω (see Figure 5) — 0.05 — mJ WOFF Switching energy losses during twoff RL = 13 Ω (see Figure 5) — 0.03 — mJ Doc ID 15730 Rev 4 9/34 Electrical specifications Table 7. Symbol VN5E160MS-E Logic inputs Parameter Test conditions VIL Low-level input voltage IIL Low-level input current VIH High-level input voltage IIH High-level input current VI(hyst) Input voltage hysteresis VICL ICSDL Low-level CS_DIS current VCSDH High-level CS_DIS voltage ICSDH High-level CS_DIS current VCSD(hyst) CS_DIS voltage hysteresis Symbol CS_DIS voltage clamp 0.9 V 2.1 V 10 5.5 7 V -0.7 VCSD = 0.9 V µA 2.1 V VCSD = 2.1 V 10 0.25 ICSD = 1 mA V 1 µA V 5.5 7 V ICSD = -1 mA -0.7 Protection and diagnostics(1) Parameter Test conditions VCC = 13 V Short-circuit current V = 13 V; TR < Tj < TTSD during thermal cycling CC TTSD Shutdown temperature TR Reset temperature TRS Thermal reset of STATUS Min. Typ. Max. Unit 7 10 14 A 14 A 5 V < VCC < 28 V 2.5 150 175 TRS + 1 TRS + 5 A 200 135 Thermal hysteresis (TTSD - TR) Turn-off output voltage clamp IOUT = 1 A, VIN = 0, L = 20 mH Output voltage drop limitation IOUT = 0.03 A (see Figure 8) Tj = -40 °C to +150 °C Doc ID 15730 Rev 4 °C °C °C 7 °C VCC - 41 VCC - 46 VCC - 52 V 25 mV 1. To ensure long term reliability under heavy overload or short-circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. 10/34 µA V 0.9 IlimL VON Unit 0.25 DC short-circuit current VDEMAG Max. µA VIN = 2.1 V IlimH THYST Typ. 1 IIN = -1 mA Low-level CS_DIS voltage Table 8. VIN = 0.9 V IIN = 1 mA Input voltage clamp VCSDL VCSCL Min. VN5E160MS-E Electrical specifications Table 9. Symbol K0 K1 dK1/K1(1) K2 dK2/K2(1) K3 dK3/K3(1) ISENSE0 Current sense (8 V < VCC < 18 V) Parameter Test conditions Min. Typ. Max. IOUT/ISENSE IOUT = 0.025 A, VSENSE = 0.5 V Tj = -40 °C to 150 °C 265 490 715 IOUT/ISENSE IOUT = 0.35 A, VSENSE = 0.5 V Tj = -40 °C to 150 °C Tj = 25 °C to 150 °C 355 385 465 465 575 545 Current sense ratio drift IOUT =0.35 A, VSENSE = 0.5 V Tj = -40 °C to 150 °C IOUT/ISENSE IOUT = 0.5 A, VSENSE = 4 V Tj = -40 °C to 150 °C Tj = 25 °C to 150 °C Current sense ratio drift IOUT = 0.5 A; Tj = -40 °C to 150 °C IOUT/ISENSE IOUT = 1.5 A, VSENSE = 4 V Tj = -40 °C to 150 °C Tj = 25 °C to 150 °C Current sense ratio drift IOUT = 1.5 A; Tj = -40 °C to 150 °C -4 +4 IOUT = 0 A, VSENSE = 0 V, VCSD = 5 V, VIN = 0 V, Tj = -40 °C to 150 °C 0 1 IOUT = 0 A, VSENSE = 0 V, VCSD = 0 V, VIN = 5 V, Tj = -40 °C to 150 °C 0 2 IOUT = 1 A, VSENSE = 0 V, VCSD = 5 V, VIN = 5 V, Tj = -40 °C to 150 °C 0 1 5 Analog sense leakage current -11 380 400 +11 455 455 -8 420 420 IOL ON-state open-load current detection threshold VIN = 5 V, 8 V < VCC < 18 V ISENSE = 5 µA 0.5 VSENSE Max analog sense output voltage RSENSE = 10 KΩ; IOUT = 1 A; 5 % 530 510 +8 455 455 Unit % 490 480 % µA mA V VSENSEH(2) Analog sense output V = 13 V, RSENSE = 3.9 KΩ voltage in fault condition CC 8 V ISENSEH(2) Analog sense output V = 13 V, VSENSE = 5 V current in fault condition CC 9 mA Delay response time tDSENSE1H from falling edge of CS_DIS pin VSENSE < 4 V, 0.025 A < IOUT < 1.5 A ISENSE = 90% of ISENSE max (see Figure 4) Doc ID 15730 Rev 4 40 100 µs 11/34 Electrical specifications Table 9. Symbol VN5E160MS-E Current sense (8 V < VCC < 18 V) (continued) Parameter Test conditions Min. Typ. Max. Unit Delay response time tDSENSE1L from rising edge of CS_DIS pin VSENSE < 4 V, 0.025 A < IOUT < 1.5 A ISENSE = 10% of ISENSE max (see Figure 4) 5 20 µs Delay response time tDSENSE2H from rising edge of IN pin VSENSE < 4 V, 0.025 A < IOUT < 1.5 A ISENSE=90% of ISENSE max (see Figure 4) 30 160 µs Delay response time between rising edge of ΔtDSENSE2H output current and rising edge of current sense VSENSE < 4 V, ISENSE = 90% of ISENSEMAX, IOUT = 90% of IOUTMAX IOUTMAX=1.5A (see Figure 7) 110 µs Delay response time tDSENSE2L from falling edge of IN pin VSENSE < 4 V, 0.025 A < IOUT < 1.5 A ISENSE=10% of ISENSE max (see Figure 4) 250 µs 80 1. Parameter guaranteed by design; it is not tested. 2. Fault condition includes: power limitation and overtemperature. Figure 4. Current sense delay characteristics ,1387 &6B',6 /2$'&855(17 6(16(&855(17 W'6(16(+ W'6(16(/ W'6(16(+ W'6(16(/ $*9 12/34 Doc ID 15730 Rev 4 VN5E160MS-E Electrical specifications Figure 5. Switching characteristics 9287 W:RQ W:RII   G9287GW RII G9287GW RQ  WU WI W ,1387 WG RQ WG RII W *$3*&)7 Figure 6. Output voltage drop limitation 9&&9287 7M ƒ& 7M ƒ& 7M ƒ& 921 ,287 921521 7 $*9 Doc ID 15730 Rev 4 13/34 Electrical specifications Figure 7. VN5E160MS-E Delay response time between rising edge of ouput current and rising edge of current sense (CS enabled) 9,1 ǻW'6(16(+ W ,287 ,2870$; ,2870$; W ,6(16( ,6(16(0$; ,6(16(0$; W $*9 Figure 8. IOUT/ISENSE vs IOUT IOUT/ISENSE 620 590 560 A 530 B 500 470 C 440 410 D 380 E 350 320 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 IOUT (A) A: Max, Tj = -40 °C to 150 °C B: Max, Tj = 25 °C to 150 °C C: Typical, Tj = -40 °C to 150 °C 14/34 Doc ID 15730 Rev 4 D: Min, Tj = 25 °C to 150 °C E: Min, Tj = -40 °C to 150 °C 1.8 VN5E160MS-E Electrical specifications Figure 9. Maximum current sense ratio drift vs load current(1) dK/K (%) 15 12 9 A 6 3 0 -3 -6 B -9 -12 -15 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 IOUT (A) A: Max, Tj = -40 °C to 150 °C B: Min, Tj = 25 °C to 150 °C 1. Parameter guaranteed by design; it is not tested. Table 10. Truth table Conditions IN OUT SENSE (VCSD = 0 V)(1) Normal operation L H L H 0 Nominal Overtemperature L H L L 0 VSENSEH Undervoltage L H L L 0 0 H X (no power limitation) Cycling (power limitation) Nominal Overload H VSENSEH Short-circuit to GND (Power limitation) L H L L 0 VSENSEH Negative output voltage clamp L L 0 1. If the VCSD is high, the SENSE output is at a high impedance, its potential depends on leakage currents and external circuit. Doc ID 15730 Rev 4 15/34 Electrical specifications Table 11. ISO 7637-2: 2004(E) VN5E160MS-E Electrical transient requirements (part 1) Test levels(1) Number of pulses or test times Burst cycle/pulse repetition time Delays and Impedance Test pulse III IV 1 -75 V -100 V 5000 pulses 0.5 s 5s 2 ms, 10 Ω 2a +37 V +50 V 5000 pulses 0.2 s 5s 50 µs, 2 Ω 3a -100 V -150 V 1h 90 ms 100 ms 0.1 µs, 50 Ω 3b +75 V +100 V 1h 90 ms 100 ms 0.1 µs, 50 Ω 4 -6 V -7 V 1 pulse 100 ms, 0.01 Ω 5b(2) +65 V +87 V 1 pulse 400 ms, 2 Ω Table 12. Electrical transient requirements (part 2) Test level results(1) ISO 7637-2: 2004(E) Test pulse III IV 1 C C 2a C C 3a C C 3b C C 4 C C 5b(2) C C 1. The above test levels must be considered referred to VCC = 13.5 V except for pulse 5b 2. Valid in case of external load dump clamp: 40 V maximum referred to ground. Table 13. 16/34 Electrical transient requirements (part 3) Class Contents C All functions of the device are performed as designed after exposure to disturbance. E One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. Doc ID 15730 Rev 4 VN5E160MS-E 2.4 Electrical specifications Waveforms Figure 10. Normal operation 1RUPDORSHUDWLRQ ,1387 1RPLQDOORDG 1RPLQDOORDG ,287 96(16( 9&6B',6 $*9 Figure 11. Overload or short to GND 2YHUORDGRU6KRUWWR*1' ,1387 3RZHU/LPLWDWLRQ , /LP+! 7KHUPDOF\FOLQJ , /LP/! ,287 96(16( 9&6B',6 $*9 Doc ID 15730 Rev 4 17/34 Electrical specifications VN5E160MS-E Figure 12. Intermittent overload ,QWHUPLWWHQW2YHUORDG ,1387 2YHUORDG ,/LP+ ! ,/LP/ ! 1RPLQDOORDG ,287 96(16(+ ! 96(16( 9&6B',6 $*9 Figure 13. TJ evolution in overload or short to GND 7- HYROXWLRQLQ 2YHUORDGRU6KRUWWR*1' ,1387 6HOIOLPLWDWLRQRIIDVWWKHUPDOWUDQVLHQWV 776' 7+Q$@ ,LK>X$@       7JO7                         7F> ƒ&@    Figure 16. Input voltage clamp     Figure 17. Low-level input voltage 9LO>9@      *JON"   *$3*&)7 9LFO>9@   7F> ƒ&@ *$3*&)7                              7F> ƒ&@       7F> ƒ&@ *$3*&)7 Figure 18. High-level input voltage *$3*&)7 Figure 19. Hysteresis input voltage 9LK\VW>9@ 9LK>9@                               7F> ƒ&@           7F> ƒ&@ *$3*&)7 *$3*&)7 Doc ID 15730 Rev 4 19/34 Electrical specifications VN5E160MS-E Figure 20. ON-state resistance vs. Tcase Figure 21. ON-state resistance vs. VCC 5RQ>P2KP@ 5RQ>P2KP@         ,RXW $ 9FF 9  5D¡$             5D¡$ 5D¡$ 5D¡$                7F> ƒ&@     *$3*&)7 *$3*&)7 Figure 22. Undervoltage shutdown Figure 23. Turn-on voltage slope 9XVG>9@ G9RXWGW 2Q>9PV@       9FF 9 5O ȍ                             7F> ƒ&@     Figure 24. ILIMH vs. Tcase  *$3*&)7 Figure 25. Turn-off voltage slope ,OLPK>$@ G9RXWGW 2II>9PV@                9FF 9          7F> ƒ&@ *$3*&)7          7F> ƒ&@ 9FF 9 5O ȍ           7F> ƒ&@ *$3*&)7 20/34  9FF>9@ Doc ID 15730 Rev 4 *$3*&)7 VN5E160MS-E Electrical specifications Figure 26. High-level CS_DIS voltage Figure 27. CS_DIS voltage clamp 9FVGFO>9@ 9FVGK>9@       *JON"                         7F> ƒ&@           7F> ƒ&@ *$3*&)7 *$3*&)7 Figure 28. Low-level CS_DIS voltage 9FVGO>9@                    7F> ƒ&@ *$3*&)7 Doc ID 15730 Rev 4 21/34 Application information 3 VN5E160MS-E Application information Figure 29. Application schematic 9 9&& 5SURW &6B',6 'OG P& 5SURW ,1 287 5SURW &6 *1' 56(16( 9*1' &H[W 5*1' '*1' *$3*&)7 3.1 GND protection network against reverse battery 3.1.1 Solution 1: resistor in the ground line (RGND only) This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1. RGND ≤ 600 mV / (IS(on)max). 2. RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet. Power dissipation in RGND (when VCC < 0: during reverse battery situations) is: Equation 1 PD = (-VCC)2 / RGND This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum ON-state currents of the different devices. Please note that if the microprocessor ground is not shared by the device ground then the RGND produces a shift (IS(on)max * RGND) in the input thresholds and the status output 22/34 Doc ID 15730 Rev 4 VN5E160MS-E Application information values. This shift varies depending on how many devices are ON in the case of several high-side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests to utilize Solution 2 (see Section 3.1.2: Solution 2: a diode (DGND) in the ground line). 3.1.2 Solution 2: a diode (DGND) in the ground line A resistor (RGND = 1 kΩ) should be inserted in parallel to DGND if the device drives an inductive load. This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (≈600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift not varies if more than one HSD shares the same diode/resistor network. 3.2 Load dump protection Dld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the VCC max DC rating. The same applies if the device is subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. 3.3 MCU I/Os protection If a ground protection network is used and negative transients are present on the VCC line, the control pins is pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the microcontroller I/O pins to latch-up. The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (input levels compatibility) with the latch-up limit of microcontroller I/Os. Equation 2 -VCCpeak / Ilatchup ≤ Rprot ≤ (VOHμC - VIH - VGND) / IIHmax Calculation example: For VCCpeak = - 100 V, Ilatchup ≥ 20 mA, VOHμC ≥ 4.5 V 5 kΩ ≤ Rprot ≤ 180 kΩ. Recommended values: Rprot =10 kΩ, CEXT = 10 nF. Doc ID 15730 Rev 4 23/34 Application information 3.4 VN5E160MS-E Current sense and diagnostic The current sense pin performs a double function (see Figure 30: Current sense and diagnostic): ● Current mirror of the load current in normal operation, delivering a current proportional to the load one according to a know ration KX. The current ISENSE can be easily converted to a voltage VSENSE by means of an external resistor RSENSE. Linearity between IOUT and VSENSE is ensured up to 5 V minimum (see parameter VSENSE in Table 9: Current sense (8 V < VCC < 18 V)). The current sense accuracy depends on the output current (refer to current sense electrical characteristics Table 9: Current sense (8 V < VCC < 18 V)). ● Diagnostic flag in fault conditions, delivering a fixed voltage VSENSEH up to a maximum current ISENSEH in case of the following fault conditions (refer to Table 10: Truth table): – Power limitation activation – Overtemperature A logic high-level on CS_DIS pin sets at the same time all the current sense pins of the devices in a high-impedance-state, thus disabling the current monitoring and diagnostic detection. This feature allows multiplexing of the microcontroller analog inputs by sharing of sense resistance and ADC line among different devices. Figure 30. Current sense and diagnostic 9 %$7 9 && 0 DLQ0 2 6Q 9 2 YHUWHP SHUDWXUH , 28 7 . ; , 6(16(+ 3ZUB/LP 2 8 7Q 9 6(16 (+ &6B' ,6 &8 55 (1 7 6(16( Q * 1' /RD G 5 352 7 7RX&$' & 5 6( 16( 9 6(16( ("1($'5 24/34 Doc ID 15730 Rev 4 VN5E160MS-E Maximum demagnetization energy (VCC = 13.5 V) Figure 31. Maximum turn-off current versus inductance (for each channel)(1)    , $ 3.5 Application information      / P+ *$3*&)7 A: Tjstart = 150 °C single pulse B: Tjstart = 100 °C repetitive pulse C: Tjstart = 125 °C repetitive pulse 9,1,/ 'HPDJQHWL]DWLRQ 'HPDJQHWL]DWLRQ 'HPDJQHWL]DWLRQ W *$3*&)7 1. Values are generated with RL = 0 Ω. In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B. Doc ID 15730 Rev 4 25/34 Package and PCB thermal data VN5E160MS-E 4 Package and PCB thermal data 4.1 SO-8 thermal data Figure 32. SO-8 PC board(1) ("1($'5 1. Layout condition of Rth and Zth measurements (PCB: FR4 area = 4.8 mm x 4.8 mm, PCB thickness = 2 mm, Cu thickness = 35 µm, Copper areas: from minimum pad lay-out to 2 cm2). Figure 33. Rthj-amb vs. PCB copper area in open box free air condition RTHj_amb(°C/W) 110 100 90 80 70 60 0 0.5 1 1.5 PCB Cu heatsink area (cm^2) 26/34 Doc ID 15730 Rev 4 2 2.5 VN5E160MS-E Package and PCB thermal data Figure 34. SO-8 thermal impedance junction ambient single pulse ZTH (°C/W) 1000 Footprint 100 2 cm2 10 1 0.1 0.0001 0.001 0.01 0.1 1 Time (s) 10 100 1000 Equation 3: pulse calculation formula Z THδ = R TH ⋅δ+Z THtp (1 – δ) where δ = tP/T Figure 35. Thermal fitting model of an HSD in SO-8(1) *$3*&)7 1. The fitting model is a semplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered. Doc ID 15730 Rev 4 27/34 Package and PCB thermal data Table 14. 28/34 VN5E160MS-E Thermal parameters Area/island (cm2) Footprint R1 (°C/W) 1.2 R2 (°C/W) 6 R3 (°C/W) 3.5 R4 (°C/W) 21 R5 (°C/W) 16 R6 (°C/W) 58 C1 (W.s/°C) 0.0008 C2 (W.s/°C) 0.0016 C3 (W.s/°C) 0.0075 C4 (W.s/°C) 0.045 C5 (W.s/°C) 0.35 C6 (W.s/°C) 1.05 Doc ID 15730 Rev 4 2 28 25 VN5E160MS-E Package and packing information 5 Package and packing information 5.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Package mechanical data Figure 36. SO-8 package dimensions 6 H E H D E $ & F D / D ( ' 0     ) 5.2 ("1($'5 Doc ID 15730 Rev 4 29/34 Package and packing information Table 15. VN5E160MS-E SO-8 mechanical data mm. Dim. Min. Typ. A a1 1.75 0.1 0.25 a2 1.65 a3 0.65 0.85 b 0.35 0.48 b1 0.19 0.25 C 0.25 0.5 c1 45 (typ.) D 4.8 5 E 5.8 6.2 e 1.27 e3 3.81 F 3.8 4 L 0.4 1.27 M 0.6 S L1 30/34 Max. 8 (max.) 0.8 Doc ID 15730 Rev 4 1.2 VN5E160MS-E 5.3 Package and packing information Packing information Figure 37. SO-8 tube shipment (no suffix) % Base q.ty Bulk q.ty Tube length (± 0.5) A B C (± 0.1) & $ 100 2000 532 3.2 6 0.6 All dimensions are in mm. ("1($'5 Figure 38. SO-8 tape and reel shipment (suffix “TR”) 5((/ ',0(16,216 %DVHTW\ %XONTW\ $ PD[ % PLQ & “ ) *  1 PLQ 7 PD[          $OOGLPHQVLRQVDUHLQPP 7$3(',0(16,216 $FFRUGLQJWR(OHFWURQLF,QGXVWULHV$VVRFLDWLRQ (,$ 6WDQGDUGUHY$)HE 7DSHZLGWK 7DSHKROHVSDFLQJ &RPSRQHQWVSDFLQJ +ROHGLDPHWHU +ROHGLDPHWHU +ROHSRVLWLRQ &RPSDUWPHQWGHSWK +ROHVSDFLQJ : 3 “ 3 '  ' PLQ ) “ . PD[ 3 “         $OOGLPHQVLRQVDUHLQPP (QG 6WDUW 7R S FRYHU WDSH 1RFRPSRQHQWV &RPSRQHQWV 1RFRPSRQHQWV PPPLQ (PSW\FRPSRQHQWVSRFNHWV VDOHGZLWKFRYHUWDSH PPPLQ 8VHUGLUHFWLRQRIIHHG *$3*&)7 Doc ID 15730 Rev 4 31/34 Order codes 6 VN5E160MS-E Order codes Table 16. Device summary Order codes Package SO-8 32/34 Tube Tape and reel VN5E160MS-E VN5E160MSTR-E Doc ID 15730 Rev 4 VN5E160MS-E 7 Revision history Revision history Table 17. Document revision history Date Revision Changes 10-Jun-2009 1 Initial release. 25-Jan-2010 2 Updated Table 9: Current sense (8 V < VCC < 18 V). 26-May-2011 3 Table 9: Current sense (8 V < VCC < 18 V): – tDSENSE2H: updated typical and maximum values 19-Sep-2013 4 Updated Disclaimer. Doc ID 15730 Rev 4 33/34 VN5E160MS-E Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 34/34 Doc ID 15730 Rev 4
VN5E160MSTR-E 价格&库存

很抱歉,暂时无法提供与“VN5E160MSTR-E”相匹配的价格&库存,您可以联系我们找货

免费人工找货