0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VN751PT

VN751PT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TO252

  • 描述:

    IC PWR DRIVER N-CHANNEL 1:1 PPAK

  • 数据手册
  • 价格&库存
VN751PT 数据手册
VN751PT High-side driver Datasheet - production data Description The VN751PT is a monolithic device developed using STMicroelectronics' VIPower M03 technology, intended to drive any kind of load with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes. Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. The device automatically turns off in case of ground pin disconnection. This device is especially suitable for industrial applications in conformity with IEC 61131-2 programmable controller international standard. Features  8 V to 36 V supply voltage range  Up to IOUT = 2.5 A operating current  RDS(on): 60 m  CMOS compatible input Table 1. Device summary  Thermal shutdown Order code  Shorted load protection  Undervoltage and overvoltage shutdown VN751PT VN751PTTR  Protection against loss of ground Package PPAK Packing Tube Tape and reel  Fast demagnetization of inductive loads  Very low standby current  Compliance to 61000-4-4 IEC test up to 4 kV  Open drain status output May 2018 This is information on a product in full production. DocID12137 Rev 10 1/23 www.st.com Contents VN751PT Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 Switching time waveforms and truth table . . . . . . . . . . . . . . . . . . . . . . 11 7 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 8 Reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 9 Active VDS clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 11 2/23 10.1 PPAK package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 10.2 PPAK packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DocID12137 Rev 10 VN751PT List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Switching (VCC = 24 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Input pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Status pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 PPAK package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 PPAK tape and reel mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DocID12137 Rev 10 3/23 23 List of figures VN751PT List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. 4/23 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Connection diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Peak short-circuit current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Avalanche energy test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Switching time waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Active clamp equivalent principle schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Fast demagnetization waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Typical demagnetization energy (single pulse) at VCC = 24 V and TAMB = 125 °C . . . . . . 17 PPAK package outline(1), (2), (3), (4), (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 PPAK tape outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 PPAK reel outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DocID12137 Rev 10 VN751PT 1 Block diagram Block diagram Figure 1. Block diagram ". DocID12137 Rev 10 5/23 23 Pin connection 2 VN751PT Pin connection Figure 2. Connection diagram (top view) ". Figure 3. Current and voltage conventions ". 6/23 DocID12137 Rev 10 VN751PT 3 Maximum ratings Maximum ratings Table 2. Absolute maximum ratings Symbol Parameter Value Unit 45 V VCC Power supply voltage -VCC Reverse supply voltage -0.3 V -IGND DC reverse ground pin current -200 mA IOUT DC output current Internally limited A -IOUT Reverse DC output current - 5 A IIN DC input current - 1 to +10 mA ISTAT DC status current - 1 to +10 mA VESD Electrostatic discharge (R = 1.5 k; C = 100 pF) 5000 V EAS Single pulse avalanche energy (Tamb = 125 °C, VCC = 24 V, Iload = 2.0 A) 5.5 J PTOT Power dissipation at TC = 25 °C Internally limited W TJ Junction operating temperature Internally limited °C TC Case operating temperature -40 to 150 °C Storage temperature -55 to 150 °C Value Unit Max. 3 °C/W Max. 50(1) °C/W TSTG Table 3. Thermal data Symbol Rth(JC) Rth(JA) Parameter Thermal resistance junction-case Thermal resistance junction-ambient 1. When mounted on a standard single-sided FR-4 board with 0.5 cm2 of Cu (at least 35 m) thick connected to all VCC pins. DocID12137 Rev 10 7/23 23 Electrical characteristics 4 VN751PT Electrical characteristics 8 V < VCC < 36 V; -40 °C < TJ < 125 °C; unless otherwise specified. Table 4. Power Symbol VCC RDS(on) IS(1) Parameter Test conditions Supply voltage - On-state resistance 5.5 - 36 V IOUT = 2 A at TJ = 25 °C - 60 - m IOUT = 2 A - OFF-state, VCC = 24 V, TJ = 25 °C, ON-state, VCC = 24 V, TJ = 25 °C, ON-state, VCC = 24 V, TJ = 100 °C Supply current Min. Typ. Max. Unit 180 - 10 20 µA - 3.5 - mA - - 3.8 mA VUSD Undervoltage shutdown - 3 4 5.5 V VOV Overvoltage shutdown 36 - - V IL(off) Off-state output current VIN = VOUT = 0 V 0 - 10 µA - 1. Status: floating. Table 5. Switching (VCC = 24 V) Symbol Parameter Test conditions Min. Typ. Max. Unit td(ON) Turn-on delay time RL = 12  from VIN rising edge to VOUT = 2.4 V - 12 - µs td(OFF) Turn-on delay time of RL = 12  from VIN falling edge to output current VOUT = 21.6 V - 35 - µs dVOUT/dt(on) Turn -on voltage slope RL = 12  from VOUT = 2.4 V to VOUT = 19.2 V - 0.80 - dVOUT/dt(off) Turn -off voltage slope RL = 12  from VOUT = 21.6 V to VOUT = 2.4 V - 0.30 - V/µs Table 6. Input pin Symbol Test conditions VIL Input low level - IIL Low level input current VIN = 1.25 V VIH Input high level - IIH High level input current VIN = 3.25 V VI(HYST) Input hysteresis voltage - Input current IIN VICL 8/23 Parameter Input clamp voltage Min. Typ. Max. Unit 1.25 - V 1 - - µA 3.25 - - V - - 10 µA 0.5 - - V VIN = VCC = 5 V - - 10 µA IIN = 1 mA 6 6.8 8 IIIN = -1 mA - -0.7 - DocID12137 Rev 10 V VN751PT Electrical characteristics Table 7. Status pin Symbol Parameter Test conditions Min. Typ. Max. Unit VSTAT Status low output voltage ISTAT = 1.6 mA - - 0.5 V ILSTAT Status leakage current Normal operation; VSTAT = 5 V - - 10 µA CSTAT Status pin input capacitance Normal operation; VSTAT = 5 V - - 100 pF VSCL Status clamp voltage ISTAT = 1 mA 6 6.8 8 µA ISTAT = -1 mA - -0.7 - V Table 8. Protection Symbol Vdemag Parameter Test conditions Turn-off output clamp voltage RL = 12 ; L = 6 mH Min. Typ. Max. VCC -47 VCC -52 VCC -57 Unit V Shutdown temperature - 150 175 200 °C Current limitation VCC = 24 V; RLOAD = 10 m, t = 0.4 ms 2.7 - 6.0 A Thyst Thermal hysteresis - 7 20 - °C TR Reset temperature - 135 - - °C TTSD Ilim DocID12137 Rev 10 9/23 23 Test circuits 5 VN751PT Test circuits Figure 4. Peak short-circuit current Figure 5. Avalanche energy test circuit 10/23 DocID12137 Rev 10 VN751PT 6 Switching time waveforms and truth table Switching time waveforms and truth table Figure 6. Switching time waveforms ". Table 9. Truth table Conditions Normal operation Current limitation Overtemperature Undervoltage Overvoltage Input Output Status L L H H H H L L H H X (TJ < TTSD) H H X (TJ > TTSD) L L L H H L L L L X H L X L L H H L H DocID12137 Rev 10 11/23 23 Switching time waveforms and truth table VN751PT Figure 7. Waveforms ". 12/23 DocID12137 Rev 10 VN751PT 7 Application schematic Application schematic Figure 8. Application schematic DocID12137 Rev 10 13/23 23 Reverse polarity protection 8 VN751PT Reverse polarity protection A schematic solution to protect the IC against a reverse polarity condition is proposed. This schematic is effective with any type of load connected to the outputs of the IC. The RGND resistor value can be selected according to the following conditions: Equation 1 RGND  600 mV / (IS in ON-state max.) Equation 2 RGND  (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet. The power dissipation associated to RGND during reverse polarity condition is: Equation 3 PD = (-VCC)2 / RGND This resistor can be shared by several different ICs. In such case IS value in Equation 1 is the sum of the maximum ON-state currents of the different devices. Please note that if the microprocessor ground and the device ground are separated, the voltage drop across the RGND (given by IS in ON-state max. * RGND) produces a difference between the generated input level and the IC input signal level. This voltage drop varies depending on how many devices are ON in case of several high-side switches sharing the same RGND. Figure 9. Reverse polarity protection ". 14/23 DocID12137 Rev 10 VN751PT 9 Active VDS clamp Active VDS clamp Active clamp is also known as fast demagnetization of inductive loads or fast current decay. When a high-side driver turns off an inductance, an undervoltage is detected on output. The OUT pin is pulled down to Vdemag. The conduction state is modulated by an internal circuitry in order to keep the OUT pin voltage at about Vdemag until the load energy has been dissipated. The energy is dissipated both in IC internal switch and in load resistance. Figure 10. Active clamp equivalent principle schematic "11-*$"5*0/#0"3% 4611-:3"*- 7$$ &9104&% 1"% $-".1 DJSDVJUSZ 065 7/15 (306/%1-"/& (/% ". DocID12137 Rev 10 15/23 23 Active VDS clamp VN751PT Figure 11. Fast demagnetization waveforms *065 U 0/ _ *-0"% U %&."( U 7065 _ 7$$ U 7$$ 7%&."( 7*/ _ U ". The demagnetization of inductive load causes a huge electrical and thermal stress to the IC. The curve plotted below shows the maximum demagnetization energy that the IC can support in a single demagnetization pulse with VCC = 24 V and TAMB = 125 °C. If higher demagnetization energy is required then an external free-wheeling Schottky diode has to be connected between OUT (cathode) and GND (anode) pins. Note that in this case the fast demagnetization is inhibited. 16/23 DocID12137 Rev 10 VN751PT Active VDS clamp Figure 12. Typical demagnetization energy (single pulse) at VCC = 24 V and TAMB = 125 °C   &%&." (                   * -0"%
VN751PT 价格&库存

很抱歉,暂时无法提供与“VN751PT”相匹配的价格&库存,您可以联系我们找货

免费人工找货