VND7012AY-E
Double channel high-side driver with MultiSense analog feedback
for automotive applications
Datasheet - preliminary data
PowerSSO-36
– Configurable latch-off on overtemperature
or power limitation with dedicated fault
reset pin
– Loss of ground and loss of VCC
– Reverse battery through self turn-on
– Electrostatic discharge protection
*$3*&)7
Applications
Features
Max transient supply voltage
VCC
41 V
Operating voltage range
VCC
4 to 28 V
Typ. on-state resistance (per Ch) RON
12 mΩ
Current limitation (typ)
ILIMH
75 A
Standby current (max)
ISTBY
0.5 µA
• General
– Double channel smart high side driver with
MultiSense analog feedback
– Very low standby current
– Compatible with 3 V and 5 V CMOS
outputs
• MultiSense diagnostic functions
– Multiplexed analog feedback of: load
current with high precision proportional
current mirror, VCC supply voltage and
TCHIP device temperature
– Overload and short to ground (power
limitation) indication
– Thermal shutdown indication
– Off-state open-load detection
– Output short to VCC detection
– Sense enable/ disable
• Protections
– Undervoltage shutdown
– Overvoltage clamp
– Load current limitation
– Self limiting of fast thermal transients
July 2014
• All types of Automotive resistive, inductive and
capacitive loads
• Specially intended for Automotive Turn
Indicators (up to 3 x P27W or SAE1156 and
2 x R5W paralleled or Automotive Headlamps)
Description
The VND7012AY-E is a double channel high-side
driver manufactured using ST proprietary
VIPower® M0-7 technology and housed in
PowerSSO-36 package. The device is designed
to drive 12 V automotive grounded loads through
a 3 V and 5 V CMOS-compatible interface,
providing protection and diagnostics.
The device integrates advanced protective
functions such as load current limitation, overload
active management by power limitation and
overtemperature shutdown with configurable
latch-off.
A FaultRST pin unlatches the output in case of
fault or disables the latch-off functionality.
A dedicated multifunction multiplexed analog
output pin delivers sophisticated diagnostic
functions including high precision proportional
load current sense, supply voltage feedback and
chip temperature sense, in addition to the
detection of overload and short circuit to ground,
short to VCC and off-state open-load.
A sense enable pin allows off-state diagnosis to
be disabled during the module low-power mode
as well as external sense resistor sharing among
similar devices.
DocID022886 Rev 6
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to
change without notice.
1/46
www.st.com
1
Contents
VND7012AY-E
Contents
1
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
4
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3
Main electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1
Power limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2
Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3
Current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4
Negative voltage clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1
GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 27
4.2
Immunity against transient electrical disturbances . . . . . . . . . . . . . . . . . . 28
4.3
MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4
MultiSense - analog current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5
5
7
2/46
Principle of MultiSense signal generation . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.2
TCASE and VCC monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.3
Short to VCC and OFF-state open-load detection . . . . . . . . . . . . . . . . . 34
Maximum demagnetization energy (VCC = 16 V) . . . . . . . . . . . . . . . . . . . 35
Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1
6
4.4.1
PowerSSO-36 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1
ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2
PowerSSO-36 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3
Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
DocID022886 Rev 6
VND7012AY-E
8
Contents
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
DocID022886 Rev 6
3/46
List of tables
VND7012AY-E
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
4/46
Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Switching (VCC = 13 V; -40 °C < Tj < 150 °C, unless otherwise specified). . . . . . . . . . . . . 11
Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
MultiSense multiplexer addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
ISO 7637-2 - electrical transient conduction along supply line . . . . . . . . . . . . . . . . . . . . . . 28
MultiSense pin levels in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
PCB properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
PowerSSO-36 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
DocID022886 Rev 6
VND7012AY-E
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
IOUT/ISENSE vs. IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Current sense precision vs. IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Switching times and Pulse skew. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
MultiSense timings (current sense mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
MultiSense timings (chip temperature and VCC sense mode) . . . . . . . . . . . . . . . . . . . . . . 20
TDSKON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
OFF-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Standby current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
IGND(ON) vs. Iout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Logic Input high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Logic Input low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
High level logic input current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Low level logic input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Logic Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
FaultRST Input clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
On-state resistance vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
On-state resistance vs. VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Won vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Woff vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ILIMH vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
OFF-state open-load voltage detection threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Vsense clamp vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Vsenseh vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Simplified internal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
MultiSense and diagnostic – block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
MultiSense block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Analogue HSD – open-load detection in off-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Open-load / short to VCC condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
GND voltage shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Maximum turn off current versus inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
PowerSSO-36 PCB board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Rthj-amb vs PCB copper area in open box free air condition (one channel on) . . . . . . . . . . 37
PowerSSO-16 thermal impedance junction ambient single pulse (one channel on) . . . . . 38
Thermal fitting model of a double-channel HSD in PowerSSO-16 . . . . . . . . . . . . . . . . . . 38
PowerSSO-36 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
PowerSSO-36 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
PowerSSO-36 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
DocID022886 Rev 6
5/46
Block diagram and pin description
1
VND7012AY-E
Block diagram and pin description
Figure 1. Block diagram
9&&
,QWHUQDOVXSSO\
9&&±*1'
&ODPS
8QGHUYROWDJH
VKXWGRZQ
&+
&KDQQHO
&RQWURO 'LDJQRVWLF
&KDQQHO
)DXOW567
9&&±287
&ODPS
&+
,1387
,1387
*DWH'ULYHU
6(/
7
9&&
287387
921
/LPLWDWLRQ
6(/
&XUUHQW
/LPLWDWLRQ
08;
6(Q
0XOWLVHQVH
3RZHU/LPLWDWLRQ
2YHUWHPSHUDWXUH
7
6KRUWWR9&&
2SHQ/RDGLQ2))
&XUUHQW
6HQVH
)DXOW
96(16(+
*1'
287387
("1($'5
Table 1. Pin functions
Name
VCC
OUTPUT0,1
GND
INPUT0,1
MultiSense
SEn
6/46
Function
Battery connection.
Power output.
Ground connection.
Voltage controlled input pin with hysteresis, compatible with 3V and 5V
CMOS outputs. They control output switch state.
Multiplexed analog sense output pin; delivers a current proportional to the
selected diagnostic: load current, supply voltage or chip temperature.
Active high compatible with 3V and 5V CMOS outputs; it enables the
MultiSense diagnostic pin.
SEL0,1
Active high compatible with 3V and 5V CMOS outputs; they address the
MultiSense multiplexer.
FaultRST
Active low compatible with 3V and 5V CMOS outputs; unlatches the
output in case of fault; if kept low, sets the outputs in auto-restart mode.
DocID022886 Rev 6
VND7012AY-E
Block diagram and pin description
Figure 2. Configuration diagram (top view)
287387
287387
287387
287387
287387
287387
1&
1&
1&
1&
1&
1&
1&
6(Q
1&
6(/
6(/
1&
7$%9FF
287387
287387
287387
287387
287387
287387
1&
1&
1&
1&
1&
1&
1&
,1387
,1387
0XOWL6HQVH
*1'
)DXOW567
3RZHU6623$&.$*(
("1($'5
Table 2. Suggested connections for unused and not connected pins
Connection/pin
MultiSense
N.C.
Output
Input
Floating
Not allowed
X(1)
X
X
To ground
Through 1 kΩ
resistor
X
Not allowed
SEn, SELx,
FaultRST
X
Through 15 kΩ Through 15 kΩ
resistor
resistor
1. X: do not care.
DocID022886 Rev 6
7/46
Electrical specification
2
VND7012AY-E
Electrical specification
Figure 3. Current and voltage conventions
,6
9&&
)DXOW567
,6(Q
,287
287387
96(Q
9287
,6(16(
6(Q
,6(/
6(/
96(/
9)5
9&&
9)Q
,)5
0XOWL6HQVH
96(16(
,,1
6 ,1
,1387
,*1'
*$3*&)7
Note: VFn = VOUTn - VCC during reverse battery condition.
2.1
Absolute maximum ratings
Stressing the device above the rating listed in Table 3 may cause permanent damage to the
device. These are stress ratings only and operation of the device at these or any other
conditions above those indicated in the operating sections of this specification is not implied.
Exposure to the conditions in table below for extended periods may affect device reliability.
Table 3. Absolute maximum ratings
Symbol
8/46
Parameter
Value
VCC
DC supply voltage
38
-VCC
Reverse DC supply voltage
16
VCCPK
Maximum transient supply voltage (ISO7637-2:2004 Pulse 5b
level IV clamped to 40 V; RL = 4 Ω)
40
VCCJS
Maximum jump start voltage for single pulse short circuit
protection
28
-IGND
DC reverse ground pin current
200
IOUT
OUTPUT0,1 DC output current
Internally limited
-IOUT
Reverse DC output current
IIN
INPUT0,1 DC input current
ISEn
SEn DC input current
ISEL
SEL0,1 DC input current
IFR
FaultRST DC input current
V
mA
A
22
-1 to 10
DocID022886 Rev 6
Unit
mA
VND7012AY-E
Electrical specification
Table 3. Absolute maximum ratings (continued)
Symbol
Value
Unit
FaultRST DC input voltage
7.5
V
MultiSense pin DC output current (VGND = VCC and
VSENSE < 0 V)
10
MultiSense pin DC output current in reverse (VCC < 0 V)
-20
EMAX
Maximum switching energy (single pulse)
(TDEMAG = 0.4 ms; Tjstart = 150°C)
144
mJ
VESD
Electrostatic discharge (JDEC 22 A-114 F)
– INPUT0,1
– MultiSense
– SEn, SEL0,1, FaultRST
– OUTPUT0,1
– VCC
4000
2000
4000
4000
4000
V
V
V
V
V
VESD
Charge device model (CDM-AEC-Q100-011)
750
V
VFR
ISENSE
Tj
Tstg
2.2
Parameter
mA
Junction operating temperature
-40 to 150
Storage temperature
-55 to 150
°C
Thermal data
Table 4. Thermal data
Symbol
Parameter
Typ. value
Rthj-board
Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8)(1)(2)
Unit
4
Rthj-amb
Thermal resistance junction-ambient (JEDEC JESD
51-5)(1)(3)
50.6
Rthj-amb
Thermal resistance junction-ambient (JEDEC JESD 51-7)(1)(2)
16.6
°C/W
1. One channel ON.
2. Device mounted on four-layers 2s2p PCB
3. Device mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace
DocID022886 Rev 6
9/46
Electrical specification
2.3
VND7012AY-E
Main electrical characteristics
7 V < VCC < 28 V; -40°C < Tj < 150°C, unless otherwise specified.
All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
Table 5. Power section
Symbol
Parameter
Test conditions
Min. Typ. Max. Unit
VCC
Operating supply
voltage
VUSD
Undervoltage shutdown
4
VUSDReset
Undervoltage shutdown
reset
5
VUSDhyst
Undervoltage shutdown
hysteresis
4
RON
RON_REV
Vclamp
ISTBY
tD_STBY
IS(ON)
IGND(ON)
10/46
On-state
On-state resistance in
reverse battery
Clamp voltage
Supply current in
standby at
VCC = 13 V (2)
28
V
0.3
IOUT = 7 A; Tj = 25°C
resistance(1)
13
12
IOUT = 7 A; Tj = 150°C
24
IOUT = 7 A; VCC = 4 V; Tj = 25°C
18
IOUT = -7 A; VCC = -13 V; Tj = 25°C
12
IS = 20 mA; 25°C < Tj < 150°C
41
IS = 20 mA; Tj = -40 °C
38
46
mΩ
mΩ
52
V
V
VCC = 13 V;
VIN0,1 = VOUT0,1 = VFR = VSEn 0 V;
VSEL0,1 = 0 V; Tj = 25°C
0.5
µA
VCC = 13 V;
VIN0,1 = VOUT0,1 = VFR = VSEn 0 V;
VSEL0,1 = 0 V; Tj = 85°C (3)
0.5
µA
VCC = 13 V;
VIN0,1 = VOUT0,1 = VFR = VSEn 0 V;
VSEL0,1 = 0 V; Tj = 125°C
3
µA
300
550
µs
5
8
mA
10
mA
VCC = 13 V; VIN0,1 = VOUT0,1 = 0 V;
Standby mode blanking
VFR = VSEL0,1 = 0 V;
time
VSEn = 5 V to 0 V
Supply current
VCC = 13 V;
VSEn = VFR = VSEL0,1 = 0 V;
VIN0,1 = 5 V; IOUT0 = 0 A; IOUT1 = 0 A
Control stage current
consumption in ON
state. All channels
active.
VCC = 13 V; VSEn = 5 V;
VFR = VSEL0,1 = 0 V; VIN0,1 = 5 V;
IOUT0 = 7 A; IOUT1 = 7 A
DocID022886 Rev 6
60
VND7012AY-E
Electrical specification
Table 5. Power section
Symbol
IL(off)
Parameter
Test conditions
Min. Typ. Max. Unit
VIN0,1 = VOUT0,1 = 0 V; VCC = 13 V;
Off-state output current Tj = 25°C
at VCC = 13 V (1)
=V
= 0 V; V = 13 V;
V
IN0,1
OUT0,1
0
Output - VCC diode
voltage(1)
0.5
µA
CC
0
Tj = 125°C
VF
0.01
3
IOUT = -7 A; Tj = 150 °C
0.7
V
1. For each channel.
2. PowerMOS leakage included.
3. Parameter specified by design; not subject to production test.
Table 6. Switching (VCC = 13 V; -40 °C < Tj < 150 °C, unless otherwise specified)(1)
Symbol
Parameter
td(on)
Turn-on delay time at Tj = 25 °C
td(off)
Turn-off delay time at Tj = 25 °C
Test conditions
RL = 1.84 Ω
(dVOUT/dt)on Turn-on voltage slope at Tj = 25 °C
(dVOUT/dt)off Turn-off voltage slope at Tj = 25 °C
RL = 1.84 Ω
Min.
Typ.
Max. Unit
10
50
120
10
45
100
0.1
0.45
0.7
0.2
0.5
0.8
µs
V/µs
WON
Switching energy losses at turn-on
(twon)
RL = 1.84 Ω
—
0.6
1.4(2)
mJ
WOFF
Switching energy losses at turn-off
(twoff)
RL = 1.84 Ω
—
0.6
1.3(2)
mJ
tSKEW
Differential pulse skew
(tPHL - tPLH) see Figure 6
RL = 1.84 Ω
-60
-10
40
µs
Max.
Unit
0.9
V
1. See Figure 6: Switching times and Pulse skew.
2. Parameter guaranteed by design and characterization, not subject to production test.
Table 7. Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C)
Symbol
Parameter
Test conditions
Min.
Typ.
INPUT0,1 characteristics
VIL
Input low level voltage
IIL
Low level input current
VIH
Input high level voltage
IIH
High level input current
VI(hyst)
Input hysteresis voltage
VICL
Input clamp voltage
VIN = 0.9 V
1
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
IIN = -1 mA
µA
V
5.3
7.2
V
-0.7
FaultRST characteristics
VFRL
Input low level voltage
DocID022886 Rev 6
0.9
V
11/46
Electrical specification
VND7012AY-E
Table 7. Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C) (continued)
Symbol
Parameter
IFRL
Low level input current
VFRH
Input high level voltage
IFRH
High level input current
VFR(hyst)
Input hysteresis voltage
VFRCL
Test conditions
VIN = 0.9 V
Min.
Typ.
Max.
1
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
Input clamp voltage
Unit
µA
V
5.3
7.5
V
IIN = -1 mA
-0.7
SEL0,1 characteristics (7 V < VCC < 18 V)
VSELL
Input low level voltage
ISELL
Low level input current
VSELH
Input high level voltage
ISELH
High level input current
VSEL(hyst)
Input hysteresis voltage
VSELCL
0.9
VIN = 0.9 V
1
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
Input clamp voltage
V
µA
V
5.3
7.2
V
IIN = -1 mA
-0.7
SEn characteristics (7 V < VCC < 18 V)
VSEnL
Input low level voltage
ISEnL
Low level input current
VSEnH
Input high level voltage
ISEnH
High level input current
VSEn(hyst)
Input hysteresis voltage
VSEnCL
Input clamp voltage
0.9
VIN = 0.9 V
1
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
V
µA
V
5.3
7.2
V
IIN = -1 mA
-0.7
Table 8. Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C)
Symbol
Parameter
ILIMH(1)
DC short circuit current
ILIML
Short circuit current
during thermal cycling
TTSD
Shutdown temperature
VCC = 13 V
Reset
TRS
Thermal reset of fault
diagnostic indication
Min.
Typ.
Max.
60
75
96
4 V < VCC < 18 V(2)
96
VCC = 13 V;
TR < Tj < TTSD
temperature(2)
TR
THYST
12/46
Test conditions
VFR = 0 V; VSEn = 5 V
Thermal hysteresis
(TTSD - TR)(2)
A
25
150
175
TRS + 1
TRS + 5
200
°C
135
5
DocID022886 Rev 6
Unit
VND7012AY-E
Electrical specification
Table 8. Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued)
Symbol
ΔTJ_SD
tLATCH_RST
VDEMAG
VON
Parameter
Test conditions
Min.
Typ.
Dynamic temperature
60
VFR = 5 V to 0 V;
VSEn = 5 V; VIN0,1 = 5 V;
VSEL0,1 = 0 V
Fault reset time for
output unlatch(2)
Turn-off output voltage
clamp
Output voltage drop
limitation
Max.
3
K
10
20
IOUT = 2 A; L = 6 mH;
Tj = -40 °C
VCC - 38
IOUT = 2 A; L = 6 mH;
Tj = 25°C to 150°C
VCC - 41 VCC - 46 VCC - 52
IOUT = 0.7 A
Unit
µs
V
20
mV
1. Parameter guaranteed by an indirect test sequence.
2. Parameter guaranteed by design and characterization; not subject to production test.
Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C)
Symbol
VSENSE_CL
Parameter
MultiSense clamp
voltage
Test conditions
Min.
VSEn = 0 V; ISENSE = 1 mA
-17
VSEn = 0 V; ISENSE = -1 mA
Typ.
Max.
Unit
-12
V
7
V
Current Sense characteristics
IOUT/ISENSE
IOUT = 10 mA;
VSENSE = 0.5 V; VSEn = 5 V
1400
Current sense ratio
drift at calibration
point
ICAL = 130 mA;
IOUT = 10 mA to 250 mA;
VSENSE = 0.5 V; VSEn = 5 V
-35
KLED
IOUT/ISENSE
IOUT = 250 mA;
VSENSE = 0.5 V; VSEn = 5 V
2490
5100
8000
K0
IOUT/ISENSE
IOUT = 0.7 A;
VSENSE = 0.5 V; VSEn = 5 V
2560
5120
7680
Current sense ratio
drift
IOUT = 0.7 A;
VSENSE = 0.5 V; VSEn = 5 V
-25
IOUT/ISENSE
IOUT = 1.4 A; VSENSE = 4 V;
VSEn = 5 V
3480
Current sense ratio
drift
IOUT = 1.4 A; VSENSE = 4 V;
VSEn = 5 V
-20
IOUT/ISENSE
IOUT = 7 A; VSENSE = 4 V;
VSEn = 5 V
3410
Current sense ratio
drift
IOUT = 7 A; VSENSE = 4 V;
VSEn = 5 V
-10
IOUT/ISENSE
IOUT = 21 A; VSENSE = 4 V;
VSEn = 5 V
3810
Current sense ratio
drift
IOUT = 21 A; VSENSE = 4 V;
VSEn = 5 V
-5
KOL
dKcal/Kcal(1)(2)
dK0/K0(1)(2)
K1
dK1/K1(1)(2)
K2
dK2/K2(1)(2)
K3
dK3/K3(1)(2)
DocID022886 Rev 6
35
25
4900
%
5120
10
4300
%
6470
20
4280
%
%
4660
5
%
13/46
Electrical specification
VND7012AY-E
Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued)
Symbol
Parameter
Test conditions
Max.
Unit
0
0.5
µA
-0.5
0.5
µA
MultiSense enabled:
VSEn = 5 V;
All channel ON;
IOUTX = 0 A;
ChX diagnostic selected;
– E.g. Ch0:
VIN0 = 5 V; VIN1 = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V;
IOUT0 = 0 A; IOUT1 = 7 A
0
2
µA
MultiSense enabled:
VSEn = 5 V;
ChX channel OFF;
ChX diagnostic selected;
– E.g. Ch0:
VIN0 = 0 V; VIN1 = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V;
IOUT1 = 7 A
0
2
µA
MultiSense disabled:
VSEn = 0 V;
MultiSense disabled:
-1 V < VSENSE < 5 V(1)
ISENSE0
MultiSense leakage
current
Min.
Typ.
VOUT_MSD(1)
VSEn = 5 V;
RSENSE = 2.7 kΩ
Output Voltage for
–
MultiSense shutdown E.g. Ch0:
VIN0 = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V; IOUT0 = 7 A
VSENSE_SAT
VCC = 7 V; RSENSE = 2.7 K;
Multisense saturation VSEn = 5 V; VIN0 = 5 V;
voltage
VSEL0,1 = 0 V; IOUT0 = 21 A;
Tj = 150°C
5
V
ISENSE_SAT(1)
VCC = 7 V; VSENSE = 4 V;
CS saturation current VSEn = 5 V; VIN0 = 5 V;
VSEL0,1 = 0 V; Tj = 150°C
4
mA
VCC = 7 V; VSENSE = 4 V;
VIN0 = 5 V; VSEn = 5 V;
VSEL0,1 = 0 V; Tj = 150°C
23
A
VSEn = 5 V; ChX OFF;
ChX diagnostic selected
– E.g: Ch0
VIN0 = 0 V; VSEL0 = 0 V;
VSEL1 = 0 V;
2
IOUT_SAT(1)
Output saturation
current
5
V
Off-state diagnostic
VOL
IL(off2)
14/46
Off-state open-load
voltage detection
threshold
OFF state output sink VIN = 0 V; VOUT = VOL;
current
Tj = -40°C to 125°C
DocID022886 Rev 6
-100
3
4
V
-15
µA
VND7012AY-E
Electrical specification
Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued)
Symbol
Parameter
Test conditions
tDSTKON
VSEn = 5 V; ChX ON to OFF
transition
Off-state diagnostic
ChX diagnostic selected
delay time from
– E.g: Ch0
falling edge of INPUT
VIN0 = 5 V to 0 V;
(see XXX)
VSEL0 = 0 V; VSEL1 = 0 V;
IOUT0 = 0 A; VOUT = 4 V
tD_OL_V
Settling time for valid
OFF-state open load
diagnostic indication
from rising edge of
SEn
tD_VOL
VSEn = 5 V; ChX OFF
ChX diagnostic selected
Off-state diagnostic
–
E.g: Ch0
delay time from rising
VIN0 = 0 V; VSEL0 = 0 V;
edge of VOUT
VSEL1 = 0 V;
VOUT = 0 V to 4 V
Min.
Typ.
Max.
Unit
100
350
700
µs
60
µs
5
30
µs
VIN0 = 0 V; VIN1 = 0 V;
VFR = 0 V; VSEL0 = 0 V;
VSEL1 = 0 V; VOUT0 = 4 V;
VSEn = 0 V to 5 V
Chip temperature analog feedback
VSENSE_TC
dVSENSE_TC/dT(1)
MultiSense output
voltage proportional
to chip temperature
Temperature
coefficient
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN0,1 = 0 V;
RSENSE = 1 KΩ; Tj = -40°C
2.325
2.41
2.495
V
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN0,1 = 0 V;
RSENSE = 1 KΩ; Tj = 25°C
1.985
2.07
2.155
V
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN0,1 = 0 V;
RSENSE = 1 KΩ; Tj = 125°C
1.435
1.52
1.605
V
Tj = -40°C to 150°C
-5.5
mV/K
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T T0)
Transfer function
VCC supply voltage analog feedback
VSENSE_VCC
MultiSense output
voltage proportional
to VCC supply
voltage
Transfer function(3)
VCC = 13 V; VSEn = 5 V;
VSEL0 = 5 V; VSEL1 = 5 V;
VIN0,1 = 0 V;
RSENSE = 1 KΩ
3.16
3.23
3.3
V
6.6
V
VSENSE_VCC = VCC / 4
Fault diagnostic feedback (see Table 10)
VSENSEH
MultiSense output
voltage in fault
condition
VCC = 13 V; RSENSE = 1 kΩ
– E.g: Ch0 in open load
VIN0 = 0 V; VSEn = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V;
IOUT0 = 0 A; VOUT = 4 V
DocID022886 Rev 6
5
15/46
Electrical specification
VND7012AY-E
Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued)
Symbol
ISENSEH
Parameter
MultiSense output
current in fault
condition
Test conditions
Min.
Typ.
Max.
Unit
7
20
30
mA
60
µs
5
20
µs
100
250
µs
100
µs
250
µs
VCC = 13 V; VSENSE = 5 V
MultiSense timings (current sense mode - see Figure 7)(4)
tDSENSE1H
Current sense
settling time from
rising edge of SEn
VIN = 5 V;
VSEn = 0 V to 5 V;
RSENSE = 1 kΩ;
RL = 1.84 Ω
tDSENSE1L
Current sense
disable delay time
from falling edge of
SEn
VIN = 5 V;
VSEn = 5 V to 0 V;
RSENSE = 1 kΩ;
RL = 1.84 Ω
tDSENSE2H
Current sense
VIN = 0 V to 5 V;
settling time from
VSEn = 5 V; RSENSE = 1 kΩ;
rising edge of INPUT RL = 1.84 Ω
ΔtDSENSE2H
tDSENSE2L
Current sense
settling time from
rising edge of IOUT
(dynamic response
to a step change of
IOUT)
VIN = 5 V; VSEn = 5 V;
RSENSE = 1 kΩ;
RL = 1.84 Ω
Current sense turn- VIN = 5 V to 0 V;
off delay time from
VSEn = 5 V; RSENSE = 1 kΩ;
falling edge of INPUT RL = 1.84 Ω
50
MultiSense timings (chip temperature sense mode - see Figure 8)(4)
tDSENSE3H
VSENSE_TC settling
VSEn = 0 V to 5 V;
time from rising edge VSEL0 = 0 V; VSEL1 = 5 V;
RSENSE = 1 kΩ
of SEn
60
µs
tDSENSE3L
VSENSE_TC disable
delay time from
falling edge of SEn
20
µs
VSEn = 5 V to 0 V;
VSEL0 = 0 V; VSEL1 = 5 V;
RSENSE = 1 kΩ
MultiSense timings (VCC voltage sense mode - see Figure 8)(4)
tDSENSE4H
VSENSE_VCC settling VSEn = 0 V to 5 V;
time from rising edge VSEL0 = 5 V; VSEL1 = 5 V;
RSENSE = 1 kΩ
of SEn
60
µs
tDSENSE4L
VSENSE_VCC disable
delay time from
falling edge of SEn
20
µs
20
µs
VSEn = 5 V to 0 V;
VSEL0 = 5 V; VSEL1 = 5 V;
RSENSE = 1 kΩ
MultiSense timings (Multiplexer transition times)(4)
tD_XtoY
16/46
VIN0 = 5 V; VIN1 = 5 V;
MultiSense transition VSEn = 5 V; VSEL1 = 0 V;
delay from ChX to
VSEL0 = 0 V to 5 V;
ChY
IOUT0 = 0A; IOUT1 = 3 A;
RSENSE = 1 kΩ
DocID022886 Rev 6
VND7012AY-E
Electrical specification
Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued)
Symbol
Parameter
Max.
Unit
tD_CStoTC
VIN0 = 5 V; VSEn = 5 V;
MultiSense transition VSEL0 = 0 V;
delay from current
VSEL1 = 0 V to 5 V;
sense to TC sense
IOUT0 = 3.5 A;
RSENSE = 1 kΩ
60
µs
tD_TCtoCS
VIN0 = 5 V; VSEn = 5 V;
MultiSense transition VSEL0 = 0 V;
delay from TC sense VSEL1 = 5 V to 0 V;
to current sense
IOUT0 = 3.5 A;
RSENSE = 1 kΩ
20
µs
tD_CStoVCC
VIN1 = 5 V; VSEn = 5 V;
MultiSense transition VSEL0 = 5 V;
delay from current
VSEL1 = 0 V to 5 V;
sense to VCC sense IOUT1 = 3.5A;
RSENSE = 1 kΩ
60
µs
tD_VCCtoCS
V
= 5 V; VSEn = 5 V;
MultiSense transition IN1
VSEL0 = 5 V;
delay from VCC
VSEL1 = 5 V to 0 V;
sense to current
IOUT1 = 3.5 A;
sense
RSENSE = 1 kΩ
20
µs
tD_TCtoVCC
VCC = 13 V; Tj = 125°C;
MultiSense transition VSEn = 5 V;
delay from TC sense VSEL0 = 0 V to 5 V;
to VCC sense
VSEL1 = 5 V;
RSENSE = 1 kΩ
20
µs
tD_VCCtoTC
VCC = 13 V; Tj = 125°C;
MultiSense transition VSEn = 5 V;
delay from VCC
VSEL0 = 5 V to 0 V;
sense to TC sense
VSEL1 = 5 V;
RSENSE = 1 kΩ
20
µs
20
µs
MultiSense transition
delay from stable
tD_CStoVSENSEH
current sense on ChX
to VSENSEH on ChY
Test conditions
Min.
VIN0 = 5 V; VIN1 = 0 V;
VSEn = 5 V; VSEL1 = 0 V;
VSEL0 = 0 V to 5 V;
IOUT0 = 7 A; VOUT1 = 4 V;
RSENSE = 1 kΩ
Typ.
1. Parameter specified by design; not subject to production test.
2. All values refer to VCC = 13 V; Tj = 25 °C, unless otherwise specified.
3. VCC sensing and TC sensing are referred to GND potential.
4. Transition delay are measured up to +/- 10% of final conditions.
DocID022886 Rev 6
17/46
Electrical specification
VND7012AY-E
Figure 4. IOUT/ISENSE vs. IOUT
ϵϬϬϬ
ϴϬϬϬ
TTSD or
ΔTj > ΔTj_SD
Short to VCC
Off-state
diagnostics Open-load
Negative
output
voltage
L
Comments
Refer to
Table 11
H
H
Refer to
Table 11
Outputs configured for
auto-restart
Outputs configured for
latch off
Refer to
Table 11
L
X
Refer to
Table 11
Output latches off
L
L
Hi-Z
Hi-Z
H
Refer to
Table 11
H
VUSD +
VUSDhyst (rising)
External pull up
Refer to
Table 11
Table 11. MultiSense multiplexer addressing
MultiSense output
SEn SEL1 SEL0 MUXchannel
Normal
mode
Overload
Off-state
diag.(1)
Negative
output
L
X
X
Hi-Z
H
L
L
Channel 0
diagnostic
ISENSE =
1/K * IOUT0
VSENSE =
VSENSEH
VSENSE =
VSENSEH
Hi-Z
H
L
H
Channel 1
diagnostic
ISENSE =
1/K * IOUT1
VSENSE =
VSENSEH
VSENSE =
VSENSEH
Hi-Z
H
H
L
TCHIP Sense
VSENSE = VSENSE_TC
H
H
H
VCC Sense
VSENSE = VSENSE_VCC
1. In case the output channel corresponding to the selected MUX channel is latched off while the
relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic.
Example 1: FR = 1; IN0 = 0; OUT0 = L (latched); MUX channel = channel 0 diagnostic;
Mutisense = 0
Example 2: FR = 1; IN0 = 0; OUT0 = latched, VOUT0 > VOL; MUX channel = channel 0
diagnostic; Mutisense = VSENSEH
DocID022886 Rev 6
21/46
Electrical specification
2.4
VND7012AY-E
Electrical characteristics curves
Figure 10. OFF-state output current
Figure 11. Standby current
,67%$@
,ORII>Q$@
2II6WDWH
9FF 9
9LQ 9RXW
9FF 9
7>&@
7>&@
("1($'5
Figure 12. IGND(ON) vs. Iout
("1($'5
Figure 13. Logic Input high level voltage
9L+9)5+96(/+96(Q+>9@
,*1'21>P$@
9FF 9
,RXW ,RXW $
7>&@
7>&@
("1($'5
Figure 14. Logic Input low level voltage
("1($'5
Figure 15. High level logic input current
,L+,)5+,6(/+,6(Q+>$@
9LO/9)5/96(//96(Q/>9@
7>&@
7>&@
("1($'5
22/46
DocID022886 Rev 6
("1($'5
VND7012AY-E
Electrical specification
Figure 16. Low level logic input current
,L/,)5/,6(//,6(Q/>$@
Figure 17. Logic Input hysteresis voltage
9LK\VW9)5K\VW96(/K\VW96(QK\VW>9@
7>&@
7>&@
("1($'5
("1($'5
Figure 18. FaultRST Input clamp voltage
9)5&/>9@
Figure 19. Undervoltage shutdown
986'>9@
,LQ P$
,LQ P$
7>&@
7>&@
("1($'5
Figure 20. On-state resistance vs. Tcase
5RQ>P2KP@
("1($'5
Figure 21. On-state resistance vs. VCC
5RQ>P2KP@
7 &
7 &
,RXW $
9FF 9
7 &
7 &
9FF>9@
7>&@
("1($'5
DocID022886 Rev 6
("1($'5
23/46
Electrical specification
VND7012AY-E
Figure 22. Turn-on voltage slope
Figure 23. Turn-off voltage slope
G9RXWGW2Q>9V@
G9RXWGW2II>9V@
9FF 9
5O ȍ
9FF 9
5O ȍ
7>&@
7>&@
("1($'5
("1($'5
Figure 25. Woff vs. Tcase
Figure 24. Won vs. Tcase
:RQ>P-@
:RII>P-@
7>&@
7>&@
("1($'5
("1($'5
Figure 26. ILIMH vs. Tcase
Figure 27. OFF-state open-load voltage
detection threshold
92/>9@
,OLPK>$@
9FF 9
("1($'5
24/46
7>&@
7>&@
DocID022886 Rev 6
("1($'5
VND7012AY-E
Electrical specification
Figure 28. Vsense clamp vs. Tcase
Figure 29. Vsenseh vs. Tcase
96(16(+>9@
96(16(B&/>9@
,LQ P$
,LQ P$
7>&@
7>&@
("1($'5
DocID022886 Rev 6
("1($'5
25/46
Protections
VND7012AY-E
3
Protections
3.1
Power limitation
The basic working principle of this protection consists of an indirect measurement of the
junction temperature swing ΔTj through the direct measurement of the spatial temperature
gradient on the device surface in order to automatically shut off the output MOSFET as soon
as ΔTj exceeds the safety level of ΔTj_SD. According to the voltage level on the FaultRST
pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the
maximum instantaneous power which can be handled (FaultRST = Low) or remains off
(FaultRST = High). The protection prevents fast thermal transient effects and, consequently,
reduces thermo-mechanical fatigue.
3.2
Thermal shutdown
In case the junction temperature of the device exceeds the maximum allowed threshold
(typically 175°C), it automatically switches off and the diagnostic indication is triggered.
According to the voltage level on the FaultRST pin, the device switches on again as soon as
its junction temperature drops to TR (see Table 8, FaultRST = Low) or remains off
(FaultRST = High).
3.3
Current limitation
The device is equipped with an output current limiter in order to protect the silicon as well as
the other components of the system (e.g. bonding wires, wiring harness, connectors, loads,
etc.) from excessive current flow. Consequently, in case of short circuit, overload or during
load power-up, the output current is clamped to a safety level, ILIMH, by operating the output
power MOSFET in the active region.
3.4
Negative voltage clamp
In case the device drives inductive load, the output voltage reaches negative value during
turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain
value, VDEMAG (see Table 8), allowing the inductor energy to be dissipated without
damaging the device.
26/46
DocID022886 Rev 6
VND7012AY-E
4
Application information
Application information
Figure 30. Application diagram
9
9''
287
9&&
)5
287
5SURW
,1387
5SURW
287
/RJLF
'OG
6(Q
5SURW
287
6(/
287
5SURW
&6
$'&LQ
&XUUHQWPLUURU
5SURW
*1'
&H[W
5VHQVH
287
*1'
("1($'5
4.1
GND protection network against reverse battery
Figure 31. Simplified internal structure
9FF
9
5SURW
5SURW
,1387
6(Q
0&8
'OG
5SURW
)DXOW567
287387
5SURW
0XOWLVHQVH
*1'
5VHQVH
*1'
("1($'5
DocID022886 Rev 6
27/46
Application information
VND7012AY-E
The device does not need any external components to protect the internal logic in case of a
reverse battery condition. The protection is provided by internal structures.
In addition, due to the fact that the output MOSFET turns on even in reverse battery mode,
thus providing the same low ohmic path as in regular operating conditions, no additional
power dissipation has to be considered.
4.2
Immunity against transient electrical disturbances
The immunity of the device against transient electrical emissions, conducted along the
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)
and ISO 16750-2:2010.
The related function performance status classification is shown in Table 12.
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device
only, without components and accessed through VCC and GND terminals.
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as
follows: “The function does not perform as designed during the test but returns automatically
to normal operation after the test”.
Table 12. ISO 7637-2 - electrical transient conduction along supply line
Test
Pulse
2011(E)
Test pulse severity
level with Status II
functional performance
status
Minimum
number of
pulses or test
time
Burst cycle / pulse
repetition time
Pulse duration and
pulse generator
internal impedance
Level
US(1)
1
III
-112V
500 pulses
0,5 s
2a
III
+55V
500 pulses
0,2 s
5s
50μs, 2Ω
3a
IV
-220V
1h
90 ms
100 ms
0.1μs, 50Ω
3b
IV
+150V
1h
90 ms
100 ms
0.1μs, 50Ω
4(2)
IV
-7V
1 pulse
min
max
2ms, 10Ω
100ms, 0.01Ω
Load dump according to ISO 16750-2:2010
Test B(3)
40V
5 pulse
1 min
400ms, 2Ω
1. US is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.
2. Test pulse from ISO 7637-2:2004(E).
3. With 40 V external suppressor referred to ground (-40°C < Tj < 150°C).
4.3
MCU I/Os protection
If a ground protection network is used and negative transients are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to
prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.
28/46
DocID022886 Rev 6
VND7012AY-E
Application information
The value of these resistors is a compromise between the leakage current of microcontroller
and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of
microcontroller I/Os.
Equation 1
VCCpeak/Ilatchup ≤ Rprot ≤ (VOHμC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak = -150 V; Ilatchup ≥ 20mA; VOHμC ≥ 4.5V
7.5 kΩ ≤ Rprot ≤ 140 kΩ.
Recommended values: Rprot = 15 kΩ
4.4
MultiSense - analog current sense
Diagnostic information on device and load status are provided by an analog output pin
(MultiSense) delivering the following signals:
•
Current monitor: current mirror of channel output current
•
VCC monitor: voltage propotional to VCC
•
TCASE: voltage propotional to chip temperature
Those signals are routed through an analog multiplexer which is configured and controlled
by means of SELx and SEn pins, according to the address map in Table 11.
DocID022886 Rev 6
29/46
Application information
VND7012AY-E
9&&
Figure 32. MultiSense and diagnostic – block diagram
5HYHUVH
%DWWHU\
,QWHUQDO6XSSO\
9&&±*1'
&ODPS
8QGHUYROWDJH
VKXWGRZQ
&RQWURO 'LDJQRVWLF
9&&±287
&ODPS
)DXOW567
,1387
*DWH'ULYHU
9&&
7
6(/
6(/
921
/LPLWDWLRQ
9&&
6(Q
&XUUHQW
/LPLWDWLRQ
021,725
0XOWL6HQVH
08;
,6(16(
53527
7(03
3RZHU/LPLWDWLRQ
2YHUWHPSHUDWXUH
)DXOW
'LDJQRVWLF
7HPS
021,725
6KRUWWR9&&
2SHQ/RDGLQ2))
7RX&$'&
.IDFWRU
56(16(
&XUUHQW
6HQVH
&855(17
021,725
)DXOW
,287
287
96(16(+
*1'
("1($'5
30/46
DocID022886 Rev 6
VND7012AY-E
4.4.1
Application information
Principle of MultiSense signal generation
Figure 33. MultiSense block diagram
9FF
).054
6HQVH026
0DLQ026
287
&XUUHQWVHQVH
9EDW0RQLWRU
0XOWLVHQVH6ZLWFK%ORFN
7HPSHUDWXUHPRQLWRU
)DXOW
08/7,6(16(
7RX&$'&
53527
56(16(
*$3*&)7
Current monitor
When current mode is selected in the MultiSense, this output is capable to provide:
•
Current mirror proportional to the load current in normal operation, delivering
current proportional to the load according to known ratio named K
•
Diagnostics flag in fault conditions delivering fixed voltage VSENSEH
The current delivered by the current sense circuit, ISENSE, can be easily converted to a
voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load
monitoring and abnormal condition detection.
Normal operation (channel ON, no fault, SEn active)
While device is operating in normal conditions (no fault intervention), VSENSE calculation
can be done using simple equations
Current provided by MultiSense output: ISENSE = IOUT/K
DocID022886 Rev 6
31/46
Application information
VND7012AY-E
Voltage on RSENSE: VSENSE = RSENSE . ISENSE = RSENSE . IOUT/K
Where :
•
VSENSE is voltage measurable on RSENSE resistor
•
ISENSE is current provided from MultiSense pin in current output mode
•
IOUT is current flowing through output
•
K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread
includes geometric factor spread, current sense amplifier offset and process
parameters spread of overall circuitry specifying ratio between IOUT and ISENSE.
Failure flag indication
In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin
which is switched to a “current limited” voltage source, VSENSEH (see Table 9).
In any case, the current sourced by the MultiSense in this condition is limited to ISENSEH
(see Table 9).
Figure 34. Analogue HSD – open-load detection in off-state
9
9EDW
9EDW
Q)9
Q)
N
*1'
0LFURFRQWUROOHU
*1'
9&&
9''
)5
287
N
,1387
([WHUQDO
3XOO8S
VZLWFK
287
/RJLF
N
6(Q
287
6(/
N
287
287387
&6
287
&XUUHQWPLUURU
N
*1'
$'&LQ
N
5VHQVH
Q)9
287
N
*1'
*1'
Q)
*1'
*1'
*1'
*1'
("1($'5
32/46
DocID022886 Rev 6
VND7012AY-E
Application information
Figure 35. Open-load / short to VCC condition
9,1
96(16(
3XOOXSFRQQHFWHG
96(16(+
2SHQORDG
96(16(
96(16(
3XOOXS
GLVFRQQHFWHG
W'67.21
6KRUWWR9&&
96(16(+
*$3*&)7
Table 13. MultiSense pin levels in off-state
Condition
Output
VOUT > VOL
Open-load
VOUT < VOL
4.4.2
Short to VCC
VOUT > VOL
Nominal
VOUT < VOL
MultiSense
SEn
Hi-Z
L
VSENSEH
H
Hi-Z
L
0
H
Hi-Z
L
VSENSEH
H
Hi-Z
L
0
H
TCASE and VCC monitor
In this case, MultiSense output operates in voltage mode and output level is referred to
device GND. Care must be taken in case a GND network protection is used, because of a
voltage shift is generated between device GND and the microcontroller input GND
reference.
Figure 36 shows link between VMEASURED and real VSENSE signal.
DocID022886 Rev 6
33/46
Application information
VND7012AY-E
Figure 36. GND voltage shift
9%$7
Q)9
0XOWLVHQVHYROWDJHPRGH
96(16(+
9&&PRQLWRU
7&$6(PRQLWRU
)DXOW567
9&&
,1
287
6(Q
6(/
6(/
53527
90($685('
56(16(
93527
96(16(
0XOWLVHQVH
7RX&$'&
53527
N
*1'
'*1'
'!0'#&4
VCC monitor
Battery monitoring channel provides VSENSE = VCC / 4.
Case temperature monitor
Case temperature monitor is capable to provide information about the actual device
temperature. Since a diode is used for temperature sensing, the following equation
describes the link between temperature and output VSENSE level:
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)
where dVSENSE_TC / dT ~ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C).
4.4.3
Short to VCC and OFF-state open-load detection
Short to VCC
A short circuit between VCC and output is indicated by the relevant current sense pin set to
VSENSEH during the device off-state. Small or no current is delivered by the current sense
during the on-state depending on the nature of the short circuit.
OFF-state open-load with external circuitry
Detection of an open-load in off mode requires an external pull-up resistor RPU connecting
the output to a positive supply voltage VPU.
It is preferable VPU to be switched off during the module standby mode in order to avoid the
overall standby current consumption to increase in normal conditions, i.e. when load is
connected.
34/46
DocID022886 Rev 6
VND7012AY-E
Application information
RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following
equation:
Equation 2
V PU – 4
R PU < ----------------------------------------I L ( off2 )min @ 4V
Maximum demagnetization energy (VCC = 16 V)
Figure 37. Maximum turn off current versus inductance
91'$