0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VND7012AYTR

VND7012AYTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    BFSOP36

  • 描述:

    IC PWR DRVR N-CHAN 1:1 PWRSSO36

  • 数据手册
  • 价格&库存
VND7012AYTR 数据手册
VND7012AY Double channel high-side driver with MultiSense analog feedback for automotive applications Datasheet - production data     Configurable latch-off on overtemperature or power limitation with dedicated fault reset pin Loss of ground and loss of VCC Reverse battery through self turn-on Electrostatic discharge protection Applications  Features Max transient supply voltage VCC 41 V Operating voltage range VCC 4 to 28 V Typ. on-state resistance (per Ch) RON 12 mΩ Current limitation (typ) ILIMH 75 A Standby current (max) ISTBY 0.5 µA     AEC-Q100 qualified General  Double channel smart high side driver with MultiSense analog feedback  Very low standby current  Compatible with 3 V and 5 V CMOS outputs MultiSense diagnostic functions  Multiplexed analog feedback of: load current with high precision proportional current mirror, VCC supply voltage and TCHIP device temperature  Overload and short to ground (power limitation) indication  Thermal shutdown indication  Off-state open-load detection  Output short to VCC detection  Sense enable/ disable Protections  Undervoltage shutdown  Overvoltage clamp  Load current limitation  Self limiting of fast thermal transients July 2016  All types of Automotive resistive, inductive and capacitive loads Specially intended for Automotive Turn Indicators (up to 3 x P27W or SAE1156 and 2 x R5W paralleled or Automotive Headlamps) Description The device is a double channel high-side driver manufactured using ST proprietary VIPower® M0-7 technology and housed in PowerSSO-36 package. The device is designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOS-compatible interface, providing protection and diagnostics. The device integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown with configurable latch-off. A FaultRST pin unlatches the output in case of fault or disables the latch-off functionality. A dedicated multifunction multiplexed analog output pin delivers sophisticated diagnostic functions including high precision proportional load current sense, supply voltage feedback and chip temperature sense, in addition to the detection of overload and short circuit to ground, short to VCC and OFF-state open-load. A sense enable pin allows OFF-state diagnosis to be disabled during the module low-power mode as well as external sense resistor sharing among similar devices. DocID027407 Rev 4 This is information on a product in full production. 1/45 www.st.com Contents VND7012AY Contents 1 Block diagram and pin description ................................................ 5 2 Electrical specification .................................................................... 7 3 4 5 6 2.1 Absolute maximum ratings ................................................................ 7 2.2 Thermal data ..................................................................................... 8 2.3 Main electrical characteristics ........................................................... 8 2.4 Electrical characteristics curves ...................................................... 21 Protections..................................................................................... 25 3.1 Power limitation ............................................................................... 25 3.2 Thermal shutdown ........................................................................... 25 3.3 Current limitation ............................................................................. 25 3.4 Negative voltage clamp ................................................................... 25 Application information ................................................................ 26 4.1 GND protection network against reverse battery............................. 26 4.2 Immunity against transient electrical disturbances .......................... 27 4.3 MCU I/Os protection ........................................................................ 27 4.4 Multisense - analog current sense .................................................. 28 Principle of Multisense signal generation ......................................... 29 4.4.2 TCASE and VCC monitor ................................................................. 31 4.4.3 Short to VCC and OFF-state open-load detection ........................... 32 Maximum demagnetization energy (VCC = 16 V) ........................ 33 Package and PCB thermal data .................................................... 34 6.1 7 4.4.1 PowerSSO-36 thermal data ............................................................ 34 Package information ..................................................................... 38 7.1 PowerSSO-36 package information ................................................ 38 7.2 PowerSSO-36 packing information ................................................. 40 7.3 PowerSSO-36 marking information ................................................. 42 8 Order codes ................................................................................... 43 9 Revision history ............................................................................ 44 2/45 DocID027407 Rev 4 VND7012AY List of tables List of tables Table 1: Pin functions ................................................................................................................................. 5 Table 2: Suggested connections for unused and not connected pins ........................................................ 6 Table 3: Absolute maximum ratings ........................................................................................................... 7 Table 4: Thermal data ................................................................................................................................. 8 Table 5: Power section ............................................................................................................................... 8 Table 6: Switching (VCC = 13 V; -40 °C < Tj < 150 °C, unless otherwise specified) ................................. 9 Table 7: Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C) ................................................................ 10 Table 8: Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C) ................................................................. 11 Table 9: MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) ................................................................. 11 Table 10: Truth table ................................................................................................................................. 19 Table 11: MultiSense multiplexer addressing ........................................................................................... 20 Table 12: ISO 7637-2 - electrical transient conduction along supply line ................................................. 27 Table 13: MultiSense pin levels in off-state .............................................................................................. 31 Table 14: PCB properties ......................................................................................................................... 35 Table 15: Thermal parameters ................................................................................................................. 36 Table 16: PowerSSO-36 mechanical data................................................................................................ 38 Table 17: Reel dimensions ....................................................................................................................... 40 Table 18: PowerSSO-36 carrier tape dimensions .................................................................................... 41 Table 19: Device summary ....................................................................................................................... 43 Table 20: Document revision history ........................................................................................................ 44 DocID027407 Rev 4 3/45 List of figures VND7012AY List of figures Figure 1: Block diagram .............................................................................................................................. 5 Figure 2: Configuration diagram (top view)................................................................................................. 6 Figure 3: Current and voltage conventions ................................................................................................. 7 Figure 4: IOUT/ISENSE vs. IOUT ............................................................................................................. 17 Figure 5: Current sense precision vs. IOUT ............................................................................................. 17 Figure 6: Switching times and Pulse skew ............................................................................................... 18 Figure 7: MultiSense timings (current sense mode) ................................................................................. 18 Figure 8: MultiSense timings (chip temperature and VCC sense mode) ................................................. 19 Figure 9: TDSKON .................................................................................................................................... 19 Figure 10: OFF-state output current ......................................................................................................... 21 Figure 11: Standby current ....................................................................................................................... 21 Figure 12: IGND(ON) vs. Iout ................................................................................................................... 21 Figure 13: Logic Input high level voltage .................................................................................................. 21 Figure 14: Logic Input low level voltage.................................................................................................... 21 Figure 15: High level logic input current ................................................................................................... 21 Figure 16: Low level logic input current .................................................................................................... 22 Figure 17: Logic Input hysteresis voltage ................................................................................................. 22 Figure 18: FaultRST Input clamp voltage ................................................................................................. 22 Figure 19: Undervoltage shutdown ........................................................................................................... 22 Figure 20: On-state resistance vs. Tcase ................................................................................................. 22 Figure 21: On-state resistance vs. VCC ................................................................................................... 22 Figure 22: Turn-on voltage slope .............................................................................................................. 23 Figure 23: Turn-off voltage slope .............................................................................................................. 23 Figure 24: Won vs. Tcase ......................................................................................................................... 23 Figure 25: Woff vs. Tcase ......................................................................................................................... 23 Figure 26: ILIMH vs. Tcase ....................................................................................................................... 23 Figure 27: OFF-state open-load voltage detection threshold ................................................................... 23 Figure 28: Vsense clamp vs. Tcase.......................................................................................................... 24 Figure 29: Vsenseh vs. Tcase .................................................................................................................. 24 Figure 30: Application diagram ................................................................................................................. 26 Figure 31: Simplified internal structure ..................................................................................................... 26 Figure 32: MultiSense and diagnostic – block diagram ............................................................................ 28 Figure 33: MultiSense block diagram ....................................................................................................... 29 Figure 34: Analogue HSD – open-load detection in off-state ................................................................... 30 Figure 35: Open-load / short to VCC condition ......................................................................................... 31 Figure 36: GND voltage shift .................................................................................................................... 32 Figure 37: Maximum turn off current versus inductance .......................................................................... 33 Figure 38: PowerSSO-36 PCB board ....................................................................................................... 34 Figure 39: Rthj-amb vs PCB copper area in open box free air condition (one channel on) ..................... 35 Figure 40: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on) .............. 36 Figure 41: Thermal fitting model of a double-channel HSD in PowerSSO-16.......................................... 36 Figure 42: PowerSSO-36 package outline ............................................................................................... 38 Figure 43: PowerSSO-36 reel 13" ............................................................................................................ 40 Figure 44: PowerSSO-36 carrier tape ...................................................................................................... 41 Figure 45: PowerSSO-36 schematic drawing of leader and trailer tape .................................................. 42 Figure 46: PowerSSO-36 marking information ......................................................................................... 42 4/45 DocID027407 Rev 4 VND7012AY 1 Block diagram and pin description Block diagram and pin description Figure 1: Block diagram Table 1: Pin functions Name VCC OUTPUT0,1 GND INPUT0,1 MultiSense SEn Function Battery connection. Power output. Ground connection. Voltage controlled input pin with hysteresis, compatible with 3V and 5V CMOS outputs. They control output switch state. Multiplexed analog sense output pin; delivers a current proportional to the selected diagnostic: load current, supply voltage or chip temperature. Active high compatible with 3V and 5V CMOS outputs; it enables the MultiSense diagnostic pin. SEL0,1 Active high compatible with 3V and 5V CMOS outputs; they address the MultiSense multiplexer. FaultRST Active low compatible with 3V and 5V CMOS outputs; unlatches the output in case of fault; if kept low, sets the outputs in auto-restart mode. DocID027407 Rev 4 5/45 Block diagram and pin description VND7012AY Figure 2: Configuration diagram (top view) OUTPUT1 OUTPUT1 OUTPUT1 OUTPUT1 OUTPUT1 OUTPUT1 N.C. N.C. N.C. N.C. N.C. N.C. N.C. SEn N.C. SEL1 SEL0 N.C. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 TAB/Vcc 17 18 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 OUTPUT0 OUTPUT0 OUTPUT0 OUTPUT0 OUTPUT0 OUTPUT0 N.C. N.C. N.C. N.C. N.C. N.C. N.C. INPUT1 INPUT0 MultiSense GND FaultRST PowerSSO-36 PACKAGE GAPGCFT00640 Table 2: Suggested connections for unused and not connected pins SEn, SELx, Connection/pin MultiSense N.C. Output Input Floating Not allowed X (1) X X X To ground Through 1 kΩ resistor X Not allowed Through 15 kΩ resistor Through 15 kΩ resistor Notes: (1)X: 6/45 do not care. DocID027407 Rev 4 FaultRST VND7012AY 2 Electrical specification Electrical specification Figure 3: Current and voltage conventions IS VCC FaultRST ISEn IOUT OUTPUT0,1 ISEL MultiSense VSEn SEL0,1 VSEL VOUT ISENSE SEn VFR VCC VFn IFR VSENSE IIN VIN INPUT0,1 IGND GAPGCFT00315 VFn = VOUTn - VCC during reverse battery condition. 2.1 Absolute maximum ratings Stressing the device above the rating listed in Table 3: "Absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability. Table 3: Absolute maximum ratings Symbol Parameter Value Unit VCC DC supply voltage 38 -VCC Reverse DC supply voltage 16 VCCPK Maximum transient supply voltage (ISO7637-2:2004 Pulse 5b level IV clamped to 40 V; RL = 4 Ω) 40 VCCJS Maximum jump start voltage for single pulse short circuit protection 28 -IGND DC reverse ground pin current 200 mA IOUT OUTPUT0,1 DC output current Internally limited A -IOUT Reverse DC output current IIN INPUT0,1 DC input current ISEn SEn DC input current ISEL SEL0,1 DC input current IFR FaultRST DC input current VFR FaultRST DC input voltage DocID027407 Rev 4 V 22 -1 to 10 mA 7.5 V 7/45 Electrical specification VND7012AY Symbol Parameter Unit MultiSense pin DC output current (VGND = VCC and VSENSE < 0 V) 10 MultiSense pin DC output current in reverse (VCC < 0 V) -20 EMAX Maximum switching energy (single pulse) (TDEMAG = 0.4 ms; Tjstart = 150°C) 144 mJ VESD Electrostatic discharge (JDEC 22 A-114 F)  INPUT0,1  MultiSense  SEn, SEL0,1, FaultRST  OUTPUT0,1  VCC 4000 2000 4000 4000 4000 V V V V V VESD Charge device model (CDM-AEC-Q100-011) 750 V ISENSE Tj Tstg 2.2 Value mA Junction operating temperature -40 to 150 Storage temperature -55 to 150 °C Thermal data Table 4: Thermal data Symbol Parameter Typ. value Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) (1)(2) Rthj-board Rthj-amb Rthj-amb Unit 4 Thermal resistance junction-ambient (JEDEC JESD 51-5)(1)(3) 50.6 Thermal resistance junction-ambient (JEDEC JESD 51-7)(1)(2) 16.6 °C/W Notes: (1)One 2.3 channel ON. (2)Device mounted on four-layers 2s2p PCB (3)Device mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace Main electrical characteristics 7 V < VCC < 28 V; -40°C < Tj < 150°C, unless otherwise specified. All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified. Table 5: Power section Symbol Test conditions Min. Typ. Max. 4 13 28 VCC Operating supply voltage VUSD Undervoltage shutdown 4 VUSDReset Undervoltage shutdown reset 5 VUSDhyst Undervoltage shutdown hysteresis RON 8/45 Parameter On-state resistance (1) Unit V 0.3 IOUT = 7 A; Tj = 25°C IOUT = 7 A; Tj = 150°C DocID027407 Rev 4 12 24 mΩ VND7012AY Electrical specification Symbol Parameter Test conditions Min. Typ. IOUT = 7 A; VCC = 4 V; Tj = 25°C RON_REV Vclamp On-state resistance in reverse battery Supply current in standby at VCC = 13 V (2) ISTBY 41 IS = 20 mA; Tj = -40 °C 38 V VCC = 13 V; VIN0,1 = VOUT0,1 = VFR = VSEn 0 V; VSEL0,1 = 0 V; Tj = 85°C(3) 0.5 µA VCC = 13 V; VIN0,1 = VOUT0,1 = VFR = VSEn 0 V; VSEL0,1 = 0 V; Tj = 125°C 3 µA 300 550 µs 5 8 mA 10 mA Supply current VCC = 13 V; VSEn = VFR = VSEL0,1 = 0 V; VIN0,1 = 5 V; IOUT0 = 0 A; IOUT1 = 0 A Control stage current consumption in ON state. All channels active. VCC = 13 V; VSEn = 5 V; VFR = VSEL0,1 = 0 V; VIN0,1 = 5 V; IOUT0 = 7 A; IOUT1 = 7 A Output - VCC diode voltage(1) V µA IS(ON) VF 52 0.5 VCC = 13 V; VIN0,1 = VOUT0,1 = 0 V; VFR = VSEL0,1 = 0 V; VSEn = 5 V to 0 V IL(off) 46 VCC = 13 V; VIN0,1 = VOUT0,1 = VFR = VSEn 0 V; VSEL0,1 = 0 V; Tj = 25°C Standby mode blanking time Off-state output current at VCC = 13 V (1) mΩ 12 IS = 20 mA; 25°C < Tj < 150°C tD_STBY IGND(ON) Unit 18 IOUT = -7 A; VCC = -13 V; Tj = 25°C Clamp voltage Max. 60 VIN0,1 = VOUT0,1 = 0 V; VCC = 13 V; Tj = 25°C 0 VIN0,1 = VOUT0,1 = 0 V; VCC = 13 V; Tj = 125°C 0 0.01 0.5 µA 3 IOUT = -7 A; Tj = 150 °C 0.7 V Notes: (1)For each channel. (2)PowerMOS (3)Parameter leakage included. specified by design; not subjected to production test. Table 6: Switching (VCC = 13 V; -40 °C < Tj < 150 °C, unless otherwise specified) Symbol Parameter td(on)(1) Turn-on delay time at Tj = 25 °C td(off)(1) Turn-off delay time at Tj = 25 °C (dVOUT/dt)on(1) Turn-on voltage slope at Tj = 25 °C (1) Turn-off voltage slope at Tj = 25 °C (dVOUT/dt)off Test conditions RL = 1.84 Ω RL = 1.84 Ω Min. Typ. Max. 10 50 120 10 45 100 0.1 0.45 0.7 0.2 0.5 0.8 WON Switching energy losses at turn-on (twon) RL = 1.84 Ω — 0.6 WOFF Switching energy losses at turn-off (twoff) RL = 1.84 Ω — 0.6 DocID027407 Rev 4 1.4 (2) 1.3 (2) Unit µs V/µs mJ mJ 9/45 Electrical specification VND7012AY Symbol tSKEW (1) Test conditions Parameter Differential pulse skew (tPHL - tPLH) RL = 1.84 Ω Min. Typ. Max. Unit -60 -10 40 µs Max. Unit Notes: (1)See Figure 6: "Switching times and Pulse skew" (2)Parameter guaranteed by design and characterization, not subjected to production test. Table 7: Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C) Symbol Parameter Test conditions Min. Typ. INPUT0,1 characteristics VIL Input low level voltage IIL Low level input current VIH Input high level voltage IIH High level input current VI(hyst) Input hysteresis voltage VICL Input clamp voltage 0.9 VIN = 0.9 V µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA V 1 V 5.3 IIN = -1 mA µA 7.2 -0.7 V FaultRST characteristics VFRL Input low level voltage IFRL Low level input current VFRH Input high level voltage IFRH High level input current VFR(hyst) Input hysteresis voltage VFRCL Input clamp voltage 0.9 VIN = 0.9 V 1 µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA V V 5.3 IIN = -1 mA µA 7.5 -0.7 V SEL0,1 characteristics (7 V < VCC < 18 V) VSELL Input low level voltage ISELL Low level input current VSELH Input high level voltage ISELH High level input current VSEL(hyst) Input hysteresis voltage VSELCL Input clamp voltage 0.9 VIN = 0.9 V µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA V 1 V 5.3 IIN = -1 mA µA 7.2 -0.7 V SEn characteristics (7 V < VCC < 18 V) VSEnL Input low level voltage ISEnL Low level input current VSEnH Input high level voltage ISEnH High level input current VSEn(hyst) Input hysteresis voltage VSEnCL 10/45 Input clamp voltage 0.9 VIN = 0.9 V 1 µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA DocID027407 Rev 4 V 5.3 µA V 7.2 V VND7012AY Electrical specification Symbol Parameter Test conditions Min. IIN = -1 mA Typ. Max. Unit -0.7 Table 8: Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C) Symbol Parameter Test conditions VCC = 13 V DC short circuit current ILIMH(1) Min. Typ. Max. 60 75 96 4 V < VCC < 18 V (2) ILIML Short circuit current during thermal cycling TTSD Shutdown temperature TR Reset temperature(2) TRS Thermal reset of fault diagnostic indication 96 VCC = 13 V; TR < Tj < TTSD VFR = 0 V; VSEn = 5 V 150 175 TRS + 1 TRS + 5 °C 5 ΔTJ_SD Dynamic temperature 60 VFR = 5 V to 0 V; VSEn = 5 V; VIN0,1 = 5 V; VSEL0,1 = 0 V Turn-off output voltage clamp VDEMAG Output voltage drop limitation VON 200 135 Thermal hysteresis (TTSD - TR)(2) Fault reset time for output unlatch(2) A 25 THYST tLATCH_RST Unit 3 10 IOUT = 2 A; L = 6 mH; Tj = 40 °C VCC 38 IOUT = 2 A; L = 6 mH; Tj = 25°C to 150°C VCC 41 IOUT = 0.7 A K 20 µs V VCC 46 VCC 52 20 mV Notes: (1)Parameter guaranteed by an indirect test sequence. (2)Parameter guaranteed by design and characterization; not subjected to production test. Table 9: MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) Symbol Parameter VSENSE_CL MultiSense clamp voltage Test conditions VSEn = 0 V; ISENSE = 1 mA Min. Typ. -17 VSEn = 0 V; ISENSE = 1 mA Max. Unit -12 V 7 V Current Sense characteristics KOL dKcal/Kcal(1)(2) IOUT/ISENSE IOUT = 10 mA; VSENSE = 0.5 V; VSEn = 5 V 1400 Current sense ratio drift at calibration point ICAL = 130 mA; IOUT = 10 mA to 250 mA; VSENSE = 0.5 V; VSEn = 5 V -35 DocID027407 Rev 4 35 % 11/45 Electrical specification Symbol Parameter Test conditions Min. Typ. Max. Unit KLED IOUT/ISENSE IOUT = 250 mA; VSENSE = 0.5 V; VSEn = 5 V 2490 5100 8000 K0 IOUT/ISENSE IOUT = 0.7 A; VSENSE = 0.5 V; VSEn = 5 V 2560 5120 7680 Current sense ratio drift IOUT = 0.7 A; VSENSE = 0.5 V; VSEn = 5 V -25 IOUT/ISENSE IOUT = 1.4 A; VSENSE = 4 V; VSEn = 5 V 3480 Current sense ratio drift IOUT = 1.4 A; VSENSE = 4 V; VSEn = 5 V -20 IOUT/ISENSE IOUT = 7 A; VSENSE = 4 V; VSEn = 5 V 3410 Current sense ratio drift IOUT = 7 A; VSENSE = 4 V; VSEn = 5 V -10 IOUT/ISENSE IOUT = 21 A; VSENSE = 4 V; VSEn = 5 V 3810 Current sense ratio drift IOUT = 21 A; VSENSE = 4 V; VSEn = 5 V -5 5 % MultiSense disabled: VSEn = 0 V; 0 0.5 µA MultiSense disabled: -1 V < VSENSE < 5 V(1) -0.5 0.5 µA MultiSense enabled: VSEn = 5 V; All channel ON; IOUTX = 0 A; ChX diagnostic selected;  E.g. Ch0: VIN0 = 5 V; VIN1 = 5 V; VSEL0 = 0 V; VSEL1 = 0 V; IOUT0 = 0 A; IOUT1 = 7 A 0 2 µA dK0/K0(1)(2) K1 dK1/K1(1)(2) K2 dK2/K2(1)(2) K3 dK3/K3(1)(2) ISENSE0 12/45 VND7012AY MultiSense leakage current DocID027407 Rev 4 25 4900 6470 20 4280 % 5120 10 4300 % % 4660 VND7012AY Electrical specification Symbol Parameter Test conditions MultiSense enabled: VSEn = 5 V; ChX channel OFF; ChX diagnostic selected;  E.g. Ch0: VIN0 = 0 V; VIN1 = 5 V; VSEL0 = 0 V; VSEL1 = 0 V; IOUT1 = 7 A VOUT_MSD(1) VSENSE_SAT ISENSE_SAT(1) IOUT_SAT(1) Min. Typ. 0 Max. Unit 2 µA Output Voltage for MultiSense shutdown VSEn = 5 V; RSENSE = 2.7 kΩ  E.g. Ch0: VIN0 = 5 V; VSEL0 = 0 V; VSEL1 = 0 V; IOUT0 = 7 A Multisense saturation voltage VCC = 7 V; RSENSE = 2.7 kΩ; VSEn = 5 V; VIN0 = 5 V; VSEL0,1 = 0 V; IOUT0 = 21 A; Tj = 150°C 5 V CS saturation current VCC = 7 V; VSENSE = 4 V; VSEn = 5 V; VIN0 = 5 V; VSEL0,1 = 0 V; Tj = 150°C 4 mA Output saturation current VCC = 7 V; VSENSE = 4 V; VIN0 = 5 V; VSEn = 5 V; VSEL0,1 = 0 V; Tj = 150°C 23 A Off-state open-load voltage detection threshold VSEn = 5 V; ChX OFF; ChX diagnostic selected  E.g: Ch0 VIN0 = 0 V; VSEL0 = 0 V; VSEL1 = 0 V 2 OFF state output sink current VIN = 0 V; VOUT = VOL; Tj = -40°C to 125°C -100 Off-state diagnostic delay time from falling edge of INPUT (see Figure 9: "TDSKON") VSEn = 5 V; ChX ON to OFF transition ChX diagnostic selected  E.g: Ch0 VIN0 = 5 V to 0 V; VSEL0 = 0 V; VSEL1 = 0 V; IOUT0 = 0 A; VOUT = 4 V 100 5 V Off-state diagnostic VOL IL(off2) tDSTKON DocID027407 Rev 4 3 350 4 V -15 µA 700 µs 13/45 Electrical specification VND7012AY Symbol tD_OL_V tD_VOL Parameter Test conditions Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn VIN0 = 0 V; VIN1 = 0 V; VFR = 0 V; VSEL0 = 0 V; VSEL1 = 0 V; VOUT0 = 4 V; VSEn = 0 V to 5 V Off-state diagnostic delay time from rising edge of VOUT VSEn = 5 V; ChX OFF ChX diagnostic selected  E.g: Ch0 VIN0 = 0 V; VSEL0 = 0 V; VSEL1 = 0 V; VOUT = 0 V to 4 V Min. Typ. Max. Unit 60 µs 5 30 µs Chip temperature analog feedback VSENSE_TC dVSENSE_TC/dT(1) MultiSense output voltage proportional to chip temperature Temperature coefficient VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 5 V; VIN0,1 = 0 V; RSENSE = 1 KΩ; Tj = 40°C 2.325 2.41 2.495 V VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 5 V; VIN0,1 = 0 V; RSENSE = 1 kΩ; Tj = 25°C 1.985 2.07 2.155 V VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 5 V; VIN0,1 = 0 V; RSENSE = 1 kΩ; Tj = 125°C 1.435 1.52 1.605 V Tj = -40°C to 150°C Transfer function -5.5 mV/K VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0) VCC supply voltage analog feedback VSENSE_VCC MultiSense output voltage proportional to VCC supply voltage Transfer function (3) VCC = 13 V; VSEn = 5 V; VSEL0 = 5 V; VSEL1 = 5 V; VIN0,1 = 0 V; RSENSE = 1 kΩ 3.16 3.23 3.3 V 6.6 V VSENSE_VCC = VCC / 4 Fault diagnostic feedback (see Table 10: "Truth table") VSENSEH 14/45 MultiSense output voltage in fault condition VCC = 13 V; RSENSE = 1 kΩ;  E.g: Ch0 in open load VIN0 = 0 V; VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 0 V; IOUT0 = 0 A; VOUT = 4 V DocID027407 Rev 4 5 VND7012AY Electrical specification Symbol ISENSEH Parameter MultiSense output current in fault condition Test conditions VCC = 13 V; VSENSE = 5 V Min. Typ. Max. Unit 7 20 30 mA MultiSense timings (current sense mode - see Figure 7: "MultiSense timings (current sense mode)")(4) tDSENSE1H Current sense settling time from rising edge of SEn VIN = 5 V; VSEn = 0 V to 5 V; RSENSE = 1 kΩ; RL = 1.84 Ω tDSENSE1L Current sense disable delay time from falling edge of SEn VIN = 5 V; VSEn = 5 V to 0 V; RSENSE = 1 kΩ; RL = 1.84 Ω tDSENSE2H Current sense settling time from rising edge of INPUT VIN = 0 V to 5 V; VSEn = 5 V; RSENSE = 1 kΩ; RL = 1.84 Ω ΔtDSENSE2H Current sense settling time from rising edge of IOUT (dynamic response to a step change of IOUT) VIN = 5 V; VSEn = 5 V; RSENSE = 1 kΩ; RL = 1.84 Ω tDSENSE2L Current sense turn-off delay time from falling edge of INPUT VIN = 5 V to 0 V; VSEn = 5 V; RSENSE = 1 kΩ; RL = 1.84 Ω 60 µs 5 20 µs 100 250 µs 100 µs 250 µs 50 MultiSense timings (chip temperature sense mode - see Figure 8: "MultiSense timings (chip temperature and VCC sense mode)")(4) tDSENSE3H VSENSE_TC settling time from rising edge of SEn VSEn = 0 V to 5 V; VSEL0 = 0 V; VSEL1 = 5 V; RSENSE = 1 kΩ 60 µs tDSENSE3L VSENSE_TC disable delay time from falling edge of SEn VSEn = 5 V to 0 V; VSEL0 = 0 V; VSEL1 = 5 V; RSENSE = 1 kΩ 20 µs MultiSense timings (VCC voltage sense mode - see Figure 8: "MultiSense timings (chip temperature and VCC sense mode)")(4) tDSENSE4H VSENSE_VCC settling time from rising edge of SEn VSEn = 0 V to 5 V; VSEL0 = 5 V; VSEL1 = 5 V; RSENSE = 1 kΩ 60 µs tDSENSE4L VSENSE_VCC disable delay time from falling edge of SEn VSEn = 5 V to 0 V; VSEL0 = 5 V; VSEL1 = 5 V; RSENSE = 1 kΩ 20 µs MultiSense timings (Multiplexer transition times) (4) DocID027407 Rev 4 15/45 Electrical specification VND7012AY Symbol Max. Unit MultiSensetransition delay from ChX to ChY VIN0 = 5 V; VIN1 = 5 V; VSEn = 5 V; VSEL1 = 0 V; VSEL0 = 0 V to 5 V; IOUT0 = 0 A; IOUT1 = 3 A; RSENSE = 1 kΩ 20 µs tD_CStoTC MultiSensetransition delay from current sense to TC sense VIN0 = 5 V; VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 0 V to 5 V; IOUT0 = 3.5 A; RSENSE = 1 kΩ 60 µs tD_TCtoCS MultiSensetransition delay from TC sense to current sense VIN0 = 5 V; VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 5 V to 0 V; IOUT0 = 3.5 A; RSENSE = 1 kΩ 20 µs tD_CStoVCC MultiSensetransition delay from current sense to VCC sense VIN1 = 5 V; VSEn = 5 V; VSEL0 = 5 V; VSEL1 = 0 V to 5 V; IOUT1 = 3.5A; RSENSE = 1 kΩ 60 µs tD_VCCtoCS MultiSensetransition delay from VCC sense to current sense VIN1 = 5 V; VSEn = 5 V; VSEL0 = 5 V; VSEL1 = 5 V to 0 V; IOUT1 = 3.5 A; RSENSE = 1 kΩ 20 µs tD_TCtoVCC MultiSensetransition delay from TC sense to VCC sense VCC = 13 V; Tj = 125°C; VSEn = 5 V; VSEL0 = 0 V to 5 V; VSEL1 = 5 V; RSENSE = 1 kΩ 20 µs tD_VCCtoTC MultiSensetransition delay from VCC sense to TC sense VCC = 13 V; Tj = 125°C; VSEn = 5 V; VSEL0 = 5 V to 0 V; VSEL1 = 5 V; RSENSE = 1 kΩ 20 µs tD_CStoVSENSEH MultiSensetransition delay from stable current sense on ChX to VSENSEH on ChY VIN0 = 5 V; VIN1 = 0 V; VSEn = 5 V; VSEL1 = 0 V; VSEL0 = 0 V to 5 V; IOUT0 = 7 A; VOUT1 = 4 V; RSENSE = 1 kΩ 20 µs tD_XtoY Parameter Test conditions Notes: (1)Parameter (2)All (3)V CC sensing and TC sensing are referred to GND potential. (4)Transition 16/45 specified by design; not subjected to production test. values refer to VCC = 13 V; Tj = 25 °C, unless otherwise specified. delay are measured up to +/- 10% of final conditions. DocID027407 Rev 4 Min. Typ. VND7012AY Electrical specification Figure 4: IOUT/ISENSE vs. IOUT 9000 8000 K-factor Max 7000 Min 6000 Typ 5000 4000 3000 2000 1000 0 0 2 4 6 8 10 12 14 IOUT [A] 16 18 20 22 24 GAPG0907141021CFT Figure 5: Current sense precision vs. IOUT 60.0 55.0 50.0 45.0 40.0 35.0 Current sense uncalibrated precision % 30.0 Current sense calibrated precision 25.0 20.0 15.0 10.0 5.0 0.0 0 2 4 6 8 10 12 14 IOUT [A] 16 18 20 22 24 GAPG0907141026CFT DocID027407 Rev 4 17/45 Electrical specification VND7012AY Figure 6: Switching times and Pulse skew Figure 7: MultiSense timings (current sense mode) 18/45 DocID027407 Rev 4 VND7012AY Electrical specification Figure 8: MultiSense timings (chip temperature and VCC sense mode) Figure 9: TDSKON Table 10: Truth table Mode Conditions INX FR SEn SELX OUTX MultiSense Standby All logic inputs low L L L L L Hi-Z L X L See (1) Normal Nominal load connected; Tj < 150°C H L H See (1) See (1) DocID027407 Rev 4 Comments Low quiescent current consumption Outputs configured for auto-restart 19/45 Electrical specification VND7012AY Mode Overload Conditions Overload or short to GND causing: Tj > TTSD or ΔTj > ΔTj_SD INX FR H OUTX MultiSense Comments H H See (1) Outputs configured for latch off L X L See (1) H L H See (1) Output cycles with temperature hysteresis H H L See (1) Output latches off L L Hi-Z Hi-Z Re-start when VCC > VUSD + VUSDhyst (rising) H See (1) H See (1) VOL; MUX channel = channel 0 diagnostic; Mutisense = V SENSEH 20/45 DocID027407 Rev 4 VND7012AY 2.4 Electrical specification Electrical characteristics curves Figure 10: OFF-state output current Figure 11: Standby current ISTBY [µA] Iloff [nA] 6 3000 5 2500 Off State Vcc = 13V Vin = Vout = 0 2000 Vcc = 13V 4 1500 3 1000 2 500 1 0 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 T [°C] T [°C] GAPG0907141458CFT GAPG0907141459CFT Figure 13: Logic Input high level voltage Figure 12: IGND(ON) vs. Iout ViH, VFRH, VSELH, VSEnH [V] IGND(ON) [mA] 9.0 2 8.0 1.8 7.0 1.6 6.0 1.4 Vcc = 13V Iout0 = Iout1 = 7A 1.2 5.0 1 4.0 0.8 3.0 0.6 2.0 0.4 1.0 0.2 0 0.0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 T [°C] T [°C] GAPG0907141506CFT GAPG0907141507CFT Figure 14: Logic Input low level voltage Figure 15: High level logic input current IiH, IFRH, ISELH, ISEnH [µA] VilL VFRL, VSELL, VSEnL [V] 2 4 1.8 3.5 1.6 3 1.4 2.5 1.2 1 2 0.8 1.5 0.6 1 0.4 0.5 0.2 0 0 -50 -25 0 25 50 75 100 125 150 175 T [°C] -50 -25 0 25 50 75 100 125 150 175 T [°C] GAPG0907141508CFT DocID027407 Rev 4 GAPG0907141509CFT 21/45 Electrical specification VND7012AY Figure 16: Low level logic input current Figure 17: Logic Input hysteresis voltage IiL, IFRL, ISELL, ISEnL [µA] Vi(hyst), VFR(hyst), VSEL(hyst), VSEn(hyst) [V] 4 1 3.5 0.9 0.8 3 0.7 2.5 0.6 2 0.5 1.5 0.4 0.3 1 0.2 0.5 0.1 0 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 T [°C] T [°C] GAPG0907141511CFT GAPG0907141512CFT Figure 19: Undervoltage shutdown Figure 18: FaultRST Input clamp voltage VFRCL [V] VUSD [V] 8 8 7 7 Iin = 1mA 6 6 5 5 4 4 3 3 2 2 1 Iin = -1mA 0 1 -1 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 T [°C] 75 100 125 150 175 T [°C] GAPG0907141513CFT GAPG0907141514CFT Figure 20: On-state resistance vs. Tcase Ron [mOhm] Figure 21: On-state resistance vs. VCC Ron [mOhm] 25 50 45 T = 150 °C 20 40 T = 125 °C 35 Iout = 7A Vcc = 13V 30 15 25 T = 25 °C 10 20 T = -40 °C 15 5 10 5 0 0 -50 -25 0 25 50 75 100 125 150 175 GAPG0907141515CFT 22/45 0 5 10 15 20 25 30 35 40 Vcc [V] T [°C] DocID027407 Rev 4 GAPG0907141517CFT VND7012AY Electrical specification Figure 22: Turn-on voltage slope Figure 23: Turn-off voltage slope (dVout/dt)On [V/µs] (dVout/dt)Off [V/µs] 1 1 0.9 0.9 0.8 0.8 Vcc = 13V Rl = 1.84Ω 0.7 Vcc = 13V Rl = 1.84Ω 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 T [°C] 75 100 125 150 175 T [°C] GAPG0907141518CFT GAPG0907141519CFT Figure 25: Woff vs. Tcase Figure 24: Won vs. Tcase Won [mJ] Woff [mJ] 1 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 -50 -25 0 25 50 75 100 125 150 0 175 -50 -25 0 25 50 T [°C] 75 100 125 150 175 T [°C] GAPG0907141520CFT GAPG0907141521CFT Figure 27: OFF-state open-load voltage detection threshold Figure 26: ILIMH vs. Tcase Ilimh [A] VOL [V] 80 4 Vcc = 13V 75 3.5 3 70 2.5 65 2 60 1.5 1 55 0.5 50 -50 -25 0 25 50 75 100 125 150 175 0 -50 T [°C] GAPG0907141524CFT -25 0 25 50 75 100 125 150 175 T [°C] GAPG0907141525CFT DocID027407 Rev 4 23/45 Electrical specification VND7012AY Figure 29: Vsenseh vs. Tcase Figure 28: Vsense clamp vs. Tcase VSENSEH [V] VSENSE_CL [V] 10 10 9 9 8 8 7 Iin = 1mA 7 6 6 5 5 4 4 3 3 2 2 1 Iin = -1mA 0 1 -1 -50 -25 0 25 50 75 100 125 150 175 0 -50 T [°C] 0 25 50 75 100 125 150 175 T [°C] GAPG0907141526CFT 24/45 -25 DocID027407 Rev 4 GAPG0907141528CFT VND7012AY 3 Protections 3.1 Power limitation Protections The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔTj through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔTj exceeds the safety level of ΔT j_SD. According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue. 3.2 Thermal shutdown In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T R (FaultRST = Low) or remains off (FaultRST = High). 3.3 Current limitation The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, ILIMH, by operating the output power MOSFET in the active region. 3.4 Negative voltage clamp In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, VDEMAG, allowing the inductor energy to be dissipated without damaging the device. DocID027407 Rev 4 25/45 Application information 4 VND7012AY Application information Figure 30: Application diagram 4.1 GND protection network against reverse battery Figure 31: Simplified internal structure Vcc 5V Rprot INPUT Rprot SEn Rprot FaultRST MCU Dld OUTPUT Rprot Multisense GND Rsense GND GAPG2603140904CFT The device does not need any external components to protect the internal logic in case of a reverse battery condition. The protection is provided by internal structures. 26/45 DocID027407 Rev 4 VND7012AY Application information In addition, due to the fact that the output MOSFET turns on even in reverse battery mode, thus providing the same low ohmic path as in regular operating conditions, no additional power dissipation has to be considered. 4.2 Immunity against transient electrical disturbances The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010. The related function performance status classification is shown in Table 12: "ISO 7637-2 electrical transient conduction along supply line". Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through VCC and GND terminals. Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: “The function does not perform as designed during the test but returns automatically to normal operation after the test”. Table 12: ISO 7637-2 - electrical transient conduction along supply line Test Pulse 2011(E) Test pulse severity level with Status II functional performance status Minimum number of pulses or test time Burst cycle / pulse repetition time Pulse duration and pulse generator internal impedance Level US(1) 1 III -112V 500 pulses 0,5 s 2a III +55V 500 pulses 0,2 s 5s 50µs, 2Ω 3a IV -220V 1h 90 ms 100 ms 0.1µs, 50Ω 3b IV +150V 1h 90 ms 100 ms 0.1µs, 50Ω IV -7V 1 pulse 4 (2) min max 2ms, 10Ω 100ms, 0.01Ω Load dump according to ISO 16750-2:2010 Test B (3) 40V 5 pulse 1 min 400ms, 2Ω Notes: (1)U S 4.3 is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6. (2)Test pulse from ISO 7637-2:2004(E). (3)With 40 V external suppressor referred to ground (-40°C < Tj < 150°C). MCU I/Os protection If a ground protection network is used and negative transients are present on the V CC line, the control pins will be pulled negative. ST suggests to insert a resistor (R prot) in line both to prevent the microcontroller I/O pins from latching-up and to protect the HSD inputs. The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os. DocID027407 Rev 4 27/45 Application information VND7012AY Equation VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC - VIH - VGND) / IIHmax Calculation example: For VCCpeak = -150 V; Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V 7.5 kΩ ≤ Rprot ≤ 140 kΩ. Recommended values: Rprot = 15 kΩ 4.4 Multisense - analog current sense Diagnostic information on device and load status are provided by an analog output pin (MultiSense) delivering the following signals:    Current monitor: current mirror of channel output current VCC monitor: voltage propotional to VCC TCASE: voltage propotional to chip temperature Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in MultiSense multiplexer addressing Table. Figure 32: MultiSense and diagnostic – block diagram 28/45 DocID027407 Rev 4 VND7012AY 4.4.1 Application information Principle of Multisense signal generation Figure 33: MultiSense block diagram Current monitor When current mode is selected via MultiSense, this output is capable of providing:   Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to a known ratio named K Diagnostics flag in fault conditions delivering fixed voltage V SENSEH The current delivered by the current sense circuit, ISENSE, can be easily converted to a voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load monitoring and abnormal condition detection. Normal operation (channel ON, no fault, SEn active) While device is operating in normal conditions (no fault intervention), V SENSE calculation can be done using simple equations Current provided by MultiSense output: ISENSE = IOUT/K Voltage on RSENSE: VSENSE = RSENSE · ISENSE = RSENSE · IOUT/K Where:   VSENSE is the voltage measurable on RSENSE resistor ISENSE is the current provided from MultiSense pin in current output mode DocID027407 Rev 4 29/45 Application information   VND7012AY IOUT is the current flowing through output K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying the ratio between IOUT and ISENSE. Failure flag indication In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin which is switched to a “current limited” voltage source, VSENSEH. In any case, the current sourced by the MultiSense in this condition is limited to ISENSEH. The typical behavior in case of overload or hard short circuit is shown in Waveforms section. Figure 34: Analogue HSD – open-load detection in off-state 30/45 DocID027407 Rev 4 VND7012AY Application information Figure 35: Open-load / short to VCC condition Table 13: MultiSense pin levels in off-state Condition Output VOUT > VOL Open-load VOUT < VOL 4.4.2 Short to VCC VOUT > VOL Nominal VOUT < VOL MultiSense SEn Hi-Z L VSENSEH H Hi-Z L 0 H Hi-Z L VSENSEH H Hi-Z L 0 H TCASE and VCC monitor In this case, MultiSense output operates in voltage mode and output level is referred to device GND. Care must be taken in case a GND network protection is used, because a voltage shift is generated between the device GND and the microcontroller input GND reference. Figure 36: "GND voltage shift" shows the link between VMEASURED and the real VSENSE signal. DocID027407 Rev 4 31/45 Application information VND7012AY Figure 36: GND voltage shift VCC monitor Battery monitoring channel provides VSENSE = VCC / 4. Case temperature monitor Case temperature monitor is capable of providing information about the actual device temperature. Since a diode is used for temperature sensing, the following equation describes the link between temperature and output VSENSE level: VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0) where dVSENSE_TC / dT ~ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C)). 4.4.3 Short to VCC and OFF-state open-load detection Short to VCC A short circuit between VCC and output is indicated by the relevant current sense pin set to VSENSEH during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit. OFF-state open-load with external circuitry Detection of an open-load in off mode requires an external pull-up resistor RPU connecting the output to a positive supply voltage VPU. It is preferable that VPU is switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected. RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following equation: Equation RPU < 32/45 VPU - 4 IL(off2)min @4V DocID027407 Rev 4 VND7012AY Maximum demagnetization energy (VCC = 16 V) Figure 37: Maximum turn off current versus inductance VND7012AY - Maximum turn off curr ent ve rsus indu ctance 100 10 I (A) 5 Maximum demagnetization energy (VCC = 16 V) 1 VND7012AY - Sing le Pulse Repetitive pulse Tjstart=100°C Repetitive pulse Tjstart=125°C 0.1 0.1 1 10 100 1000 L (mH) GAPG1007140727CFT Values are generated with RL = 0 Ω. In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B. DocID027407 Rev 4 33/45 Package and PCB thermal data VND7012AY 6 Package and PCB thermal data 6.1 PowerSSO-36 thermal data Figure 38: PowerSSO-36 PCB board 34/45 DocID027407 Rev 4 VND7012AY Package and PCB thermal data Table 14: PCB properties Dimension Value Board finish thickness 1.6 mm +/- 10% Board dimension 129 mm x 86 mm Board material FR4 Cu thickness (outer layers) 0.070 mm Cu thickness (inner layers) 0.035 mm Thermal via separation 1.2 mm Thermal via diameter 0.3 mm +/- 0.08 mm Cu thickness on vias 0.025 mm Footprint dimension 4.1 mm x 6.5 mm Figure 39: Rthj-amb vs PCB copper area in open box free air condition (one channel on) RTHj_amb(°C/W) 65 RTHjamb 60 55 50 45 40 35 30 0 2 4 6 8 10 PCB Cu heatsink area (cm^ 2) GAPG1007140802CFT DocID027407 Rev 4 35/45 Package and PCB thermal data VND7012AY Figure 40: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on) ZTH (°C/W) 100 Cu=8 cm2 Cu=2 cm2 10 Cu=foot print 4Layer 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 Time (s) 10 100 1000 GAPG1007140805CFT Equation: pulse calculation formula ZTHδ = RTH · δ + ZTHtp (1 - δ) where δ = tP/T Figure 41: Thermal fitting model of a double-channel HSD in PowerSSO-16 The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered. Table 15: Thermal parameters Area/island 36/45 (cm2) Footprint R1 = R7 (°C/W) 0.3 R2 = R8 (°C/W) 0.9 DocID027407 Rev 4 2 8 4L VND7012AY Package and PCB thermal data Area/island (cm2) Footprint 2 8 4L R3 (°C/W) 3.4 3.4 3.4 2.4 R4 (°C/W) 8 6 6 4 R5 (°C/W) 20 14 10 2 R6 (°C/W) 30 26 15 7 C1 = C7 (W.s/°C) 0.0014 C2 = C8 (W.s/°C) 0.01 C3 (W.s/°C) 0.1 0.1 0.1 0.1 C4 (W.s/°C) 0.5 0.8 0.8 0.8 C5 (W.s/°C) 1 2 3 10 C6 (W.s/°C) 3 5 9 18 DocID027407 Rev 4 37/45 Package information 7 VND7012AY Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK ® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.1 PowerSSO-36 package information Figure 42: PowerSSO-36 package outline BOTTOM VIEW TOP VIEW SECTION A-A SECTION B-B GAPG2508150825CF T Table 16: PowerSSO-36 mechanical data Dimensions Ref. Millimeters Min. 38/45 Typ. Max. Θ 0° 8° Θ1 5° 10° Θ2 0° A 2.15 2.45 A1 0.00 0.10 DocID027407 Rev 4 VND7012AY Package information Dimensions Ref. Millimeters Min. A2 2.15 b 0.18 b1 0.13 c 0.23 c1 0.20 D D1 Typ. 2.35 0.32 0.25 0.30 0.32 0.20 0.30 10.30 BSC 6.90 7.50 D2 3.65 D3 4.30 e 0.50 BSC E 10.30 BSC E1 7.50 BSC E2 Max. 4.30 5.20 E3 2.30 E4 2.90 G1 1.20 G2 1.00 G3 0.80 h 0.30 L 0.55 0.40 0.70 L1 1.40 REF L2 0.25 BSC N 36 R 0.30 R1 0.20 S 0.25 0.85 Tolerance of form and position aaa 0.20 bbb 0.20 ccc 0.10 ddd 0.20 eee 0.10 fff 0.20 ggg 0.15 DocID027407 Rev 4 39/45 Package information 7.2 VND7012AY PowerSSO-36 packing information Figure 43: PowerSSO-36 reel 13" Table 17: Reel dimensions Description Value(1) Base quantity 1000 Bulk quantity 1000 A (max) 330 B (min) 1.5 C (± 0.2) 13 F 20.2 G (+2 / -0) 24.4 N (min) 100 T (max) 30.4 Notes: (1)All 40/45 dimensions are in mm. DocID027407 Rev 4 VND7012AY Package information Figure 44: PowerSSO-36 carrier tape Table 18: PowerSSO-36 carrier tape dimensions Description Value(1) A0 10.90 ± 0.10 B0 10.80 ± 0.10 K0 2.75 ± 0.10 K1 2.45 ± 0.10 D0 1.50 (+0.10 / -0) D1 1.60 ± 0.10 P0 4.00 ± 0.10 P1 12.00 ± 0.10 P2 2.00 ± 0.10 P10 40.00 ± 0.20 E 1.75 ± 0.10 F 11.50 ± 0.10 W 24.00 ± 0.30 T 0.30 ± 0.05 Notes: (1)All dimensions are in mm. DocID027407 Rev 4 41/45 Package information VND7012AY Figure 45: PowerSSO-36 schematic drawing of leader and trailer tape 7.3 PowerSSO-36 marking information Figure 46: PowerSSO-36 marking information Marking area 1 2 3 4 5 6 7 8 9 Special function digit &: Engineering sample : Commercial sample PowerSSO-36 TOPVIEW (not in scale) GAPG1604151446CFT Engineering Samples: Parts marked as & are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples. Commercial Samples: fully qualified parts from ST standard production with no usage restrictions. 42/45 DocID027407 Rev 4 VND7012AY 8 Order codes Order codes Table 19: Device summary Order codes Package Tape and reel PowerSSO-36 VND7012AYTR DocID027407 Rev 4 43/45 Revision history 9 VND7012AY Revision history Table 20: Document revision history 44/45 Date Revision Changes 06-Oct-2015 1 Initial release. 11-Apr-2016 2 Added AEC-Q101 qualified in Features section Updated Figure 40: "PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)" Updated Table 15: "Thermal parameters" 26-May-2016 3 Modified reference to qualification type in Features section Updated Table 1: "Pin functions" 15-Jul-2016 4 Updated Figure 43: "PowerSSO-36 reel 13""and Table 17: "Reel dimensions" DocID027407 Rev 4 VND7012AY IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2016 STMicroelectronics – All rights reserved DocID027407 Rev 4 45/45
VND7012AYTR 价格&库存

很抱歉,暂时无法提供与“VND7012AYTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
VND7012AYTR
  •  国内价格 香港价格
  • 1000+34.032061000+4.08500

库存:9000

VND7012AYTR
  •  国内价格 香港价格
  • 1+35.622601+4.53700
  • 10+24.9262010+3.17470
  • 100+22.50670100+2.86650
  • 250+21.29690250+2.71240
  • 500+20.61410500+2.62550
  • 1000+19.236701000+2.45000

库存:1745

VND7012AYTR
  •  国内价格
  • 1+18.44640
  • 10+15.76800
  • 30+14.10480
  • 100+12.38760
  • 500+11.62080

库存:798