VND830PEP-E
Double channel high side driver
Features
Type
RDS(on)
IOUT
VCC
VND830PEP-E
60mΩ(1)
6A(1)
36V
)
s
(
ct
1. Per each channel.
u
d
o
PowerSSO-24
■
CMOS compatible inputs
■
Open drain status outputs
■
On-state open load detection
■
Off-state open load detection
■
Shorted load protection
■
Undervoltage and overvoltage shutdown
■
Protection against loss of ground
■
Very low standby current
■
Reverse battery protection (see Application
schematic on page 16)
■
In compliance with the 2002/95/EC european
directive
r
P
e
Description
P
e
t
e
l
o
t
e
l
o
)
(s
t
c
u
d
o
r
The VND830PEP-E is a monolithic device
designed in STMicroelectronics VIPower™ M0-3
Technology, intended for driving any kind of load
with one side connected to ground.
s
b
O
Active VCC pin voltage clamp protects the device
against low energy spikes (see ISO7637 transient
compatibility table).
Active current limitation combined with thermal
shutdown and automatic restart protects the
device against overload. The device detects open
load condition both in on and off-state. Output
shorted to VCC is detected in the off-state. Device
automatically turns off in case of ground pin
disconnection.
s
b
O
Table 1.
Device summary
Order codes
Package
PowerSSO-24
September 2013
Tube
Tape and reel
VND830PEP-E
VND830PEPTR-E
Doc ID 10826 Rev 6
1/25
www.st.com
1
Contents
VND830PEP-E
Contents
1
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
)
s
(
ct
u
d
o
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1
4
GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 16
r
P
e
3.1.1
Solution 1: a resistor in the ground line (RGND only) . . . . . . . . . . . . . . 16
3.1.2
Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . 17
t
e
l
o
3.2
Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3
MCU I/O protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4
Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
)
(s
s
b
O
Package and PC board thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1
5
t
c
u
PowerSSO-24 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
d
o
r
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
P
e
5.1
t
e
l
o
5.2
s
b
O
6
2/25
ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
PowerSSO-24 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Doc ID 10826 Rev 6
VND830PEP-E
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 5
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Thermal data (per island) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Power output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Switching (VCC = 13V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
VCC - output diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Status pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Open-load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical transient requirements on VCC pin (part 1/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical transient requirements on VCC pin (part 2/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical transient requirements on VCC pin (part 3/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
PowerSSO-24 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
Doc ID 10826 Rev 6
3/25
List of figures
VND830PEP-E
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Open-load status timing (with external pull-up) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Over temperature status timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Switching time waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Off-state output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Status leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Status low output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Status clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
On-state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
On-state resistance vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Open-load on-state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Open-load off-state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
PowerSSO-24 PC board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Rthj-amb vs PCB copper area in open box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PowerSSO-24 thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . 20
Thermal fitting model of a double channel HSD in PowerSSO-24 . . . . . . . . . . . . . . . . . . . 20
PowerSSO-24 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
4/25
Doc ID 10826 Rev 6
VND830PEP-E
1
Block diagram and pin description
Block diagram and pin description
Figure 1.
Block diagram
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
Figure 2.
)
(s
s
b
O
Configuration diagram (top view)
ct
VCC
GND
NC
INPUT2
NC
INPUT1
NC
C.SENSE1
NC
C.SENSE2
NC
VCC
u
d
o
r
P
e
t
e
l
o
s
b
O
OUTPUT2
OUTPUT2
OUTPUT2
OUTPUT2
OUTPUT2
OUTPUT2
OUTPUT1
OUTPUT1
OUTPUT1
OUTPUT1
OUTPUT1
OUTPUT1
TAB = VCC
Table 2.
Suggested connections for unused and not connected pins
Connection / pin
Current sense
Floating
To ground
Through 1KΩ
resistor
N.C.
Output
Input
X
X
X
X
Doc ID 10826 Rev 6
Through 10KΩ
resistor
5/25
Electrical specifications
VND830PEP-E
2
Electrical specifications
2.1
Absolute maximum ratings
Stressing the device above the rating listed in the “Absolute maximum ratings” table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the Operating sections of
this specification is not implied. Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE
Program and other relevant quality document.
Table 3.
Absolute maximum ratings
Symbol
V
- 0.3
V
- 200
mA
Internally limited
A
-6
A
+/- 10
mA
+/- 10
mA
4000
4000
5000
5000
V
V
V
V
54
W
Internally limited
°C
Case operating temperature
- 40 to 150
°C
Storage temperature
- 55 to 150
°C
- IGND
DC reverse ground pin current
IOUT
DC output current
-IOUT
Reverse DC output current
IIN
DC input current
Istat
DC status current
ete
Tc
s
b
O
41
Reverse DC supply voltage
Tj
2.2
Unit
- VCC
u
d
o
e
t
e
ol
Pr
s
b
O
Electrostatic discharge (human body model:R=1.5KΩ; C=100pF)
– Input
– Status
– Output
– VCC
)-
s
(
t
c
VESD
ol
Value
DC supply voltage
VCC
Ptot
)
s
(
ct
Parameter
u
d
o
Power dissipation TC = 25°C
Pr
Tstg
Junction operating temperature
Thermal data
Table 4.
Symbol
Rthj-case
Rthj-amb
Thermal data (per island)
Parameter
Value
Unit
2.3
°C/W
Thermal resistance junction-case (max)
Thermal resistance junction-ambient (one chip ON) (max)
1. When mounted on a standard single-sided FR-4 board with
to all VCC pins.
0.5cm2
57(1)
42(2)
°C/W
of Cu (at least 35µm thick) connected
2. When mounted on a standard single-sided FR-4 board with 8cm2 of Cu (at least 35µm thick) connected to
all VCC pins.
6/25
Doc ID 10826 Rev 6
VND830PEP-E
2.3
Electrical specifications
Electrical characteristics
Values specified in this section are for 8V < VCC < 36V; -40°C < Tj < 150°C, unless
otherwise stated.
Figure 3.
Current and voltage conventions
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
Note:
VFn = VCCn - VOUTn during reverse battery condition.
Table 5.
Symbol
Parameter
VCC
VUSD
VOV
RON
ete
ol
O
bs
Power output
IS
)-
s
b
O
Test conditions
Min.
Typ.
Max.
Unit
Operating supply voltage
5.5
13
36
V
Undervoltage shutdown
c
u
d
3
4
5.5
V
Overvoltage shutdown
36
t(s
o
r
P
V
IOUT = 2A; Tj = 25°C
IOUT = 2A; Tj = 125°C
On-state resistance
Supply current
60
120
mΩ
mΩ
Off-state; VCC = 13V;
VIN = VOUT = 0V
12
40
µA
Off-state; VCC = 13V;
VIN = VOUT = 0V; Tj = 25°C
12
25
µA
On-state; VCC = 13V; VIN = 5V;
IOUT = 0A
5
7
mA
0
50
µA
-75
0
µA
IL(off1)
Off-state output current
VIN = VOUT = 0V
IL(off2)
Off-state output current
VIN = 0V; VOUT = 3.5V
IL(off3)
Off-state output current
VIN = VOUT = 0V; VCC = 13V;
Tj = 125°C
5
µA
IL(off4)
Off-state output current
VIN = VOUT = 0V; VCC = 13V;
Tj = 25°C
3
µA
Doc ID 10826 Rev 6
7/25
Electrical specifications
Table 6.
VND830PEP-E
Switching (VCC = 13V)
Symbol
Parameter
Max. Unit
RL = 6.5Ω from VIN rising
edge to VOUT = 1.3V
-
30
-
µs
td(off)
Turn-off delay time
RL = 6.5Ω from VIN falling
edge to VOUT = 11.7V
-
30
-
µs
dVOUT/dt(on) Turn-on voltage slope
RL = 6.5Ω from VOUT = 1.3V to
VOUT = 10.4V
-
See
Figure 14
-
V/µs
dVOUT/dt(off) Turn-off voltage slope
RL = 6.5Ω from VOUT = 11.7V
to VOUT = 1.3V
-
See
Figure 13
-
V/µs
Symbol
Parameter
VF
Forward on voltage
Status leakage current
CSTAT
Status pin input
capacitance
VSCL
Status clamp voltage
(s)
ct
u
d
o
Parameter
-
0.6
V
-
Min.
Typ.
Max.
Unit
0.5
V
Normal operation; VSTAT= 5V
10
µA
Normal Operation; VSTAT= 5V
100
pF
8
V
V
u
d
o
r
P
e
t
e
l
o
bs
ISTAT= 1.6 mA
-O
ISTAT= 1mA
ISTAT= - 1mA
Test conditions
Input low level
IIL
Low level input current
VIH
Input high level
IIH
High level input current
VI(hyst)
Input hysteresis voltage
VICL
Input clamp voltage
Table 10.
Protections(1)
TR
Typ.
6
6.8
-0.7
Logic inputs
VIL
TTSD
Min.
- IOUT = 1.3A; Tj = 150°C
Test conditions
ILSTAT
Symbol
Unit
Parameter
Status low output voltage
Symbol
Max.
Status pin
r
P
e
t
e
l
o
Test conditions
VSTAT
Table 9.
)
s
(
ct
VCC - output diode
Symbol
8/25
Typ.
Turn-on delay time
Table 8.
O
Min.
td(on)
Table 7.
bs
Test conditions
VIN = 1.25V
Typ.
Max.
Unit
1.25
V
1
µA
3.25
V
VIN = 3.25V
10
0.5
IIN = 1mA
IIN = -1mA
Parameter
Min.
Test conditions
6
µA
V
6.8
- 0.7
8
V
V
Min.
Typ.
Max.
Unit
Shutdown temperature
150
175
200
°C
Reset temperature
135
Doc ID 10826 Rev 6
°C
VND830PEP-E
Electrical specifications
Protections(1) (continued)
Table 10.
Symbol
Parameter
Test conditions
Thyst
Thermal hysteresis
tSDL
Status delay in overload
conditions
Ilim
Current limitation
Vdemag
Min.
Typ.
7
15
Max.
°C
Tj > TTSD
6
9
5.5V < VCC < 36V
20
µs
15
15
A
A
VCC - VCC - VCC 41
48
55
Turn-off output clamp voltage IOUT = 2A; L = 6mH
Unit
V
1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related
diagnostic signals must be used together with a proper software strategy. If the device is subjected to
abnormal conditions, this software must limit the duration and number of activation cycles.
Table 11.
)
s
(
ct
u
d
o
Open-load detection
Symbol
Parameter
Test conditions
IOL
Open-load on-state
detection threshold
VIN = 5V
tDOL(on)
Open-load on-state
detection delay
IOUT = 0A
VOL
Open-load off-state
voltage detection
threshold
VIN = 0V
tDOL(off)
Open-load detection
delay at turn-off
Figure 4.
)
(s
Min.
Typ.
Max.
Unit
50
100
200
mA
200
µs
3.5
V
1000
µs
r
P
e
t
e
l
o
s
b
O
1.5
2.5
t
c
u
Open-load status timing (with external pull-up)
d
o
r
P
e
t
e
l
o
s
b
O
Doc ID 10826 Rev 6
9/25
Electrical specifications
Figure 5.
VND830PEP-E
Over temperature status timing
Figure 6.
)
s
(
ct
u
d
o
Switching time waveforms
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
10/25
Table 12.
Truth table
Conditions
Inputn
Outputn
Statusn
Normal Operation
L
H
L
H
H
H
Current Limitation
L
H
H
L
X
X
H
(Tj < TTSD) H
(Tj > TTSD) L
Over temperature
L
H
L
L
H
L
Undervoltage
L
H
L
L
X
X
Doc ID 10826 Rev 6
VND830PEP-E
Electrical specifications
Table 12.
Truth table (continued)
Conditions
Inputn
Outputn
Statusn
Overvoltage
L
H
L
L
H
H
Output voltage > VOLn
L
H
H
H
L
H
Output current < IOLn
L
H
L
H
H
L
Table 13.
Electrical transient requirements on VCC pin (part 1/3)
ISO T/R
)
s
(
ct
Test level
7637/1
Test pulse
I
II
III
IV
1
- 25V
- 50V
- 75V
- 100V
2
+ 25V
+ 50V
+ 75V
3a
- 25V
- 50V
- 100V
3b
+ 25V
+ 50V
+ 75V
4
- 4V
- 5V
5
+ 26.5V
+ 46.5V
Table 14.
s
(
t
c
u
d
o
7637/1
- 150V
0.1µs, 50Ω
+ 100V
0.1µs, 50Ω
- 7V
100ms, 0.01Ω
+ 86.5V
400ms, 2Ω
Test level
II
III
IV
C
C
C
C
2
C
C
C
C
3a
C
C
C
C
3b
C
C
C
C
4
C
C
C
C
5
C
E
E
E
r
P
e
1
O
+ 66.5V
0.2ms, 10Ω
I
Test pulse
bs
let
2ms, 10Ω
Electrical transient requirements on VCC pin (part 2/3)
ISO T/R
t
e
l
o
O
)
- 6V
r
P
e
+ 100V
o
s
b
u
d
o
Delays and impedance
Table 15.
Electrical transient requirements on VCC pin (part 3/3)
Class
Contents
C
All functions of the device are performed as designed after exposure to
disturbance.
E
One or more functions of the device is not performed as designed after exposure
and cannot be returned to proper operation without replacing the device.
Doc ID 10826 Rev 6
11/25
Electrical specifications
Figure 7.
VND830PEP-E
Waveforms
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
12/25
Doc ID 10826 Rev 6
VND830PEP-E
Electrical specifications
2.4
Electrical characteristics curves
Figure 8.
Off-state output current
Figure 9.
IL(off1) (µA)
High level input current
Iih (µA)
2.5
5
2.25
4.5
Vcc=36V
Vin=3.25V
2
4
1.75
3.5
1.5
3
1.25
2.5
1
2
0.75
1.5
0.5
1
0.25
0.5
0
u
d
o
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
)
s
(
ct
75
100
125
150
175
Tc (°C)
Figure 10. Input clamp voltage
r
P
e
Figure 11. Status leakage current
t
e
l
o
Ilstat (µA)
Vicl (V)
0.1
8
bs
0.09
7.8
Iin=1mA
7.6
7.4
)
s
(
t
7.2
7
c
u
d
6.8
6.6
6.4
6.2
-50
-25
0
e
t
e
ol
o
r
P
25
50
75
100
125
0.07
0.06
0.05
0.04
0.03
0.02
0.01
150
175
0
-50
Tc (°C)
-25
0
25
50
75
100
125
150
175
Tc (°C)
Figure 12. Status low output voltage
s
b
O
-O
Vstat=5V
0.08
Figure 13. Status clamp voltage
Vstat (V)
Vscl (V)
8
0.8
7.8
0.7
Istat=1mA
Istat=1.6mA
7.6
0.6
7.4
0.5
7.2
0.4
7
6.8
0.3
6.6
0.2
6.4
0.1
6.2
0
6
-50
-25
0
25
50
75
100
125
150
175
Tc (°C)
-50
-25
0
25
50
75
100
125
150
175
Tc (°C)
Doc ID 10826 Rev 6
13/25
Electrical specifications
VND830PEP-E
Figure 14. Turn-on voltage slope
Figure 15. Turn-off voltage slope
dVout/dt(on) (V/ms)
dVout/dt(off) (V/ms)
1000
500
900
450
Vcc=13V
Rl=6.5Ohm
800
Vcc=13V
Rl=6.5Ohm
400
700
350
600
300
500
250
400
200
300
)
s
(
ct
150
200
100
100
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
Figure 16. On-state resistance vs Tcase
Ron (mOhm)
Ron (mOhm)
120
100
90
70
O
)
80
60
t(s
c
u
d
0
-50
-25
0
25
50
75
o
r
P
Tc (°C)
e
t
e
ol
100
125
150
175
Tc=150°C
Tc=25°C
60
50
Tc=-40°C
40
30
20
Iout=2A
10
0
175
5
10
15
20
25
30
35
40
Vcc (V)
Figure 18. ILIM vs Tcase
Figure 19. Input high level
Ilim (A)
Vih (V)
20
s
b
O
150
r
P
e
bs
80
100
20
125
u
d
o
t
e
l
o
110
Iout=2A
Vcc=8V; 13V & 36V
40
100
Figure 17. On-state resistance vs VCC
160
120
75
Tc (°C)
Tc (°C)
140
50
3.6
18
Vcc=13V
3.4
16
14
3.2
12
3
10
2.8
8
6
2.6
4
2.4
2
0
2.2
-50
-25
0
25
50
75
100
125
150
175
Tc (°C)
14/25
-50
-25
0
25
50
75
Tc (°C)
Doc ID 10826 Rev 6
100
125
150
175
VND830PEP-E
Electrical specifications
Figure 20. Open-load on-state detection
threshold
Figure 21. Open-load off-state detection
threshold
Iol (mA)
Vol (V)
140
5
135
4.5
Vin=0V
Vcc=13V
Vin=5V
130
4
125
3.5
120
3
115
2.5
110
2
105
1.5
100
1
95
0.5
90
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
u
d
o
75
Tc (°C)
Figure 22. Input hysteresis voltage
)
s
(
ct
100
125
100
125
150
175
150
175
r
P
e
Figure 23. Input low level
Vhyst (V)
Vil (V)
1.5
2.6
1.4
t
e
l
o
2.4
1.3
bs
2.2
1.2
1.1
1
(s)
0.9
0.8
t
c
u
0.7
0.6
od
0.5
-50
-25
0
25
50
r
P
e
75
100
125
150
-O
2
1.8
1.6
1.4
1.2
1
175
-50
-25
0
25
Tc (°C)
50
75
Tc (°C)
Figure 24. Overvoltage shutdown
Figure 25. Undervoltage shutdown
t
e
l
o
Vusd (V)
Vov (V)
s
b
O
8
50
48
7
46
6
44
5
42
4
40
3
38
2
36
1
34
32
0
-50
-25
0
25
50
75
100
125
150
175
-50
Tc (°C)
-25
0
25
50
75
100
125
150
175
Tc (°C)
Doc ID 10826 Rev 6
15/25
Application information
3
VND830PEP-E
Application information
Figure 26. Application schematic
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
3.1
s
b
O
GND protection network against reverse battery
t
c
u
This section provides two solutions for implementing a ground protection network against
reverse battery.
3.1.1
d
o
r
P
e
Solution 1: a resistor in the ground line (RGND only)
t
e
l
o
This can be used with any type of load.
bs
O
The following show how to dimension the RGND resistor:
1.
RGND ≤ 600mV / (IS(on)max)
2.
RGND ≥ ( - VCC) / (- IGND)
where - IGND is the DC reverse ground pin current and can be found in the absolute
maximum rating section of the device datasheet.
Power dissipation in RGND (when VCC < 0 during reverse battery situations) is:
PD = (- VCC)2/ RGND
This resistor can be shared amongst several different HSDs. Please note that the value of
this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the
maximum on-state currents of the different devices.
Please note that, if the microprocessor ground is not shared by the device ground, then the
RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output
values. This shift will vary depending on how many devices are ON in the case of several
high side drivers sharing the same RGND.
16/25
Doc ID 10826 Rev 6
VND830PEP-E
Application information
If the calculated power dissipation leads to a large resistor, or several devices have to share
the same resistor, then ST suggests using solution 2 below.
3.1.2
Solution 2: a diode (DGND) in the ground line
A resistor (RGND = 1kΩ) should be inserted in parallel to DGND if the device will be driving an
inductive load. This small signal diode can be safely shared amongst several different HSD.
Also in this case, the presence of the ground network will produce a shift ( ≈600mV) in the
input threshold and the status output values if the microprocessor ground is not common
with the device ground. This shift will not vary if more than one HSD shares the same
diode/resistor network. Series resistor in INPUT and STATUS lines are also required to
prevent that, during battery voltage transient, the current exceeds the absolute maximum
rating. Safest configuration for unused INPUT and STATUS pin is to leave them
unconnected.
3.2
)
s
(
ct
u
d
o
Load dump protection
r
P
e
Dld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the
VCC maximum DC rating. The same applies if the device is subject to transients on the VCC
line that are greater than those shown in the ISO T/R 7637/1 table.
3.3
t
e
l
o
MCU I/O protection
s
b
O
If a ground protection network is used and negative transients are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to
prevent the µC I/O pins from latching up.
)
(s
t
c
u
The value of these resistors is a compromise between the leakage current of µC and the
current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC
I/Os:
d
o
r
- VCCpeak / Ilatchup ≤ Rprot ≤ (VOHμC - VIH - VGND) / IIHmax
P
e
Example
t
e
l
o
For the following conditions:
s
b
O
VCCpeak = - 100V
Ilatchup ≥ 20mA
VOHμC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended values are:
Rprot = 10kΩ
3.4
Open-load detection in off-state
Off-state open-load detection requires an external pull-up resistor (RPU) connected between
OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to supply the
microprocessor.
The external resistor has to be selected according to the following requirements:
Doc ID 10826 Rev 6
17/25
Application information
VND830PEP-E
1.
no false open-load indication when load is connected: in this case we have to avoid
VOUT to be higher than VOlmin; this results in the following condition
VOUT = (VPU / (RL+RPU)) RL < VOlmin.
2.
no misdetection when load is disconnected: in this case the VOUT has to be higher than
VOLmax; this results in the following condition
RPU < (VPU – VOLmax) / IL(off2).
Because Is(OFF) may significantly increase if Vout is pulled high (up to several mA), the pullup resistor RPU should be connected to a supply that is switched off when the module is in
standby. The values of VOLmin, VOLmax and IL(off2) are available in the electrical
characteristics section.
Figure 27. Open-load detection in off-state
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
18/25
Doc ID 10826 Rev 6
VND830PEP-E
Package and PC board thermal data
4
Package and PC board thermal data
4.1
PowerSSO-24 thermal data
Figure 28. PowerSSO-24 PC board
)
s
(
ct
Note:
u
d
o
r
P
e
Layout condition of Rth and Zth measurements (PCB FR4 area= 78mm x 78mm, PCB
thickness=2mm, Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2).
t
e
l
o
Figure 29. Rthj-amb vs PCB copper area in open box
RTHj_amb(°C/W)
60
)
(s
s
b
O
t
c
u
55
d
o
r
P
e
50
s
b
O
t
e
l
o
45
40
0
1
2
3
4
5
6
7
8
9
PCB Cu heatsink area (cm^2)
Doc ID 10826 Rev 6
19/25
Package and PC board thermal data
VND830PEP-E
Figure 30. PowerSSO-24 thermal impedance junction ambient single pulse
ZTH (°C/W)
100
Footprint
8 cm2
10
)
s
(
ct
1
u
d
o
0.1
0.0001
0.001
0.01
0.1
t
e
l
o
1
Time (s)
r
P
e
s
b
O
10
100
1000
Figure 31. Thermal fitting model of a double channel HSD in PowerSSO-24
)
(s
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
Equation 1: pulse calculation formula
Z
THδ
= R
TH
⋅δ+Z
THtp
(1 – δ)
where δ = tP/T
20/25
Doc ID 10826 Rev 6
VND830PEP-E
Package and PC board thermal data
Table 16.
Thermal parameters
Area/island (cm2)
Footprint
R1 = R7 (°C/W)
0.1
R2 = R8 (°C/W)
0.9
R3 (°C/W)
1
R4 (°C/W)
4
R5 (°C/W)
13.5
R6 (°C/W)
37
C1 = C7 (W.s/°C)
0.0006
C2 = C8 (W.s/°C)
0.0025
C3 (W.s/°C)
0.025
22
)
s
(
ct
u
d
o
C4 (W.s/°C)
Pr
0.08
ete
C5 (W.s/°C)
ol
C6 (W.s/°C)
)
(s
8
s
b
O
0.7
3
5
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
Doc ID 10826 Rev 6
21/25
Package information
VND830PEP-E
5
Package information
5.1
ECOPACK® packages
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
5.2
PowerSSO-24 mechanical data
)
s
(
ct
Figure 32. PowerSSO-24 package dimensions
u
d
o
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
22/25
Doc ID 10826 Rev 6
VND830PEP-E
Package information
Table 17.
PowerSSO-24 mechanical data
Millimeters
Symbol
Min.
Typ.
Max.
A
2.45
A2
2.15
2.35
a1
0
0.10
b
0.33
0.51
c
0.23
0.32
D
10.10
10.50
E
7.40
e
0.8
e3
8.8
F
2.3
let
G1
o
s
b
10.1
h
-O
k
0°
L
0.55
)
s
(
ct
N
X
u
d
o
Y
u
d
o
r
P
e
G
H
)
s
(
ct
7.60
0.1
0.06
10.5
0.4
8°
0.85
10º
4.1
4.7
6.5
7.1
r
P
e
t
e
l
o
s
b
O
Doc ID 10826 Rev 6
23/25
Revision history
6
VND830PEP-E
Revision history
Table 18.
Document revision history
Date
Revision
Changes
04-Oct-2004
1
Initial release.
15-Nov-2004
2
Mechanical data updating.
PowerSSO-24 thermal characteristics insertion
27-Nov-2004
3
PC board copper area correction.
12-Dec-2005
4
Electrical characteristics insertion.
Absolute maximum ratings modification.
01-Jul-2009
5
Updated Figure 17: PowerSSO-24 mechanical data:
– Deleted A (min) value
– Changed A (max) value from 2.47 to 2.45
– Changed A2 (max) value from 2.40 to 2.35
– Changed a1 (max) value from 0.075 to 0.1
– Inserted F and k rows
20-Sep-2013
6
Updated Disclaimer.
u
d
o
)
(s
r
P
e
t
e
l
o
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
24/25
)
s
(
ct
Doc ID 10826 Rev 6
VND830PEP-E
)
s
(
ct
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
u
d
o
r
P
e
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
t
e
l
o
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
)
(s
s
b
O
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
t
c
u
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
d
o
r
P
e
t
e
l
o
s
b
O
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 10826 Rev 6
25/25