0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VNQ7040AYTR

VNQ7040AYTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    BFSOP36

  • 描述:

    IC PWR DRVR N-CHAN 1:1 PWRSSO36

  • 数据手册
  • 价格&库存
VNQ7040AYTR 数据手册
VNQ7040AY Quad channel high-side driver with MultiSense analog feedback for automotive applications Datasheet - production data       Features Load current limitation Self limiting of fast thermal transients Configurable latch-off on overtemperature or power limitation with dedicated fault reset pin Loss of ground and loss of VCC Reverse battery through self turn-on Electrostatic discharge protection Applications Max transient supply voltage VCC 41 V Operating voltage range VCC 4 to 28 V Typ. on-state resistance (per ch) RON 40 mΩ Current limitation (typ) ILIMH 34 A Standby current (max) ISTBY 0.5 µA   All types of Automotive resistive, inductive and capacitive loads Specially intended for Automotive Turn Indicators (up to P27W or SAE1156 and R5W paralleled or LED Rear Combinations) Description     AEC-Q100 qualified General  Quad channel smart high-side driver with MultiSense analog feedback  LED Mode for channel 0 and 1  Very low standby current  Compatible with 3 V and 5 V CMOS outputs MultiSense diagnostic functions  Multiplexed analog feedback of:  Load current with high precision proportional current mirror;  VCC supply voltage;  TCHIP device temperature  Overload and short to ground (power limitation) indication  Thermal shutdown indication  OFF-state open load detection  Output short to VCC detection  Sense enable/disable Protections  Undervoltage shutdown  Overvoltage clamp December 2017 The device is a quad channel high-side driver manufactured using the latest ST proprietary VIPower® technology and housed in a PowerSSO-36 package. The device is designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOS-compatible interface, and to provide protection and diagnostics. The device integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown with configurable latch-off. A FaultRST pin unlatches the output in case of fault or disables the latch-off functionality. A dedicated multifunction multiplexed analog output pin delivers sophisticated diagnostic functions such as high precision proportional load current sense, supply voltage feedback and chip temperature sense, in addition to the detection of overload and short circuit to ground, short to VCC and OFF-state open-load. The device features a dedicated LED Mode. DocID027406 Rev 4 This is information on a product in full production. 1/50 www.st.com Contents VNQ7040AY Contents 1 Block diagram and pin description ................................................ 4 2 Electrical specification .................................................................... 6 3 4 2.1 Absolute maximum ratings ................................................................ 6 2.2 Thermal data ..................................................................................... 7 2.3 Electrical characteristics .................................................................... 7 2.3.1 General electrical specification ........................................................... 7 2.3.2 Bulb mode (default) .......................................................................... 16 2.3.3 Electrical characteristics curves - Bulb Mode ................................... 20 2.3.4 LED Mode (Channel 0 and 1) ........................................................... 24 2.3.5 Electrical characteristics curves - LED mode ................................... 27 2.3.6 Truth tables ....................................................................................... 28 Protections..................................................................................... 30 3.1 Power limitation ............................................................................... 30 3.2 Thermal shutdown ........................................................................... 30 3.3 Current limitation ............................................................................. 30 3.4 Negative voltage clamp ................................................................... 30 Application information ................................................................ 31 4.1 GND protection network against reverse battery............................. 31 4.2 Immunity against transient electrical disturbances .......................... 32 4.3 MCU I/Os protection ........................................................................ 32 4.4 Multisense - analog current sense .................................................. 33 4.4.1 Principle of Multisense signal generation ......................................... 34 4.4.2 TCASE and VCC monitor ................................................................. 36 4.4.3 Short to VCC and OFF-state open-load detection ........................... 37 5 Maximum demagnetization energy (VCC = 16 V) ........................ 38 6 Package and PCB thermal data .................................................... 39 6.1 7 8 2/50 PowerSSO-36 thermal data ............................................................ 39 Package information ..................................................................... 43 7.1 PowerSSO-36 package information ................................................ 43 7.2 PowerSSO-36 packing information ................................................. 45 7.3 PowerSSO-36 marking information ................................................. 47 Order codes ................................................................................... 48 DocID027406 Rev 4 VNQ7040AY 9 Contents Revision history ............................................................................ 49 DocID027406 Rev 4 3/50 Block diagram and pin description 1 VNQ7040AY Block diagram and pin description Figure 1: Block diagram Table 1: Pin functions Name VCC OUTPUT0,1,2,3 GND Battery connection. Power output. Ground connection. INPUT0,1,2,3 Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. They control output switch state. MultiSense Multiplexed analog sense output pin; it delivers a current proportional to the selected diagnostic: load current, supply voltage or chip temperature. SEn Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense diagnostic pin LED0,1 Active high compatible with 3 V and 5 V CMOS outputs pin; they enable the LED mode on logic high level (see Table 15: "Truth table"). SEL0,1,2 Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense multiplexer (see Table 15: "Truth table"). FaultRST 4/50 Function Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart mode. DocID027406 Rev 4 VNQ7040AY Block diagram and pin description Figure 2: Configuration diagram (top view) OUTPUT2 OUTPUT2 OUTPUT2 OUTPUT2 N.C. N.C. OUTPUT1 OUTPUT1 OUTPUT1 OUTPUT1 N.C. LED1 LED0 SEn SEL2 SEL1 SEL0 N.C. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 TAB/Vcc 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 OUTPUT3 OUTPUT3 OUTPUT3 OUTPUT3 N.C. N.C. OUTPUT0 OUTPUT0 OUTPUT0 OUTPUT0 N.C. INPUT3 INPUT2 INPUT1 INPUT0 MultiSense GND FaultRST PowerSSO-36 PACKAGE Table 2: Suggested connections for unused and not connected pins Connection / pin MultiSense N.C. Floating Not allowed (1) To ground Through 1 kΩ resistor X X SEn, SELx, LEDx, Output Input X X X Not allowed Through 15 kΩ resistor Through 15 kΩ resistor FaultRST Notes: (1)X: do not care. DocID027406 Rev 4 5/50 Electrical specification 2 VNQ7040AY Electrical specification Figure 3: Current and voltage conventions IS V CC IF R F a u ltR S T V FR V SEn M u ltiS en se V SENSE L E D 0 ,1 0 ,1 ,2 ,3 V IN V LED V SEL VOUT IS E N S E SEn IN P U T S E L 0,1 ,2 I LE D I IN V CC O U T P U T 0 ,1,2 ,3 IS E n IS E L V Fn IO U T IG N D GAPG0910151354CFT VFn = VOUTn - VCC 2.1 Absolute maximum ratings Stressing the device above the rating listed in Table 3: "Absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in the table below for extended periods may affect device reliability. Table 3: Absolute maximum ratings Symbol Value VCC DC supply voltage 38 -VCC Reverse DC supply voltage 16 VCCPK Maximum transient supply voltage (ISO7637-2:2004 Pulse 5b level IV clamped to 40 V; RL = 4 Ω) 40 VCCJS Maximum jump start voltage for single pulse short circuit protection 28 -IGND DC reverse ground pin current 200 IOUT OUTPUT0,1,2,3 DC output current Unit V mA Internally limited -IOUT_0,1 OUTPUT0,1 Reverse DC output current 10 -IOUT_2,3 OUTPUT2,3 Reverse DC output current 10 IIN 6/50 Parameter A INPUT0,1,2,3 DC input current ILED LED0,1 DC input current ISEn SEn DC input current ISEL SEL0,1,2 DC input current DocID027406 Rev 4 -1 to 10 mA VNQ7040AY Electrical specification Symbol Parameter Unit IFR FaultRST DC input current -1 to 10 mA VFR FaultRST DC input voltage 7.5 V MultiSense pin DC output current (VGND = VCC and VSENSE < 0 V) -10 mA MultiSense pin DC output current in reverse (VCC < 0 V) 20 mA Maximum switching energy (single pulse) (TDEMAG = 0.4 ms; Tjstart = 150 °C) 36 mJ 4000 2000 4000 4000 4000 V V V V V 750 V ISENSE EMAX Electrostatic discharge (JEDEC 22A-114F)  INPUT0,1,2,3  MultiSense VESD VESD  LED0,1, SEn, SEL0,1,2, FaultRST   OUTPUT0,1,2,3 VCC Charge device model (CDM-AEC-Q100-011) Tj Tstg 2.2 Value Junction operating temperature -40 to 150 Storage temperature -55 to 150 °C Thermal data Table 4: Thermal data Symbol Parameter Thermal resistance junction-board (JEDEC JESD 51-8) Rthj-board Rthj-amb Rthj-amb Typ. value (1)(2) Unit 4.9 Thermal resistance junction-ambient (JEDEC JESD 51-2) (1)(3) 53 Thermal resistance junction-ambient (JEDEC JESD 51-2) (1)(2) 18.5 °C/W Notes: (1)One 2.3 channel ON. (2)Device mounted on four-layers 2s2p PCB (3)Device mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace Electrical characteristics 7 V < VCC < 28 V; -40 °C < Tj < 150 °C, unless otherwise specified. All typical values refer to VCC = 13 V; Tj = 25 °C, unless otherwise specified. 2.3.1 General electrical specification Table 5: Power section Symbol Parameter Test conditions Min. Typ. Max. 4 13 28 VCC Operating supply voltage VUSD Undervoltage shutdown 4 Undervoltage shutdown reset 5 VUSDReset DocID027406 Rev 4 Unit V 7/50 Electrical specification VNQ7040AY Symbol Parameter VUSDhyst Undervoltage shutdown hysteresis Vclamp Clamp voltage ISTBY Supply current in standby at VCC = 13 V (1) Test conditions IS = 20 mA; 25 °C < Tj < 150 °C 41 IS = 20 mA; Tj = -40 °C 38 VCC = 13 V; VINx = VOUTx = VFR = VSEn = 0 V; VSEL0,1,2 = 0 V; VLED0,1 = 0 V; Tj = 125 °C 3 µA 300 550 µs 10 16 mA 18.5 mA VCC = 13 V; VSEn = 5 V; VFR = VSEL0,1 = 0 V; VINx = 5 V; IOUT0,1,2,3 = 2.5 A 8/50 60 VINx = VOUTx = 0 V; VCC = 13 V; Tj = 25 °C 0 VINx = VOUTx = 0 V; VCC = 13 V; Tj = 125 °C 0 IOUT = -2.5 A; Tj = 150 °C Notes: (3)For V µA Control stage current consumption in ON state. All channels active. (2)Parameter V 0.5 VCC = 13 V; VSEn = VFR = VSEL0,1 = 0 V; VINx = 5 V; IOUT0,1,2,3 = 0 A (1)PowerMOS 52 VCC = 13 V; VINx = VOUTx = VFR = VSEn = 0 V; VSEL0,1,2 = 0 V; VLED0,1 = 0 V; Tj = 85 °C (2) Supply current Output - VCC diode voltage (3) 46 µA IS(ON) VF Unit 0.5 VCC = 13 V; VINx = VOUTx = VFR = 0 V; VSEL0,1,2 = 0 V; VLED0,1 = 0 V; VSEn = 5 V to 0 V IL(off) Max. VCC = 13 V; VINx = VOUTx = VFR = VSEn = 0 V; VSEL0,1,2 = 0 V; VLED0,1 = 0 V; Tj = 25 °C Standby mode blanking time Off-state output current at VCC = 13 V(1) Typ. 0.3 tD_STBY IGND(ON) Min. leakage included. specified by design; not subject to production test. each channel. DocID027406 Rev 4 0.01 0.5 µA 3 0.7 V VNQ7040AY Electrical specification Table 6: Logic Inputs 7 V < VCC < 28 V; -40 °C < Tj < 150 °C Symbol Parameter Test conditions Min. Typ. Max. Unit 0.9 V INPUT0,1,2,3 characteristics VIL Input low level voltage IIL Low level input current VIH Input high level voltage IIH High level input current VI(hyst) Input hysteresis voltage VICL Input clamp voltage VIN = 0.9 V 1 µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA V 5.3 IIN = -1 mA µA 7.2 -0.7 V FaultRST characteristics VFRL Input low level voltage IFRL Low level input current VFRH Input high level voltage IFRH High level input current VFR(hyst) Input hysteresis voltage VFRCL Input clamp voltage 0.9 VIN = 0.9 V 1 µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA V V 5.3 IIN = -1 mA µA 7.5 -0.7 V SEL0,1,2 characteristics (7 V < VCC < 18 V) VSELL Input low level voltage ISELL Low level input current VSELH Input high level voltage ISELH High level input current VSEL(hyst) Input hysteresis voltage VSELCL Input clamp voltage 0.9 VIN = 0.9 V 1 µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA V V 5.3 IIN = -1 mA µA 7.2 -0.7 V LED0,1 characteristics (7 V < VCC < 18 V) VLEDL Input low level voltage ILEDL Low level input current VLEDH Input high level voltage ILEDH High level input current VLED(hyst) Input hysteresis voltage VLEDCL Input clamp voltage 0.9 VIN = 0.9 V 1 µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA V V 5.3 IIN = -1 mA µA 7.2 -0.7 V SEn characteristics (7 V < VCC < 18 V) VSEnL Input low level voltage ISEnL Low level input current VSEnH Input high level voltage ISEnH High level input current 0.9 VIN = 0.9 V VIN = 2.1 V DocID027406 Rev 4 V 1 µA 2.1 V 10 µA 9/50 Electrical specification VNQ7040AY 7 V < VCC < 28 V; -40 °C < Tj < 150 °C Symbol VSEn(hyst) VSEnCL Parameter Test conditions Input hysteresis voltage Typ. Max. 0.2 IIN = 1 mA Input clamp voltage Min. V 5.3 IIN = -1 mA Unit 7.2 -0.7 V Table 7: Protections 7 V < VCC < 18 V; -40 °C < Tj < 150 °C Symbol TTSD TR TRS Parameter Test conditions Shutdown temperature Reset temperature (1) Thermal reset of fault diagnostic indication Min. Typ. Max. 150 175 200 TRS + 1 TRS + 5 °C VFR = 0 V; VSEn =5 V 135 THYST Thermal hysteresis (TTSD-TR)(1) 5 ΔTJ_SD Dynamic temperature 60 tLATCH_RST VDEMAG VON Fault reset time for output unlatch(1) Turn-off output voltage clamp Output voltage drop limitation VFR = 5 V to 0 V; VSEn = 5 V; VINx = 5 V; VSEL0,1,2 = 0 V 3 IOUT= 2 A; L = 6 mH; Tj = 40 °C VCC 38 IOUT= 2 A; L = 6 mH; Tj = 25 °C to 150 °C VCC 41 IOUT= 0.25 A Notes: (1)Parameter 10/50 Unit guaranteed by design and characterization; not subject to production test. DocID027406 Rev 4 10 K 20 µs V VCC 46 20 VCC 52 V mV VNQ7040AY Electrical specification Table 8: MultiSense 7 V < VCC < 18 V; -40 °C < Tj < 150 °C Symbol Parameter Test conditions VSENSE_CL MultiSense clamp voltage VSEn = 0 V; ISENSE = 1 mA Min. Typ. -17 VSEn = 0 V; ISENSE = -1 mA Max. Unit -12 V 7 V Current Sense characteristics MultiSense disabled: VSEn = 0 V; 0 0.5 -0.5 0.5 MultiSense enabled: VSEn = 5 V All channels ON; IOUTX = 0 A; ChX diagnostic selected;  E.g. Ch0: VIN0 = 5 V; VIN1,2,3 = 5 V; VSEL0,1,2 = 0 V; IOUT0 = 0 A; IOUT1,2,3 = 2.5 A 0 2 MultiSense enabled: VSEn = 5 V ChX OFF; ChX diagnostic selected:  E.g. Ch0: VIN0 = 0 V; VIN1,2,3 = 5 V; VSEL0,1,2 = 0 V; IOUT0 = 0 A; IOUT1,2,3 = 2.5 A 0 MultiSense disabled: (1) -1 V < VSENSE < 5 V MultiSense leakage current ISENSE0 µA 2 Output Voltage for MultiSense shutdown VSEn = 5 V; RSENSE = 2.7 kΩ  E.g. Ch0: VIN0 = 5 V; VSEL0,1,2 = 0 V; IOUT0 = 2.5 A VSENSE_SAT Multisense saturation voltage VCC = 7 V; RSENSE = 2.7 K; VSEn = 5 V; VIN0 = 5 V; VSEL0,1,2 = 0 V; IOUT0 = 4.5 A; Tj = 150°C 5 V ISENSE_SAT(1) CS saturation current VCC = 7 V; VSENSE = 4 V; VIN0 = 5 V; VSEn = 5 V; VSEL0,1,2 = 0 V; Tj = 150°C 4 mA IOUT_SAT_BULB(1) Output saturation current in BULB mode VCC = 7 V; VSENSE = 4 V; VIN0 = 5 V; VSEn = 5 V; VSEL0,1,2 = 0 V; Tj = 150°C 8 A IOUT_SAT_LED(1) Output saturation current in LED mode VCC = 7 V; VSENSE = 4 V; VIN0 = 5 V; VSEn = 5 V; VSEL0,1,2 = 0 V; Tj = 150°C 2.3 A VOUT_MSD (1) 5 V OFF-state diagnostic VOL OFF state open load voltage detection threshold VSEn = 5V; ChX OFF; ChX diagnostic selected  E.g. Ch0: VIN0 = 0 V; VSEL0,1,2 = 0 V DocID027406 Rev 4 2 3 4 V 11/50 Electrical specification VNQ7040AY 7 V < VCC < 18 V; -40 °C < Tj < 150 °C Symbol Parameter Test conditions Min. IL(off2) OFF state output sink current VIN = 0 V; VOUT = VOL; Tj = -40°C to 125°C -100 tDSTKON OFF state diagnostic delay time from falling edge of INPUT (see Figure 4: "Switching times and Pulse skew") VSEn = 5 V; ChX ON to OFF transition; ChX diagnostic selected  E.g. Ch0: VIN0 = 5 V to 0 V; VSEL0,1,2 = 0 V; VOUT0 > 4 V 100 tD_OL_V Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn VINx = 0 V; VFR = 0 V; VSEL0,1,2 = 0 V; VOUT0 = 4 V; VSEn = 0 V to 5 V tD_VOL OFF state diagnostic delay time from rising edge of VOUT VSEn = 5V; ChX OFF; ChX diagnostic selected  E.g. Ch0: VIN0 = 0 V; VSEL0,1,2 = 0 V; VOUT0 = 0 V to 4 V Typ. Max. Unit -15 µA 700 µs 60 µs 5 30 µs 350 Chip temperature analog feedback VSENSE_TC dVSENSE_TC/dT (2) MultiSense output voltage proportional to chip temperature Temperature coefficient VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 0 V; VSEL2 = 5 V; RSENSE = 1 kΩ; VINx = 0 V; Tj = 40°C 2.325 2.41 2.495 V VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 0 V; VSEL2 = 5 V; RSENSE = 1 kΩ; VINx = 0 V; Tj = 25°C 1.985 2.07 2.155 V VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 0 V; VSEL2 = 5 V; RSENSE = 1 kΩ; VINx = 0 V; Tj = 125°C 1.435 1.52 1.605 V Tj = -40°C to 150°C Transfer function -5.5 mV/K VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC/dT * (T-T0) VCC supply voltage analog feedback VSENSE_VCC MultiSense output voltage proportional to VCC supply voltage VCC = 13 V; VSEn = 5 V; VSEL0,1,2 = 5 V; VINx = 0 V; RSENSE = 1 kΩ Transfer function(2) 3.16 3.23 3.3 V 6.6 V VSENSE_VCC = VCC / 4 Fault diagnostic feedback (see Table 15: "Truth table") VSENSEH 12/50 MultiSense output voltage in fault condition VCC = 13 V; RSENSE = 1 kΩ DocID027406 Rev 4 5 VNQ7040AY Electrical specification 7 V < VCC < 18 V; -40 °C < Tj < 150 °C Symbol ISENSEH Parameter Test conditions MultiSense output current in fault condition VCC = 13 V; VSENSE = 5 V Min. Typ. Max. Unit 7 20 30 mA MultiSense timings (Chip Temperature Sense mode - see Figure 6: "Multisense timings (chip temperature and VCC sense mode)") tDSENSE3H VSENSE_TC settling time from rising edge of SEn VSEn = 0 V to 5 V; VSEL0 = VSEL1 = 0 V; VSEL2 = 5 V; RSENSE = 1 kΩ 60 µs tDSENSE3L VSENSE_TC disable delay time from falling edge of SEn VSEn = 5 V to 0 V; VSEL0 = VSEL1 = 0 V; VSEL2 = 5 V; RSENSE = 1 kΩ 20 µs MultiSense timings (VCC Voltage Sense mode - see Figure 6: "Multisense timings (chip temperature and VCC sense mode)") tDSENSE4H VSENSE_VCC settling time from rising edge of SEn VSEn = 0 V to 5 V; VSEL0 = VSEL1 = VSEL2 = 5 V; RSENSE = 1 kΩ 60 µs tDSENSE4L VSENSE_VCC disable delay time from falling edge of SEn VSEn = 5 V to 0 V; VSEL0 = VSEL1 = VSEL2 = 5 V; RSENSE = 1 kΩ 20 µs MultiSense Timings (Multiplexer transition times) (3) tD_XtoY MultiSense transition delay from ChX to ChY VIN2 = 5 V; VIN3 = 5 V; VSEn = 5 V; VSEL0 = 0 V to 5 V; VSEL1 = 5 V; VSEL2 = 0 V; IOUT2 = 0 A; IOUT3 = 2.5 A; RSENSE = 1 kΩ 20 µs tD_CStoTC MultiSense transition delay from current sense to TC sense VIN0 = 5 V; VSEn = 5 V; VSEL0 = 0 V; VSEL1 = VSEL2 = 0 V to 5 V; IOUT0 = 1.25 A; RSENSE = 1 kΩ 60 µs tD_TCtoCS MultiSense transition delay fromTC sense to current sense VIN0 = 5 V; VSEn = 5 V; VSEL0 = 0 V; VSEL1 = VSEL2 = 5 V to 0 V; IOUT0 = 1.25 A; RSENSE = 1 kΩ 20 µs tD_CStoVCC MultiSense transition delay from current sense to VCC sense VIN2 = 5 V; VSEn = 5 V; VSEL0 = 5 V; VSEL1 = 5 V; VSEL2 = 0 V to 5 V; IOUT2 = 1.25 A; RSENSE = 1 kΩ 60 µs tD_VCCtoCS MultiSense transition delay from VCC sense to current sense VIN2 = 5 V; VSEn = 5 V; VSEL1 = 5 V; VSEL0 = VSEL2 = 5 V to 0 V; IOUT2 = 1.25 A; RSENSE = 1 kΩ 20 µs DocID027406 Rev 4 13/50 Electrical specification VNQ7040AY 7 V < VCC < 18 V; -40 °C < Tj < 150 °C Symbol Parameter Test conditions tD_TCtoVCC MultiSense transition delay from TC sense to VCC sense Min. Typ. Max. Unit VSEn = 5 V; VSEL1,2 = 5 V; VSEL0 = 0 V to 5 V; RSENSE = 1 kΩ 20 µs tD_VCCtoTC MultiSense transition delay from VCC sense to TC sense VSEn = 5 V; VSEL1,2 = 5 V; VSEL0 = 5 V to 0 V; RSENSE = 1 kΩ 20 µs tD_CStoVSENSEH MultiSense transition delay from stable current sense on ChX to VSENSEH on ChY VIN0 = 5 V; VIN1 = 0 V; VOUT1 > 4 V; VSEn = 5 V; VSEL2 = 0 V; VSEL1 = 0 V; VSEL0 = 0 V to 5 V; IOUT0 = 2.5 A; RSENSE = 1 kΩ 60 µs Notes: (1)Parameter (2)V CC guaranteed by design and characterization; not subject to production test. sensing and TC sensing are referred to GND potential. (3)Transition delay is measured up to +/- 10% of final conditions. Figure 4: Switching times and Pulse skew twon VOUT twoff Vcc 80% Vcc ON OFF dVOUT/dt dVOUT/dt 20% Vcc t INPUT td(off) td(on) tpLH tpHL t 14/50 DocID027406 Rev 4 VNQ7040AY Electrical specification Figure 5: MultiSense timings (current sense mode) IN1 High SEn Low High SEL0 Low High SEL1 Low High SEL2 Low IOUT1 Current Sense tDSENSE2H tDSENSE1 L tDSENSE1H tDSENSE2 L Figure 6: Multisense timings (chip temperature and VCC sense mode) DocID027406 Rev 4 15/50 Electrical specification VNQ7040AY Figure 7: TDSKON VINPU T VOU T VOU T > VOL MultiSense TDSTKON GAPG2609141140CFT 2.3.2 Bulb mode (default) Table 9: Power section in Bulb Mode 7 V < VCC < 28 V; -40 °C < Tj < 150 °C, unless otherwise specified Symbol Parameter Test conditions Min. Max. Unit IOUT = 2.5 A; Tj = 150°C 80 mΩ IOUT = 2.5 A; VCC = 4 V; Tj = 25°C 60 IOUT = 2.5 A; Tj = 25°C RON_0,1,2,3_BULB On-state resistance in Bulb Mode Ch0, Ch1, Ch2 and Ch3 40 RON_REV_0,1,2,3 On-state resistance in Reverse Battery Ch0, Ch1, Ch2 and Ch3 VCC = -13V; IOUT = -2.5A; Tj = 25°C DC short circuit current in Bulb Mode Ch0, Ch1, Ch2 and Ch3 VCC = 13 V ILIMH_0,1,2,3_BULB(1) ILIML_0,1,2,3_BULB Short circuit current during thermal cycling in Bulb Mode Ch0, Ch1, Ch2 and Ch3 VCC = 13 V; TR < Tj < TTSD 9 VON_0,1,2,3_BULB Output voltage drop limitation in Bulb Mode Ch0, Ch1, Ch2 and Ch3 IOUT = 0.25 A 20 4 V < VCC < 18 V mΩ 40 24 34 (2) 48 48 A Notes: 16/50 Typ. (1)Parameter guaranteed by an indirect test sequence. (2)Parameter guaranteed by design and characterization; not subject to production test. DocID027406 Rev 4 mV VNQ7040AY Electrical specification Table 10: Switching in Bulb Mode VCC = 13 V; -40 °C < Tj < 150 °C, unless otherwise specified Symbol Test conditions Parameter Min. Typ. Max. Unit Channel 0, 1, 2 and 3 td(on)_0,1,2,3(1) Turn-on delay time at Tj = 25 °C RL = 5.2 Ω 10 60 145 td(off)_0,1,2,3(1) Turn-off delay time at Tj = 25 °C RL = 5.2 Ω 10 50 100 (dVOUT/dt)on_0,1,2,3(1) Turn-on voltage slope at Tj = 25 °C RL = 5.2 Ω 0.1 0.5 0.7 (dVOUT/dt)off_0,1,2,3(1) Turn-off voltage slope at Tj = 25 °C RL = 5.2 Ω 0.1 0.5 0.7 WON_0,1,2,3 Switching energy losses at turn-on (twon) RL = 5.2 Ω — 0.2 WOFF_0,1,2,3 Switching energy losses at turn-off (twoff) RL = 5.2 Ω — Differential pulse skew (tPHL - tPLH) RL = 5.2 Ω -100 tSKEW_0,1,2,3(1) µs V/µs 0.52 (2) mJ 0.2 0.5(2) mJ -15 35 µs Typ. Max. Unit 35 % Notes: (1)See Figure 4: "Switching times and Pulse skew" . (2)Parameter guaranteed by design and characterization, not subject to production test. Table 11: MultiSense in Bulb Mode 7 V < VCC < 18 V; -40 °C < Tj < 150 °C Symbol Parameter Test conditions Min. Current sense characteristics Channel 0, 1, 2 and 3 KOL_CH0,1_B IOUT/ISENSE IOUT = 10 mA; VSENSE = 0.5 V; VSEn = 5 V 430 KOL_CH2,3_B IOUT/ISENSE IOUT = 10 mA; VSENSE = 0.5 V; VSEn = 5 V 430 dKcal/Kcal(1)(2) Current sense ratio drift at calibration point ICAL = 30 mA; IOUT = 10 mA to 50 mA; VSENSE = 0.5 V; VSEn = 5 V -35 KLED_CH0,1_B IOUT/ISENSE IOUT = 0.05 A; VSENSE = 0.5 V; VSEn = 5 V 720 1440 2160 KLED_CH2,3_B IOUT/ISENSE IOUT = 0.05 A; VSENSE = 0.5 V; VSEn = 5 V 720 1440 2160 DocID027406 Rev 4 17/50 Electrical specification VNQ7040AY 7 V < VCC < 18 V; -40 °C < Tj < 150 °C Symbol Parameter Test conditions Min. Typ. Max. K0_CH0,1_B IOUT/ISENSE IOUT = 0.25 A; VSENSE = 0.5 V; VSEn = 5 V 930 1550 2170 K0_CH2,3_B IOUT/ISENSE IOUT = 0.25 A; VSENSE = 0.5 V; VSEn = 5 V 930 1550 2170 dK0/K0(1)(2) Current sense ratio drift IOUT = 0.25 A; VSENSE = 0.5 V; VSEn = 5 V -20 K1_CH0,1_B IOUT/ISENSE IOUT = 0.5 A; VSENSE = 4 V; VSEn = 5 V 1110 1590 2070 K1_CH2,3_B IOUT/ISENSE IOUT = 0.5 A; VSENSE = 4 V; VSEn = 5 V 1085 1550 2015 dK1/K1(1)(2) Current sense ratio drift IOUT = 0.5 A; VSENSE = 4V; VSEn = 5 V K2_CH0,1_B IOUT/ISENSE IOUT = 2 A; VSENSE = 4 V; VSEn = 5 V 1160 1450 1740 K2_CH2,3_B IOUT/ISENSE IOUT = 2 A; VSENSE = 4 V; VSEn = 5 V 1130 1410 1690 dK2/K2(1)(2) Current sense ratio drift IOUT = 2 A; VSENSE = 4 V; VSEn = 5 V -10 K3_CH0,1_B IOUT/ISENSE IOUT = 6 A; VSENSE = 4 V; VSEn = 5 V 1295 1440 1585 K3_CH2,3_B IOUT/ISENSE IOUT = 6 A; VSENSE = 4 V; VSEn = 5 V 1260 1400 1540 dK3/K3(1)(2) Current sense ratio drift IOUT = 6 A; VSENSE = 4 V; VSEn = 5 V -5 Unit 20 -15 15 10 5 % % % % MultiSense timings (Current Sense mode see Figure 5: "MultiSense timings (current sense mode)") Channel 0, 1, 2 and 3 18/50 tDSENSE1H Current sense settling time from rising edge of SEn VIN = 5 V; VSEn = 0 V to 5 V; RSENSE = 1 kΩ; RL = 5.2 Ω tDSENSE1L Current sense disable delay time from falling edge of SEn VSEn = 5 V to 0 V; RSENSE = 1 kΩ; RL = 5.2 Ω DocID027406 Rev 4 5 60 µs 20 µs VNQ7040AY Electrical specification 7 V < VCC < 18 V; -40 °C < Tj < 150 °C Symbol Parameter Test conditions Current sense settling time from rising edge of INPUT VIN = 0 V to 5 V; VSEn = 5 V; RSENSE = 1 kΩ; RL = 5.2 Ω ΔtDSENSE2H Current sense settling time from rising edge of IOUT (dynamic response to a step change of IOUT) VIN = 5 V; VSEn = 5 V; RSENSE = 1 kΩ; RL = 5.2 Ω tDSENSE2L Current sense turn-off delay time from falling edge of INPUT VIN = 5 V to 0 V; VSEn = 5 V; RSENSE = 1 kΩ; RL = 5.2 Ω tDSENSE2H Min. Typ. Max. Unit 100 250 µs 100 µs 250 µs 50 Notes: (1)Parameter (2)All specified by design; not subject to production test. values refer to VCC = 13 V; Tj = 25 °C, unless otherwise specified. Figure 8: Bulb Mode - IOUT/ISENSE versus IOUT DocID027406 Rev 4 19/50 Electrical specification VNQ7040AY Figure 9: Bulb Mode - current sense precision vs. IOUT 65.0 60.0 55.0 50.0 45.0 40.0 35.0 % 30.0 25.0 20.0 15.0 10.0 5.0 0.0 Current sense uncalibrated precision Current sense calibrated precision 0 1 2 3 4 5 6 7 IOUT [A] 2.3.3 Electrical characteristics curves - Bulb Mode Figure 11: Standby current Figure 10: OFF-state output current ISTBY [µA] Iloff [nA] 1 1000 0.9 900 0.8 800 Vcc = 13V 0.7 700 0.6 Off State Vcc = 13V Vin = Vout = 0 600 500 0.5 400 0.4 300 0.3 200 0.2 100 0.1 0 0 -100 -50 -25 0 25 50 75 100 125 150 175 -25 0 25 50 T [°C] T [°C] 20/50 -50 DocID027406 Rev 4 75 100 125 150 175 VNQ7040AY Electrical specification Figure 12: IGND(ON) vs. Iout Figure 13: Logic Input high level voltage ViH, VFRH, VSELH, VSEnH [V] IGND(ON) [mA] 12.0 2 1.8 10.0 1.6 1.4 8.0 1.2 Vcc = 13V Iout0 = Iout1 = 2.5A 6.0 1 0.8 4.0 0.6 0.4 2.0 0.2 0 0.0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 T [°C] T [°C] Figure 14: Logic Input low level voltage Figure 15: High level logic input current VilL VFRL, VSELL, VSEnL [V] IiH, IFRH, ISELH, ISEnH [µA] 2 4 1.8 3.5 1.6 3 1.4 2.5 1.2 1 2 0.8 1.5 0.6 1 0.4 0.5 0.2 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 T [°C] 50 75 100 125 150 175 T [°C] Figure 16: Low level logic input current Figure 17: Logic Input hysteresis voltage Vi(hyst), VFR(hyst), VSEL(hyst), VSEn(hyst) [V] IiL, IFRL, ISELL, ISEnL [µA] 1 3.5 0.9 3 0.8 2.5 0.7 0.6 2 0.5 1.5 0.4 0.3 1 0.2 0.5 0.1 0 0 -50 -25 0 25 50 75 100 125 150 175 T [°C] -50 -25 0 25 50 75 100 125 150 175 T [°C] DocID027406 Rev 4 21/50 Electrical specification VNQ7040AY Figure 18: FaultRST Input clamp voltage Figure 19: Undervoltage shutdown VUSD [V] VFRCL [V] 8 8 7 7 Iin = 1mA 6 6 5 5 4 4 3 3 2 2 1 Iin = -1mA 1 0 0 -1 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 Figure 20: On-state resistance vs. Tcase Ron [mOhm] 175 Figure 21: On-state resistance vs. VCC Ron [mOhm] 100 80 90 70 80 T = 150 °C 60 70 T = 125 °C 50 Iout = 2.5A Vcc = 13V 60 50 40 T = 25 °C 40 30 T = -40 °C 30 20 20 10 10 0 0 -50 -25 0 25 50 75 100 125 150 175 0 5 10 15 T [°C] 20 25 30 35 40 Vcc [V] Figure 22: Turn-on voltage slope Figure 23: Turn-off voltage slope (dVout/dt)Off [V/µs] (dVout/dt)On [V/µs] 1 1 0.9 0.9 0.8 0.8 Vcc = 13V Rl = 5.2Ω 0.7 Vcc = 13V Rl = 5.2Ω 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 T [°C] T [°C] 22/50 150 T [°C] T [°C] DocID027406 Rev 4 100 125 150 175 VNQ7040AY Electrical specification Figure 24: Won vs. Tcase Figure 25: Woff vs. Tcase Won [mJ] Woff [mJ] 1 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 T [°C] 75 100 125 150 175 T [°C] Figure 27: OFF-state open-load voltage detection threshold Figure 26: ILIMH vs. Tcase Ilimh [A] VOL [V] 40 4 35 3.5 3 30 Vcc = 13V 2.5 25 2 20 1.5 15 1 0.5 10 -50 -25 0 25 50 75 100 125 150 175 0 -50 T [°C] -25 0 25 50 75 100 125 150 175 T [°C] Figure 28: Vsense clamp vs. Tcase Figure 29: Vsenseh vs. Tcase VSENSEH [V] VSENSE_CL [V] 10 10 9 9 8 8 7 Iin = 1mA 7 6 6 5 5 4 4 3 3 2 2 1 Iin = -1mA 1 0 0 -1 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 175 T [°C] T [°C] DocID027406 Rev 4 23/50 Electrical specification 2.3.4 VNQ7040AY LED Mode (Channel 0 and 1) Table 12: Switching in LED Mode VCC = 13 V; -40 °C < Tj < 150 °C, unless otherwise specified Symbol Test conditions Parameter Min. Typ. Max. 10 65 145 Unit td(on)_0,1_LED(1) Turn-on delay time at Tj = 25 °C RL = 22.8 Ω (1) Turn-off delay time at Tj = 25 °C RL = 22.8 Ω 10 40 100 (dVOUT/dt)on_0,1_LED(1) Turn-on voltage slope at Tj = 25 °C RL = 22.8 Ω 0.2 0.5 0.8 (dVOUT/dt)off_0,1_LED(1) Turn-off voltage slope at Tj = 25 °C RL = 22.8 Ω 0.1 0.5 0.7 WON_0,1_LED Switching energy losses at turn-on (twon) RL = 22.8 Ω — 0.04 0.1 (2) mJ WOFF_0,1_LED Switching energy losses at turn-off (twoff) RL = 22.8 Ω — 0.045 0.11(2) mJ Differential Pulse skew (tPHL tPLH) RL = 22.8 Ω -100 -25 25 µs td(off)_0,1_LED tSKEW_0,1_LED(1) µs V/µs Notes: (1)See Figure 4: "Switching times and Pulse skew" . (2)Parameter guaranteed by design and characterization, not subject to production test. Table 13: Power section in LED Mode 7 V < VCC < 28 V; -40 °C < Tj < 150 °C, unless otherwise specified Symbol Parameter Test conditions Min. Max. Unit IOUT = 0.57 A; Tj = 150°C 280 mΩ IOUT = 0.57 A; VCC = 5 V; Tj = 25°C 210 IOUT = 0.57 A; Tj = 25°C On-state resistance in LED Mode Ch0 and Ch1 RON_0,1_LED 140 DC short circuit current in Bulb Mode Ch0 and Ch1 VCC = 13 V ILIML_0,1_LED Short circuit current during thermal cycling in Bulb Mode Ch0 and Ch1 VCC = 13 V; TR < Tj < TTSD 2 VON_0,1_LED Output voltage drop limitation in LED Mode Ch0 and Ch1 IOUT = 0.07 A 20 ILIMH_0,1_LED(1) 4 V < VCC < 18 V 5.5 8 (2) 11 A Notes: 24/50 Typ. (1)Parameter guaranteed by an indirect test sequence. (2)Parameter guaranteed by design and characterization; not subject to production test. DocID027406 Rev 4 mV VNQ7040AY Electrical specification Table 14: MultiSense in LED Mode 7 V < VCC < 18 V; -40 °C < Tj < 150 °C Symbol Parameter Test conditions Min. IOUT/ISENSE IOUT = 0.01 A; VSENSE = 0.5 V; VSEn = 5 V 120 Current sense ratio drift at calibration point Ical = 17.5 mA; IOUT = 10 mA to 25 mA; VSENSE = 0.5 V; VSEn = 5 V -30 IOUT/ISENSE IOUT = 0.025 A; VSENSE = 0.5 V; VSEn = 5 V 150 Current sense ratio drift IOUT = 0.025 A; VSENSE = 0.5 V; VSEn = 5 V -25 K0_CH0,1_L IOUT/ISENSE IOUT = 0.15 A; VSENSE = 4 V; VSEn = 5 V 240 dK0/K0(1)(2) Current sense ratio drift IOUT = 0.15 A; VSENSE = 4 V; VSEn = 5 V -15 K1_CH0,1_L IOUT/ISENSE IOUT = 0.7 A; VSENSE = 4 V; VSEn = 5 V 300 dK1/K1(1)(2) Current sense ratio drift IOUT = 0.7 A; VSENSE = 4 V; VSEn = 5 V -8 KOL dKcal/Kcal(1)(2) KLED dKLED/KLED(1)(2) Typ. 380 Max. Unit 30 % 610 25 405 570 15 380 % % 460 8 % MultiSense timings (Current Sense mode - see Figure 5: "MultiSense timings (current sense mode)") tDSENSE1H Current sense settling time from rising edge of SEn VIN = 5 V; VSEn = 0 V to 5 V; RSENSE = 1 kΩ; RL = 22.8 Ω tDSENSE1L Current sense disable delay time from falling edge of SEn VSEn = 5 V to 0 V; RSENSE = 1 kΩ; RL = 22.8 Ω tDSENSE2H Current sense settling time from rising edge of INPUT 60 µs 20 µs VIN = 0 V to 5 V; VSEn = 5 V; RSENSE = 1 kΩ; RL = 22.8 Ω 250 µs ΔtDSENSE2H Current sense settling time from rising edge of IOUT (dynamic response to a step change of IOUT) VIN = 5 V; VSEn = 5 V; RSENSE = 1 kΩ; RL = 22.8 Ω 100 µs tDSENSE2L Current sense turn-off delay time from falling edge of INPUT VIN = 5 V to 0 V; VSEn = 5 V; RSENSE = 1 kΩ; RL = 22.8 Ω 250 µs 5 50 Notes: DocID027406 Rev 4 25/50 Electrical specification (1)Parameter (2)All VNQ7040AY specified by design; not subject to production test. values refer to VCC = 13 V; Tj = 25 °C, unless otherwise specified. Figure 30: LED Mode - IOUT/ISENSE versus IOUT 800 Max_CH0,1 700 Min_CH0,1 600 Typ_CH0,1 K-factor 500 400 300 200 100 0 0 0.2 0.4 IOUT [A] 0.6 0.8 Figure 31: LED Mode - current sense precision vs. IOUT 65.0 60.0 55.0 50.0 45.0 40.0 35.0 % 30.0 25.0 20.0 15.0 10.0 5.0 0.0 Current sense uncalibrated precision Current sense calibrated precision 0 26/50 0.2 0.4 IOUT [A] DocID027406 Rev 4 0.6 0.8 VNQ7040AY 2.3.5 Electrical specification Electrical characteristics curves - LED mode Figure 32: On-state resistance vs. Tcase Ron [mOhm] Ron [mOhm] 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 Iout = 0.57A Vcc = 13V -50 Figure 33: On-state resistance vs. VCC -25 0 25 50 75 100 125 150 T = 150 °C T = 125 °C T = 25 °C T = -40 °C 0 175 5 10 15 20 25 30 35 40 Vcc [V] T [°C] Figure 34: Turn-on voltage slope Figure 35: Turn-off voltage slope (dVout/dt)On [V/µs] (dVout/dt)Off [V/µs] 1 1 0.9 0.9 0.8 0.8 Vcc = 13V Rl = 22.8Ω 0.7 Vcc = 13V Rl = 22.8Ω 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 T [°C] 75 100 125 150 175 150 175 T [°C] Figure 36: Won vs. Tcase Figure 37: Woff vs. Tcase Woff [mJ] Won [mJ] 1 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 -50 -25 0 25 50 75 100 125 150 175 T [°C] -50 -25 0 25 50 75 100 125 T [°C] DocID027406 Rev 4 27/50 Electrical specification VNQ7040AY Figure 38: ILIMH vs. Tcase Ilimh [A] 20 15 Vcc = 13V 10 5 0 -50 -25 0 25 50 75 100 125 150 175 T [°C] 2.3.6 Truth tables Table 15: Truth table Mode Standby Conditions All logic inputs low Nominal load connected; Tj < 150°C Normal INX FR SEn SELX OUTX MultiSense L L L L L Hi-Z L X L See (1) H L H See (1) Outputs configured for auto-restart H H H See (1) Outputs configured for Latch-off L See (1) H See (1) Output cycles with temperature hysteresis L See (1) Output latches-off L L Hi-Z Hi-Z Re-start when VCC > VUSD + VUSDhyst (rising) H See (1) H See (1) < 0V See (1) Overload or short to GND causing: Tj > TTSD or ΔTj > ΔTj_SD L X H L H H Under-voltage VCC < VUSD (falling) X X OFF-state diagnostics Short to VCC L X Open load L X Negative output voltage Inductive loads turn off L X Overload See (1) See (1) X X See (1) See (1) Notes: (1)Refer 28/50 to Table 16: "MultiSense multiplexer addressing" DocID027406 Rev 4 Comments Low quiescent current consumption External pull-up VNQ7040AY Electrical specification Table 16: MultiSense multiplexer addressing SEn SEL2 SEL1 SEL0 MultiSense output MUX channel Normal mode Overload OFF-state diag. (1) Negative output L X X X Hi-Z H L L L Channel 0 diagnostic ISENSE = 1/K * IOUT0 VSENSE = VSENSEH VSENSE = VSENSEH Hi-Z H L L H Channel 1 diagnostic ISENSE = 1/K * IOUT1 VSENSE = VSENSEH VSENSE = VSENSEH Hi-Z H L H L Channel 2 diagnostic ISENSE = 1/K * IOUT2 VSENSE = VSENSEH VSENSE = VSENSEH Hi-Z H L H H Channel 3 diagnostic ISENSE = 1/K * IOUT3 VSENSE = VSENSEH VSENSE = VSENSEH Hi-Z H H L L TCHIP Sense VSENSE = VSENSE_TC H H L H VCC Sense VSENSE = VSENSE_VCC H H H L TCHIP Sense VSENSE = VSENSE_TC H H H H VCC Sense VSENSE = VSENSE_VCC Notes: (1)In case the output channel corresponding to the selected MUX channel is latched off while the relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic. Example 1: FR = 1; IN0 = 0; OUT0 = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0. Example 2: FR = 1; IN0 = 0; OUT0 = latched, VOUT0 > VOL; MUX channel = channel 0 diagnostic; Mutisense = VSENSEH Table 17: Bulb/LED Mode Configuration Configuration LED1 LED0 Channel 1 Channel 0 L L Bulb Bulb L H Bulb LED H L LED Bulb H H LED LED DocID027406 Rev 4 29/50 Protections VNQ7040AY 3 Protections 3.1 Power limitation The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔTj through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔTj exceeds the safety level of ΔT j_SD. According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue. 3.2 Thermal shutdown In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T R (FaultRST = Low) or remains off (FaultRST = High). 3.3 Current limitation The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, ILIMH, by operating the output power MOSFET in the active region. 3.4 Negative voltage clamp In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, VDEMAG, allowing the inductor energy to be dissipated without damaging the device. 30/50 DocID027406 Rev 4 VNQ7040AY 4 Application information Application information Figure 39: Application diagram 4.1 GND protection network against reverse battery Figure 40: Simplified internal structure Vcc 5V Rprot INPUT Rprot SEn Rprot FaultRST MCU Dld OUTPUT Rprot Multisense GND Rsense GND The device does not need any external components to protect the internal logic in case of a reverse battery condition. The protection is provided by internal structures. DocID027406 Rev 4 31/50 Application information VNQ7040AY In addition, due to the fact that the output MOSFET turns on even in reverse battery mode, thus providing the same low ohmic path as in regular operating conditions, no additional power dissipation has to be considered. 4.2 Immunity against transient electrical disturbances The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010. The related function performance status classification is shown in Table 18: "ISO 7637-2 electrical transient conduction along supply line". Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through VCC and GND terminals. Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: “The function does not perform as designed during the test but returns automatically to normal operation after the test”. Table 18: ISO 7637-2 - electrical transient conduction along supply line Test Pulse 2011(E) Test pulse severity level with Status II functional performance status Minimum number of pulses or test time Burst cycle / pulse repetition time Pulse duration and pulse generator internal impedance Level US(1) 1 III -112 V 500 pulses 0.5 s 2a(3) III +55 V 500 pulses 0.2 s 5s 50 µs, 2 Ω 3a IV -220 V 1h 90 ms 100 ms 0.1 µs, 50 Ω 3b IV +150 V 1h 90 ms 100 ms 0.1 µs, 50 Ω 4 (2) IV -7 V 1 pulse min max 2 ms, 10 Ω 100 ms, 0.01 Ω Load dump according to ISO 16750-2:2010 Test B(3) 40 V 5 pulse 1 min 400 ms, 2 Ω Notes: (1)U S 4.3 is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6. (2)Test pulse from ISO 7637-2:2004(E). (3)With 40 V external suppressor referred to ground (-40°C < Tj < 150 °C). MCU I/Os protection If a ground protection network is used and negative transients are present on the V CC line, the control pins will be pulled negative. ST suggests to insert a resistor (R prot) in line both to prevent the microcontroller I/O pins from latching-up and to protect the HSD inputs. The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os. 32/50 DocID027406 Rev 4 VNQ7040AY Application information Equation VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC - VIH - VGND) / IIHmax Calculation example: For VCCpeak = -150 V; Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V 7.5 kΩ ≤ Rprot ≤ 140 kΩ. Recommended values: Rprot = 15 kΩ 4.4 Multisense - analog current sense Diagnostic information on device and load status are provided by an analog output pin (MultiSense) delivering the following signals:    Current monitor: current mirror of channel output current VCC monitor: voltage propotional to VCC TCASE: voltage propotional to chip temperature Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in MultiSense multiplexer addressing Table. Figure 41: MultiSense and diagnostic – block diagram DocID027406 Rev 4 33/50 Application information 4.4.1 VNQ7040AY Principle of Multisense signal generation Figure 42: MultiSense block diagram Current monitor When current mode is selected via MultiSense, this output is capable of providing:   Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to a known ratio named K Diagnostics flag in fault conditions delivering fixed voltage V SENSEH The current delivered by the current sense circuit, ISENSE, can be easily converted to a voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load monitoring and abnormal condition detection. Normal operation (channel ON, no fault, SEn active) While device is operating in normal conditions (no fault intervention), VSENSE calculation can be done using simple equations Current provided by MultiSense output: ISENSE = IOUT/K Voltage on RSENSE: VSENSE = RSENSE · ISENSE = RSENSE · IOUT/K Where:   34/50 VSENSE is the voltage measurable on RSENSE resistor ISENSE is the current provided from MultiSense pin in current output mode DocID027406 Rev 4 VNQ7040AY   Application information IOUT is the current flowing through output K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying the ratio between IOUT and ISENSE. Failure flag indication In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin which is switched to a “current limited” voltage source, VSENSEH. In any case, the current sourced by the MultiSense in this condition is limited to I SENSEH. The typical behavior in case of overload or hard short circuit is shown in Waveforms section. Figure 43: Analogue HSD – open-load detection in off-state DocID027406 Rev 4 35/50 Application information VNQ7040AY Figure 44: Open-load / short to VCC condition VIN VSENSE Pull-up connected VSENSEH Open-load VSENSE = 0 VSENSE Pull-up disconnected tDSTKON Short to VCC VSENSEH Table 19: MultiSense pin levels in off-state Condition Output VOUT > VOL Open-load VOUT < VOL 4.4.2 Short to VCC VOUT > VOL Nominal VOUT < VOL MultiSense SEn Hi-Z L VSENSEH H Hi-Z L 0 H Hi-Z L VSENSEH H Hi-Z L 0 H TCASE and VCC monitor In this case, MultiSense output operates in voltage mode and output level is referred to device GND. Care must be taken in case a GND network protection is used, because a voltage shift is generated between the device GND and the microcontroller input GND reference. Figure 45: "GND voltage shift" shows the link between VMEASURED and the real VSENSE signal. 36/50 DocID027406 Rev 4 VNQ7040AY Application information Figure 45: GND voltage shift VCC monitor Battery monitoring channel provides VSENSE = VCC / 8. Case temperature monitor Case temperature monitor is capable of providing information about the actual device temperature. Since a diode is used for temperature sensing, the following equation describes the link between temperature and output VSENSE level: VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0) where dVSENSE_TC / dT ~ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C)). 4.4.3 Short to VCC and OFF-state open-load detection Short to VCC A short circuit between VCC and output is indicated by the relevant current sense pin set to VSENSEH during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit. OFF-state open-load with external circuitry Detection of an open-load in off mode requires an external pull-up resistor RPU connecting the output to a positive supply voltage VPU. It is preferable that VPU is switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected. RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following equation: Equation DocID027406 Rev 4 37/50 Maximum demagnetization energy (VCC = 16 V) 5 VNQ7040AY Maximum demagnetization energy (VCC = 16 V) Figure 46: Maximum turn off current versus inductance 100 I (A) 10 1 VNQ7040AY - Single Pulse Repetitive pulse Tjstart=100°C Repetitive pulse Tjstart=125°C 0.1 0.1 1 10 L (mH) 38/50 DocID027406 Rev 4 100 1000 VNQ7040AY Package and PCB thermal data 6 Package and PCB thermal data 6.1 PowerSSO-36 thermal data Figure 47: PowerSSO-36 PC board DocID027406 Rev 4 39/50 Package and PCB thermal data VNQ7040AY Table 20: PCB properties Dimension Value Board finish thickness 1.6 mm +/- 10% Board dimension 129 mm x 60 mm Board Material FR4 Cu thickness (outer layers) 0.070 mm Cu thickness (inner layers) 0.035 mm Thermal vias separation 1.2 mm Thermal via diameter 0.3 mm +/- 0.08 mm Cu thickness on vias 0.025 mm Footprint dimension 4.1 mm x 6.5 mm Figure 48: Rthj-amb vs PCB copper area in open box free air condition RTHjamb 70 RTHjamb 65 60 55 50 45 40 35 30 0 40/50 2 4 DocID027406 Rev 4 6 8 10 VNQ7040AY Package and PCB thermal data Figure 49: PowerSSO-36 thermal impedance junction ambient ZTH (°C/W) 100 Cu=foot print Cu=2 cm2 Cu=8 cm2 10 4Layer 1 0.1 0.0001 0.001 0.01 0.1 1 10 100 1000 Time (s) Figure 50: Thermal fitting model of a HSD in PowerSSO-36 DocID027406 Rev 4 41/50 Package and PCB thermal data VNQ7040AY Table 21: Thermal parameters 42/50 Area/island (cm2) FP R1 = R7 = R9 = R11 (°C/W) 1.8 R2 = R8 = R10 = R12 (°C/W) 1.7 R3 (°C/W) 3.5 2 8 4L 3.5 3.5 2 R4 (°C/W) 8 6 6 4 R5 (°C/W) 20 14 10 2 R6 (°C/W) 30 26 15 7 C1 = C7 = C9 = C11 (W·s/°C) 0.0005 C2 = C8 = C10 = C12 (W·s/°C) 0.01 C3 (W·s/°C) 0.1 0.1 0.1 0.1 C4 (W·s/°C) 0.5 0.8 0.8 0.8 C5 (W·s/°C) 1 2 3 10 C6 (W·s/°C) 3 5 9 18 DocID027406 Rev 4 VNQ7040AY 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK ® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.1 PowerSSO-36 package information Figure 51: PowerSSO-36 package outline BOTTOM VIEW TOP VIEW SECTION A-A SECTION B-B GAPG2508150825CF T Table 22: PowerSSO-36 mechanical data Dimensions Ref. Millimeters Min. Typ. Max. Θ 0° 8° Θ1 5° 10° Θ2 0° A 2.15 2.45 A1 0.00 0.10 DocID027406 Rev 4 43/50 Package information VNQ7040AY Dimensions Ref. Millimeters Min. A2 2.15 b 0.18 b1 0.13 c 0.23 c1 0.20 D D1 Typ. 2.35 0.32 0.25 0.20 0.30 10.30 BSC 6.90 7.50 3.65 D3 4.30 e 0.50 BSC E 10.30 BSC E1 7.50 BSC 4.30 5.20 E3 2.30 E4 2.90 G1 1.20 G2 1.00 G3 0.80 h 0.30 L 0.55 0.40 0.70 L1 1.40 REF L2 0.25 BSC N 36 R 0.30 R1 0.20 S 0.25 Tolerance of form and position 44/50 0.30 0.32 D2 E2 Max. aaa 0.20 bbb 0.20 ccc 0.10 ddd 0.20 eee 0.10 fff 0.20 ggg 0.15 DocID027406 Rev 4 0.85 VNQ7040AY 7.2 Package information PowerSSO-36 packing information Figure 52: PowerSSO-36 reel 13" Table 23: Reel dimensions Description Value(1) Base quantity 1000 Bulk quantity 1000 A (max) 330 B (min) 1.5 C (± 0.2) 13 F 20.2 G (+2 / -0) 24.4 N (min) 100 T (max) 30.4 Notes: (1)All dimensions are in mm. DocID027406 Rev 4 45/50 Package information VNQ7040AY Figure 53: PowerSSO-36 carrier tape Table 24: PowerSSO-36 carrier tape dimensions Description Value(1) A0 10.90 ± 0.10 B0 10.80 ± 0.10 K0 2.75 ± 0.10 K1 2.45 ± 0.10 D0 1.50 (+0.10 / -0) D1 1.60 ± 0.10 P0 4.00 ± 0.10 P1 12.00 ± 0.10 P2 2.00 ± 0.10 P10 40.00 ± 0.20 E 1.75 ± 0.10 F 11.50 ± 0.10 W 24.00 ± 0.30 T 0.30 ± 0.05 Notes: (1)All 46/50 dimensions are in mm. DocID027406 Rev 4 VNQ7040AY Package information Figure 54: PowerSSO-36 schematic drawing of leader and trailer tape 7.3 PowerSSO-36 marking information Figure 55: PowerSSO-36 marking information Engineering Samples: Parts marked as “&” are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. Commercial Samples: fully qualified parts from ST standard production with no usage restrictions. DocID027406 Rev 4 47/50 Order codes 8 VNQ7040AY Order codes Table 25: Device summary Order codes Package Tape and reel PowerSSO-36 48/50 VNQ7040AYTR DocID027406 Rev 4 VNQ7040AY 9 Revision history Revision history Table 26: Document revision history Date Revision Changes 21-Oct-2015 1 Initial release. 02-May-2016 2 Added “AEC-Q100 qualified” in Features Upated Table 4: "Thermal data" Upated Table 8: "MultiSense" Updated Section 6: "Package and PCB thermal data" 15-Jul-2016 3 Updated Figure 52: "PowerSSO-36 reel 13""and Table 23: "Reel dimensions" 21-Dec-2017 4 Updated Table 10: "Switching in Bulb Mode" and Table 12: "Switching in LED Mode" DocID027406 Rev 4 49/50 VNQ7040AY IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved 50/50 DocID027406 Rev 4
VNQ7040AYTR 价格&库存

很抱歉,暂时无法提供与“VNQ7040AYTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
VNQ7040AYTR
    •  国内价格
    • 1000+19.02100

    库存:2000