IRF630
POWER MOSFET
GENERAL DESCRIPTION
This Power MOSFET is designed for low voltage, high speed power switching applications such as switching regulators, converters, solenoid and relay drivers.
FEATURES
Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching Ease of Paralleling Simple Drive Requirements
PIN CONFIGURATION
TO-220
SYMBOL
D
Top View
G ATE
SO URCE
DRAIN
G
S
1 2 3
N-Channel MOSFET
ORDERING INFORMATION
Part Number Package .....................IRF630................................................TO-220
ABSOLUTE MAXIMUM RATINGS
Rating Drain to Current Continuous Pulsed (Note 1) Gate-to-Source Voltage Total Power Dissipation Derate above 25 Single Pulse Avalanche Energy (Note 2) Avalanche Current (Note 1) Repetitive Avalanche Energy (Note 1) Peak Diode Recovery dv/dt (Note 3) Operating and Storage Temperature Range Thermal Resistance Junction to Case Junction to Ambient Maximum Lead Temperature for Soldering Purposes, 1/8” from case for 10 seconds EAS IAR EAR dv/dt TJ, TSTG
JC JA
Symbol ID IDM VGS PD
Value 9.0 36 ±20 74 0.59 9.0 7.4 5.0 -55 to 150 1.70 62 300
Unit A V W W/ A mJ V/ns /W
Continue
250................mJ
TL
Page 1
IRF630
POWER MOSFET
ELECTRICAL CHARACTERISTICS
Unless otherwise specified, TJ = 25 .
CIRF630 Characteristic Drain-Source Breakdown Voltage (VGS = 0 V, ID = 250 A) Drain-Source Leakage Current (VDS = 200V, VGS = 0 V) (VDS = 160V, VGS = 0 V, TJ = 125 ) Gate-Source Leakage Current-Forward (Vgsf = 20 V, VDS = 0 V) Gate-Source Leakage Current-Reverse (Vgsr = -20 V, VDS = 0 V) Gate Threshold Voltage (VDS = VGS, ID = 250 A) Static Drain-Source On-Resistance (VGS = 10 V, ID = 5.4A) (Note 4) Forward Transconductance (VDS = 50V, ID = 5.4 A) (Note 4) Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge (VDS = 160V, ID = 5.9A VGS = 10 V) (Note 4) (VDD = 100 V, ID = 5.9 A, RG = 12 , RD = 16 ) (Note 4) (VDS = 25 V, VGS = 0 V, f = 1.0 MHz) Symbol V(BR)DSS IDSS 25 250 IGSSF IGSSR VGS(th) RDS(on) gFS Ciss Coss Crss td(on) tr td(off) tf Qg Qgs Qgd LD LS 4.5 7.5 3.8 800 240 76 9.4 28 39 20 43 7.0 23 2.0 100 -100 4.0 0.40 mhos pF pF pF ns ns ns ns nC nC nC nH nH nA nA V Min 200 Typ Max Units V A
Internal Drain Inductance (Measured from the drain lead 0.25” from package to center of die) Internal Drain Inductance (Measured from the source lead 0.25” from package to source bond pad) SOURCE-DRAIN DIODE CHARACTERISTICS Reverse Recovery Charge Forward Turn-On Time Reverse Recovery Time Diode Forward Voltage IF = 5.9A, di/dt = 100A/µs , TJ = 25 (Note 4) IS = 9.0A, VGS = 0 V, TJ = 25 (Note 4)
Qrr ton trr VSD
1.1 ** 170
2.2 340 2.0
µC ns V
Note (1) Repetitive rating; pulse width limited by max. junction temperature (2) VDD = 50V, starting TJ = 25 , L=4.6mH, RG = 25 , IAS = 9.0A (3) ISD 9.0A, di/dt 120A/µs, VDD V(BR)DSS, TJ 150 (4) Pulse Test: Pulse Width 300µs, Duty Cycle 2% ** Negligible, Dominated by circuit inductance
Page 2
IRF630
POWER MOSFET
TYPICAL ELECTRICAL CHARACTERISTICS
100
I D , Drain-to-Source Current (A)
10
I D , Drain-to-Source Current (A)
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
100
10
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
1
4.5V
4.5V
1
0.1
0.01 0.1
20µs PULSE WIDTH TJ = 25 °C
1 10
100
0.1 0.1
20µs PULSE WIDTH TJ = 175°C
1 10
100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
RDS(on) , Drain-to-Source On Resistance (Normalized)
3.5 3.0 2.5 2.0 1.5 1.0 0.5
ID = 9.3A
I D , Drain-to-Source Current (A)
10
TJ = 175 ° C
1
TJ = 25 ° C
0.1 4.0
V DS = 50V 20µs PULSE WIDTH 8.0 9.0 5.0 6.0 7.0 10.0
0.0 -60 -40 -20 0
VGS = 10V
20 40 60 80 100 120 140 160 180
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature( ° C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
Page 3
IRF630
POWER MOSFET
1200
VGS , Gate-to-Source Voltage (V)
VGS = 0V, f = 1 MHZ Ciss = C + C , C SHORTED gs gd ds Crss = C gd Coss = C + C ds gd
16
ID = 5.4A
1000
12
V DS= 160V V DS= 100V V DS= 40V
C, Capacitance(pF)
800
Ciss
600
8
Coss
400
4
200
Crss
0 1 10 100 1000
0 0 5 10 15 20 25 30
VDS, Drain-to-Source Voltage (V)
QG , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
100
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY R
DS(on)
10
ID , Drain Current (A)
100
TJ = 175 ° C TJ = 25 ° C
10us
10
100us 1ms
1
1
0.1 0.2
V GS = 0 V
0.4 0.6 0.8 1.0 1.2
0.1
TC = 25 °C TJ = 175 °C Single Pulse
1 10 100
10ms
1000
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
Page 4
IRF630
POWER MOSFET
RD
12 12
VDS VGS RG
D.U.T.
+ VDD
ID , Drain Current (A) ID , Drain Current (A)
9
9
-
10V
6
Pulse Width ≤ 1 µ s Duty Factor ≤ 0.1 %
6
Fig 10a. Switching Time Test Circuit
3
VDS 90%
3
0
0 25 25
50 50
75
100
125
150
125 150 TC 75 , Case100 Temperature ( ° C) TC , Case Temperature ( ° C)
175 175
10% VGS
td(on) tr t d(off) tf
Fig 9. Maximum Drain Current Vs. Case Temperature
10
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50 0.20 0.10 0.05
0.1
0.02 0.01
SINGLE PULSE (THERMAL RESPONSE)
0.01 0.00001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x ZthJC + TC 0.1 0.0001 0.001 0.01
PDM t1 t2 1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Page 5
IRF630
POWER MOSFET
EAS , Single Pulse Avalanche Energy (mJ)
200
15V
VDS
L
D R IV E R
150
ID 2.2A 3.8A BOTTOM 5.4A TOP
RG
20V
D .U .T
IA S tp
+ - VD D
A
100
0 .0 1 Ω
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D S S tp
50
0 25 50 75 100 125 150 175
Starting TJ , Junction Temperature ( ° C)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50KΩ
QG
12V
.2µF
.3µF
10 V
QGS VG QGD
VGS
3mA
D.U.T.
+ V - DS
IG
ID
Charge
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
Page 6