STC SIDAC Series
DO-15X
DO-214 Surface Mount TO-92 Type 70 TO-202
E9
General Description
The sidac is a silicon bilateral voltage triggered switch with greater power-handling capabilities than standard diacs. Upon application of a voltage exceeding the sidac breakover voltage point, the sidac switches on through a negative resistance region to a low on-state voltage. Conduction continues until the current is interrupted or drops below the minimum holding current of the device. Suntac’s sidacs feature glass-passivated junctions to ensure a rugged and dependable device capable of withstanding harsh environments. Variations of devices covered in this data sheet are available for custom design applications. Consult the factory for more information.
Applications
• • • • • • • • • High-voltage lamp ignitors Natural gas ignitors Gas oil ignitors High-voltage power supplies Xenon ignitors Overvoltage protector Pulse generators Fluorescent lighting ignitors HID lighting ignitors
Features
• • • AC circuit oriented Glass-passivated junctions High surge current capability
1
Sidac
Data Sheets
Part No.
(10)
Do not use tab
IT(RMS)
(6) (7) (8)
VDRM
VBO
(1)
IDRM
IBO
(2)
IH
(3) (4)
Type
Pin 1
Pin 3
TO-92
DO-15X
Pin 2 Do not use
DO-214 Amps MAX 1 1 1 1 1 1 1 1 1 1 1 1 Volts MIN ±70 ±90 ±90 ±90 ±90 ±90 ±90 ±180 ±180 ±190 ±200 ±200 MIN 79 95 104 110 120 130 140 190 205 220 240 270 Volts MAX 97 113 118 125 138 146 170 215 230 250 280 330 µAmps MAX 5 5 5 5 5 5 5 5 5 5 5 5 µAmps MAX 10 10 10 10 10 10 10 10 10 10 10 10 mAmps TYP 60 60 60 60 60 60 60 60 60 60 60 60 MAX 150 150 150 150 150 150 150 150 150 150 150 150
TO-202 See “Package Dimensions” section for variations. (9)
SDB0900E70 SDB1050E70
SDB1100E70 SDB1200E70 SDB1300E70 SDB1400E70
SDB1500E70 SDB2000E70 SDB2200E70
SDB2400E70 SDB2500E70
SDB0900G SDB1050G SDB1100G SDB1200G SDB1300G SDB1400G SDB1500G SDB2000G SDB2200G SDB2400G SDB2500G SDB2000F1 SDB2200F1 SDB2400F1 SDB2500F1 SDB3000F1
SDB0900S SDB1050S SDB1100S SDB1200S SDB1300S SDB1400S SDB1500S SDB2000S SDB2200S SDB2400S SDB2500S
Specific Test Conditions
di/dt — Critical rate-of-rise of on-state current dv/dt — Critical rate-of-rise of off-state voltage at rated VDRM; TJ 100 °C IBO — Breakover current 50/60 Hz sine wave IDRM — Repetitive peak off-state current 50/60 Hz sine wave; V = VDRM IH — Dynamic holding current 50/60 Hz sine wave; R = 100 IT(RMS) — On-state RMS current TJ 125 °C 50/60 Hz sine wave ITSM — Peak one-cycle surge current 50/60 Hz sine wave (nonrepetitive) RS — Switching resistance R
Electrical Specification Notes
(1) (2) (3) (4) (5) (6) See 4 for VBO change versus junction temperature. See 4 for IBO versus junction temperature. See 3 for IH versus case temperature. See 5 for test circuit. See 3 for more than one full cycle rating. TC 90 °C for TO-92 Sidac TC 105 °C for TO-202 Sidacs TL 100 °C for DO-15X TL 90 °C for DO-214 See 5 for clarification of sidac operation. For best sidac operation, the load impedance should be near or less than switching resistance. See package outlines for lead form configurations. When ordering special lead forming, add type number as suffix to part number.
S
V –V BO S = ------------------------------- 50/60 Hz sine wave I – I BO S
(7) (8) (9)
VBO — Breakover voltage 50/60 Hz sine wave VDRM — Repetitive peak off-state voltage VTM — Peak on-state voltage; IT = 1 A
(10) Do not use electrically connected mounting tab or center lead.
+I
General Notes
• • • All measurements are made at 60 Hz with a resistive load at an ambient temperature of +25 °C unless otherwise specified. Storage temperature range (TS) is -65 °C to +150 °C. The case (TC) or lead (TL) temperature is measured as shown on the dimensional outline drawings in the “Package Dimensions” section of this catalog. Junction temperature range (TJ) is -40 °C to +125 °C. Lead solder temperature is a maximum of +230 °C for 10 s maximum; 1/16" (1.59 mm) from case.
RS = (VBO - VS)
IT
IH IS
RS
-V
IDRM
IBO
+V
• •
VT
VBO VS
VDRM
(IS - IBO)
-I
V-I Characteristics
2
Data Sheets
Sidac
LK
VTM
ITSM
(5)
RS
(8)
dv/dt
di/dt
Volts MAX Package E 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 G 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3 3 3 3 3 F S 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 20 20 20 20 20 20 20 20 20 20 20 20
Amps 60 Hz 50 Hz 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 k MIN 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Volts/µSec MIN 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 Amps/µSec TYP 150 150 150 150 150 150 150 150 150 150 150 150
Thermal Resistance (Steady State) R JC [R JA] °C/W (TYPICAL) *
E Package G Package F Package S Package
IH IH(TC = 25 C) Ratio of
2.0
1.5
˚
1.0 .5 0
35 [95]
18 [75]
7 [45] **
30 *** [85]
* See Electrical Specification Note (6). ** R JA for TO-202 Type 23 and Type 41 is 70 °C/Watt. *** Mounted on 1 cm2 copper foil surface; two-ounce copper foil
-40
-15
+25
+65
+105
+125
Case Temperature (TC) – C
˚
100
Peak Surge (Non-repetitive) On-state Current [ITSM] – Amps
40
SUPPLY FREQUENCY: 60 Hz Sinusoidal LOAD: Resistive RMS ON-STATE CURRENT: IT RMS Maximum Rated Value at Specified Junction Temperature
Figure E9.2 Normalized DC Holding Current versus Case/Lead Temperature
20 10 8.0 6.0 4.0
Notes: 1) Blocking capability may be lost during and immediately following surge current interval. 2) Overload may not be repeated until junction temperature has returned to steady-state rated value.
2.0 1.0
1.0
10
100
1000
Surge Current Duration – Full Cycles
Figure E9.1 Peak Surge Current versus Surge Current Duration
3
Sidac
Data Sheets
600 400
di/dt Limit Line
No n-R ep
ITRM VBO Firing Current Waveform
Repetitive Peak On-state Current (ITRM) – Amps
200 100 80 60 40 20 10 8 6 4 2 1 0.8 0.6 4
2 x 10-3
f=
ea
ted
pe
titi
on
l/f
Fr eq ue nc
f=
10
f=
10
Hz
0H
yf
=5
Repetitive Peak Breakover Current (IBO) Multiplier
Re
to
9 8 7 6 5 4 3 2
z
Hz
V = VBO
1k
TJ = 125 ºC Max
Hz
f=
f=
f=2
5k
10
Hz
kH
z
1 20 30 40 50 60 70 80 90 100 110 120 130
0 kH
z
Junction Temperature (TJ) – C
˚
68
1 x 10-2
2
4
68
1 x 10-1
2
4 6 81
Pulse base width (to) – ms
Figure E9.3 Repetitive Peak On-state Current (I TRM) versus Pulse Width at Various Frequencies Figure E9.6 Normalized Repetitive Peak Breakover Current versus Junction Temperature
9
CURRENT WAVEFORM: Sinusoidal - 60 Hz LOAD: Resistive or Inductive FREE AIR RATING
140
Maximum Allowable Ambient Temperature (TA) – ˚C
TL = 25 ˚C 8
Positive or Negative Instantaneous On-state Current (iT) – Amps
120
7 6 5 4 3 2 1 0
TO-202 "F" Package TO-92, DO-214 and DO-15X "E", "S" and "G" Packages
100
TO -20 2
80
DO
-1
Ty pe 1
60
5X
TO
an
dT
-9
2
O-
an
20
40
d
2T
DO
yp
-2
e2
14
3a
nd
41
25 20 0 0.2 0.4 0.6 0.8 1.0
0
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2 2.4
2.6
2.8
3.0
3.2
3.4
3.6
RMS On-state Current [IT(RMS)] – Amps
Positive or Negative Instantaneous On-state Voltage (vT) – Volts
Figure E9.4 Maximum Allowable Ambient Temperature versus On-state Current
Figure E9.7 On-state Current versus On-state Voltage (Typical)
+4
K2xxxF1
2.2 2.0 Average On-state Power Dissipation [PD(AV)] – Watts 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2
+2
Percentage of VBO Change – %
CURRENT WAVEFORM: Sinusoidal LOAD: Resistive or Inductive CONDUCTION ANGLE: See Basic Sidac Cirucit
0 -2 -4 -6 -8 -10 -12 -40 -20 0
SDB2xxE SDB2xxG SDB2xxS SDB1xxE SDB1xxG SDB1xxS
TO-202 "F" Package
"E", "S" and "G" Packages TO-92, DO-214 and DO-15X
+25
+20
+40
+60
+80
+100
+120 +140
0
0.2
0.4
0.6
0.8
1.0
Junction Temperature (TJ) – ˚C
RMS On-state Current [IT(RMS)] – Amps
Figure E9.5 Normalized VBO Change versus Junction Temperature
Figure E9.8 Power Dissipation (Typical) versus On-state Current [Refer to 5 for Basic Sidac Circuit]
4
Data Sheets
Sidac
SCR
Sidac
100 2W
-
10 µF
+
Xenon Lamp
250 V K2200G
20 M
100-250 V ac 60 Hz
100-250 V ac 60 Hz
+ 10 µF - 450 V
120 V ac 60 Hz
4 kV Sidac 200400 V Trigger Transformer 20:1 0.01 µF 400 V
Figure E9.9 Comparison of Sidac versus SCR for Gas Ignitor Circuit
Figure E9.12 Xenon Lamp Flashing Circuit
Push to test
4.7 µF 10 µF 100 V
S1
4.7 k
Switch to test in each direction
-
+
-
50 V
+
½W
100-250 V ac 60 Hz
K1200E Sidac 200 V
100 Ω 1%
Device Under Test
+ 24 V ac 60 Hz
4.7 µF 100 V
1.2 µF
S1
Scope
IPK
Trace Stops
H.V. Ignitor
IH
Scope Indication
Figure E9.10 Circuit (Low Voltage Input) for Gas Ignition
Figure E9.13 Dynamic Holding Current Test Circuit for Sidacs
Ballast
Ballast
Sidac 3.3 k
0.47 µF 400 V Lamp
Sidac 7.5 k
0.22 µF Lamp
100-250 V ac 60 Hz
VBO
VBO VBO
IH
Load IH
120 V ac 60 Hz 16 mH
220 V ac 60 Hz
120-145 Conduction Angle
˚
IH
Load Current
120 V ac
220 V ac
Figure E9.11 Typical High Pressure Sodium Lamp Firing Circuit
Figure E9.14 Basic Sidac Circuit
5
Sidac
Data Sheets
(a) Circuit
VBO (b) Waveforms
R SIDAC VDC(IN) ≥ VB0 VC
t V C
C
IL
RL
I
L
Rmax ≤
VIN - VBO IBO
VIN - VTM IH (MIN)
t
Rmin ≥
Figure E9.15 Relaxation Oscillator Using a Sidac
VCE Monitor (See Note B) RBB1 = 150 Ω TIP-47 100 mH
Input Voltage 0V 5V Collector Current 0.63 A 0
tw ≈ 3 ms (See Note A) tw 100 ms
Input 50 Ω
2N6127 (or equivalent)
50 Ω
RBB2 = 100 Ω + VBB2 =0
+ VCC = 20 V RS = 0.1 Ω IC Monitor
Sidac VBO Collector Voltage 10 V VCE(sat)
VBB1 =10 V
-
Test Circuit
Voltage and Current Waveforms
Note A: Input pulse width is increased until ICM = 0.63 A. Note B: Sidac (or Diac or series of Diacs) chosen so that VBO is just below VCEO rating of transistor to be protected. The Sidac (or Diac) eliminates a reverse breakdown of the transistor in inductive switching circuits where otherwise the transistor could be destroyed.
Figure E9.16 Sidac Added to Protect Transistor for Typical Transistor Inductive Load Switching Requirements
6
很抱歉,暂时无法提供与“SDB2400G”相匹配的价格&库存,您可以联系我们找货
免费人工找货