Technical Specification
Brick
Half
48Vin 5.0Vout 45A
225 Watt, No Heatsink, Isolated DC/DC Converter
The PQ60050HPA45 PowerQor™ Peta converter is a next-generation, board-mountable, isolated, fixed switching frequency DC/DC converter that uses synchronous rectification to achieve extremely high conversion efficiency. The power dissipated by the converter is so low that a heatsink is not required, which saves cost, weight, height, and application effort. The Peta series converters offer industry leading output power for a standard “half-brick” module. In addition to typical single ouput voltage applications, the Peta units can also be used to provide a wide input range Intermediate Bus for IBA systems.
PQ60050HPA45 Module
Operational Features
• Ultra-high efficiency, 91.5% at full rated load • Delivers up to 225 Watts of output power (45A) with minimal derating - no heatsink required • Wide input voltage range: 35V – 75V, with 100V 100ms input voltage transient capability • Fixed frequency switching provides predictable EMI performance
Protection Features
• Input under-voltage lockout disables converter at low input voltage conditions • Output current limit and short circuit protection • Active back bias limit prevents damage to converter from external load induced pre-bias • Output over-voltage protection • Thermal shutdown
Mechanical Features
• Industry standard pin-out configuration • Industry standard size: 2.3” x 2.4” (58.4 x 61.0mm) • Total height only 0.43” (10.8mm), permits better airflow and smaller card pitch • Total weight: 2.7 oz. (75 grams)
Control Features
• On/Off control referenced to input side (positive and negative logic options are available) • Remote sense for the output voltage compensates for output distribution drops • Output voltage trim permits custom voltages and voltage margining
Safety Features
• 2000V, 30 MΩ input-to-output isolation • UL 60950 recognized (US & Canada), basic insulation rating • TUV certified to EN60950 • Meets 72/23/EEC and 93/68/EEC directives • Meets UL94V-0 flammability requirements
Product # PQ60050HPA45 Phone 1-888-567-9596 Doc.# 005-2HP650K Rev. C 4/16/04 Page 1
Technical Specification
Brick MECHANICAL DIAGRAM
2.30 0.19
(4.8)
Half
48Vin 5.0Vout 45A
1.90
(48.3)
(58.4)
0.50
(12.7)
0.400
(10.16)
0.400
(10.16)
0.700
(17.78)
1.400
(35.56)
Top View
1.000
(25.40)
2.40
(61.0)
1.400
(35.56)
Max. Height Bottom side Clearance
See Note 9
0.43
(10.8)
0.037+/-0.029
(0.94+/-0.74) Lowest Component Load Board
Side View
0.145
(3.68) See Note 3
NOTES
1) Pins 1-4, 6-8 are 0.040” (1.02mm) diameter. with 0.080” (2.03mm) diameter standoff shoulders. 2) Pins 5 and 9 are 0.080” (2.03 mm) diameter with 0.125” (3.18mm) diameter standoff shoulders. 3) Other pin extension lengths available. Recommended pin length is 0.03” (0.76mm) greater than the PCB thickness. 4) All Pins: Material - Copper Alloy Finish - Gold over Nickel plate 5) Undimensioned components are shown for visual reference only. 6) All dimensions in inches (mm) Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm) x.xxx +/-0.010 in. (x.xx +/-0.25mm) 7) Weight: 2.7 oz. (75 g) typical 8) Workmanship: Meets or exceeds IPC-A-610C Class II 9) UL/TUV standards require a clearance greater than 0.04”
(1.02mm) between input and output for Basic insulation. This issue should be considered if any copper traces are on the top side of the user’s board. Note that the ferrite cores are considered part of the input/primary circuit.
PIN DESIGNATIONS
Pin No. Name
1 2 4 5 6 7 8 9 Vin(+) ON/OFF Vin(-) Vout(-) SENSE(-) TRIM SENSE(+) Vout(+)
Function
Positive input voltage TTL input to turn converter on and off, referenced to Vin(-), with internal pull up. Negative input voltage Negative output voltage Return remote sense Output voltage trim Positive remote sense Positive output voltage
Product # PQ60050HPA45
Phone 1-888-567-9596
Doc.# 005-2HP650K Rev. C
4/16/04
Page 2
Technical Specification
Brick PQ60050HPA45 ELECTRICAL CHARACTERISTICS
Parameter
ABSOLUTE MAXIMUM RATINGS
Half
48Vin 5.0Vout 45A
TA=25°C, airflow rate=300 LFM, Vin=48Vdc unless otherwise noted; full operating temperature range is -40°C to +100°C ambient temperature with appropriate power derating. Specifications subject to change without notice.
Min. Typ. Max.
100 80 100 2000 100 125 18 48 33.3 31.0 2.3 100 2 350 5 200 1\3\6.4 47 4.95 5.00 75 34.4 32.4 2.4 7.1 120 5 0.04
Units
V V V V °C °C V V V V V A mA mA A 2s mV mA mA A µF\µH\µF µF V %\mV %\mV mV V mV mV A A V A mA µF dB mV mV µs
Notes & Conditions
continuous continuous 100ms transient, square wave Basic insulation level, Pollution degree 2
Input Voltage Non-Operating Operating Operating Transient Protection Isolation Voltage (input to output) Operating Temperature Storage Temperature Voltage at ON/OFF input pin Operating Input Voltage Range Input Under-Voltage Lockout Turn-On Voltage Threshold Turn-Off Voltage Threshold Lockout Voltage Hysteresis Maximum Input Current No-Load Input Current Disabled Input Current Inrush Current Transient Rating Response to Input Transient Input Reflected Ripple Current Input Terminal Ripple Current Recommended Input Fuse Input Filter Component Values (C1\L\C2) Recommended External Input Capacitance
-40 -55 -2 35 31.5 29.5 2.2
INPUT CHARACTERISTICS
100% Load, 35 Vin
20
1000V/ms input transient RMS thru 10µH inductor; Figs. 13 & 15 RMS; Figs. 13 & 14 fast blow external fuse recommended internal values, see Figure E Typical ESR 0.1-0.2Ω, see Figure 13 Factory pre-set with Sense(+), Sense(-) open
OUTPUT CHARACTERISTICS
Output Voltage Set Point Output Voltage Regulation Over Line Over Load Over Temperature Total Output Voltage Range Output Voltage Ripple and Noise1 Peak-to-Peak RMS Operating Output Current Range Output DC Current-Limit Inception Output DC Current-Limit Shutdown Voltage Back-Drive Current Limit while Enabled Back-Drive Current Limit while Disabled Maximum Output Capacitance Input Voltage Ripple Rejection Output Voltage during Load Current Transient For a Step Change in Output Current (0.1A/µs) For a Step Change in Output Current (5A/µs) Settling Time Turn-On Transient Turn-On Time Start-Up Inhibit Time Output Voltage Overshoot 100% Load 50% Load Semiconductor Junction Temperature Board Temperature Transformer Temperature Isolation Voltage (dielectric strength) Isolation Resistance Isolation Capacitance2
5.05
4.85
+0.05 \ 3 +0.1 \ 5 +0.1 \ 5 +0.2 \ 10 +15 +30 5.15 30 5 53 3.5 2.5 20 60 200 300 100 60 10 45 55 3.8 50 34,000
0 50 1.5 0
over sample, line, load, temperature & life 20MHz bandwidth; Fig. 13 & 16 Full Load, see Figures 13 & 16 Full Load, see Figures 13 & 16 Subject to thermal derating; Figs. 5-8 Output Voltage 10% Low; Fig. 17 Negative current drawn from output Negative current drawn from output 5.0Vout at 45A Resistive Load 120 Hz; Fig. 20 50% to 75% to 50% Iout max; Figure 11 50% to 75% to 50% Iout max; Figure 12 to within 1% Vout nom Full load, Vout=90% nom.; Figs. 9 & 10 -40°C to +125°C; Figure A 10,000 µF load capacitance, Iout = 0A Figures 1 - 4 Figures 1 - 4 Package rated to 150°C UL rated max operating temp 130°C See Figures 5 - 8 for derating curves
DYNAMIC CHARACTERISTICS
180
22 200 0 91.5 92.5
30 240
ms ms % % %
EFFICIENCY
TEMPERATURE LIMITS FOR POWER DERATING CURVES
125 125 125 2000 30 3300
°C °C °C V MΩ pF
ISOLATION CHARACTERISTICS
Note 1: For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com) Note 2: Higher values of isolation capacitance can be added external to the module.
Product # PQ60050HPA45
Phone 1-888-567-9596
Doc.# 005-2HP650K Rev. C
4/16/04
Page 3
Technical Specification
Brick ELECTRICAL CHARACTERISTICS (Continued)
Parameter P
FEATURE CHARACTERISTICS
Half
48Vin 5.0Vout 45A
Units
kHz V V V V V kΩ % % % °C °C
6
Min.
198 -2 2.7 2.7 -2
Typ.
220
Max.
242 0.8 18 18 0.8
Notes & Conditions
Regulation stage and Isolation stage
Switching Frequency ON/OFF Control (Option P) Off-State Voltage On-State Voltage ON/OFF Control (Option N) Off-State Voltage On-State Voltage ON/OFF Control (Either Option) Pull-Up Voltage Pull-Up Resistance Output Voltage Trim Range Output Voltage Remote Sense Range Output Over-Voltage Protection Over-Temperature Shutdown Over-Temperature Shutdown Restart Hysteresis Load Current Scale Factor Calculated MTBF (Telcordia) Calculated MTBF (MIL-217) Field Demonstrated MTBF
-20 115
Vin/6 42 120 120 10 1200 2.13 1.3
15 +10 +10 125
Figures A, B Measured across Pins 9 & 5; Figs C & 23 Measured across Pins 9 & 5 Over full temp range; % of nominal Vout Average PCB Temperature See App Note: Output Load Current Calc.
RELIABILITY CHARACTERISTICS
10 Hrs. TR-NWT-000332; 75% load,300LFM, 40oC Ta 106 Hrs. MIL-HDBK-217F; 75% load, 300LFM, 40oC Ta 106 Hrs. See website for latest values
STANDARDS COMPLIANCE
Parameter P
STANDARDS COMPLIANCE
Notes
File # E194341, Basic insulation & pollution degree 2 Certified by TUV test on entire assembly; board & plastic components UL94V-0 compliant ESD test, 8kV - NP, 15kV air - NP (Normal Performance) Section 7 - electrical safety, Section 9 - bonding/grounding
UL/cUL 60950 EN60950 72/23/EEC 93/68/EEC Needle Flame Test (IEC 695-2-2) IEC 61000-4-2 GR-1089-CORE Telcordia (Bellcore) GR-513
• An external input fuse must always be used to meet these safety requirements. Contact SynQor for official safety certificates on new releases or download from the SynQor website.
QUALIFICATION TESTING
Parameter P
QUALIFICATION TESTING
# Units
32 5 5 10 5 5 5 15 pins
Test Conditions
10-55Hz sweep, 0.060” total excursion,1 min./sweep, 120 sweeps for 3 axis
Life Test Vibration Mechanical Shock Temperature Cycling Power/Thermal Cycling Design Marginality Humidity Solderability
95% rated Vin and load, units at derating point, 1000 hours
100g minimum, 2 drops in x and y axis, 1 drop in z axis -40°C to 100°C, unit temp. ramp 15°C/min., 500 cycles Toperating = min to max, Vin = min to max, full load, 100 cycles Tmin-10°C to Tmax+10°C, 5°C steps, Vin = min to max, 0-105% load 85°C, 85% RH, 1000 hours, 2 minutes on and 6 hours off MIL-STD-883, method 2003
• Extensive characterization testing of all SynQor products and manufacturing processes is performed to ensure that we supply
robust, reliable product. Contact factory for official product family qualification document.
OPTIONS
SynQor provides various options for Logic Sense, Pin Length and Feature Set for this family of DC/DC converters. Please consult the last page of this specification sheet for information on available options.
Product # PQ60050HPA45 Phone 1-888-567-9596
PATENTS
SynQor is protected under various patents, including but not limited to U.S. Patent # 5,999,417; 6,222,742 B1; 6,594,159 B2; 6,545,890 B2.
Doc.# 005-2HP650K Rev. C
4/16/04
Page 4
Performance Curves
Brick
100 95 90 85 80 75 70 0.0 4.5 9.0 13.5 18.0 22.5 27.0 31.5 36.0 40.5 45.0 35 Vin 48 Vin 75 Vin
Half
95 94
48Vin 5.0Vout 45A
Efficiency (%)
Efficiency (%)
93 92 91 90 89 0 100 200 300 400
Air Flow (LFM) 25 C 40 C 55 C
500
Load Current (A)
Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.
Figure 2: Efficiency at nominal output voltage and 60% rated power vs. airflow rate for ambient air temperatures of 25°C, 40°C, and 55°C (nominal input voltage).
14 13
Power Dissipation (W)
24 22 20
Power Dissipation (W)
18 16 14 12 10 8 6 4 2 0 0.0 4.5 9.0 13.5 18.0 22.5 27.0 31.5 36.0
12 11 10 9 8 7 0 100 200 300 400
Air Flow (LFM) 25 C 40 C 55 C
35 Vin 48 Vin 75 Vin
40.5 45.0
500
Load Current (A)
Figure 3: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.
Figure 4: Power dissipation at nominal output voltage and 60% rated power vs. airflow rate for ambient air temperatures of 25°C, 40°C, and 55°C (nominal input voltage).
45 40 35 30
Iout (A)
25 20 15 10 5 0 0 25 40 55 70 85
400 LFM (2.0 m/s) 300 LFM (1.5 m/s) 200 LFM (1.0 m/s) 100 LFM (0.5 m/s) 50 LFM (0.25 m/s)
Ambient Air Temperature (oC)
Figure 5: Maximum output power derating curves vs. ambient air temperature for airflow rates of 50 LFM through 400 LFM with air flowing from input to output (nominal input voltage).
Product # PQ60050HPA45 Phone 1-888-567-9596
Figure 6: Thermal plot of converter at 39 amp load current (195 Watts) with 55°C air flowing at the rate of 200 LFM. Air is flowing across the converter from input to output (nominal input voltage).
Doc.# 005-2HP650K Rev. C 4/16/04 Page 5
Semiconductor junction temperature is within 1°C of surface temperature
Performance Curves
Brick
45 40 35 30
Half
48Vin 5.0Vout 45A
Iout (A)
25 20 15 10 5 0 0 25 40 55 70 85
400 LFM (2.0 m/s) 300 LFM (1.5 m/s) 200 LFM (1.0 m/s) 100 LFM (0.5 m/s) 50 LFM (0.25 m/s)
Ambient Air Temperature (oC)
Figure 7: Maximum output power derating curves vs. ambient air temperature for airflow rates of 50 LFM through 400 LFM with air flowing from output to input (nominal input voltage).
Figure 8: Thermal plot of converter at 36 amp load current (180 Watts) with 55°C air flowing at the rate of 200 LFM. Air is flowing across the converter from output to input (nominal input voltage).
Figure 9: Turn-on transient at full load (resistive load) (10 ms/div). Input voltage pre-applied. Top Trace: Vout (2V/div). Bottom Trace: ON/OFF input (5V/div)
Figure 10: Turn-on transient at zero load (10 ms/div). Top Trace: Vout (2V/div) Bottom Trace: ON/OFF input (5V/div)
Figure 11: Output voltage response to step-change in load current (50%-75%50% of Iout(max); dI/dt = 0.1A/µs). Load cap: 15µF, 450 mΩ ESR tantalum cap
and 1µF ceramic cap. Top trace: Vout (200mV/div), Bottom trace: Iout (20A/div). Product # PQ60050HPA45 Phone 1-888-567-9596
Figure 12: Output voltage response to step-change in load current (50%-75%50% of Iout(max): dI/dt = 5A/µs). Load cap: 470µF, 15 mΩ ESR tantalum cap and 1µF ceramic cap. Top trace: Vout (200mV/div), Bottom trace: Iout (20A/div).
Doc.# 005-2HP650K Rev. C 4/16/04 Page 6
Semiconductor junction temperature is within 1°C of surface temperature
Performance Curves
Brick
See Fig. 15
source impedance
Half
48Vin 5.0Vout 45A
10 µH
See Fig. 14 See Fig. 16
iS
VSOURCE
iC
DC/DC Converter 1 µF
VOUT
15 µF,
electrolytic capacitor
47 µF,