0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CEEMK212BJ105KG-T

CEEMK212BJ105KG-T

  • 厂商:

    TAIYO-YUDEN(太诱)

  • 封装:

    -

  • 描述:

  • 数据手册
  • 价格&库存
CEEMK212BJ105KG-T 数据手册
for General Electronic Equipment Notice for TAIYO YUDEN products Please read this notice before using the TAIYO YUDEN products. REMINDERS ■ Product Information in this Catalog Product information in this catalog is as of October 2020. All All of of the the January 2021. contents specified herein and production status of the products listed in this catalog are subject to change without notice due to technical improvement of our products, etc. Therefore, please check for the latest information carefully before practical application or use of our products. (4) Powe r g e n e r atio n c o ntro l e quip m e nt (nu c le a r p owe r, hydroelectric power, thermal power plant control system, etc.) (5) Undersea equipment (submarine repeating equipment, underwater work equipment, etc.) (6) Military equipment (7) Any other equipment requiring extremely high levels of safety and/or reliability equal to the equipment listed above Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets. *Notes: 1. There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment. 2. Implantable medical devices contain not only internal unit which is implanted in a body, but also external unit which is connected to the internal unit. ■ Approval of Product Specifications Ple a se c ont ac t TA IYO YUD EN for fur the r det a ils of p ro duc t specifications as the individual product specification sheets are available. When using our products, please be sure to approve our product specifications or make a written agreement on the product specification with TAIYO YUDEN in advance. ■ Pre-Evaluation in the Actual Equipment and Conditions Please conduct validation and verification of our products in actual conditions of mounting and operating environment before using our products. ■ Limited Application 1. Equipment Intended for Use The products listed in this catalog are intended for generalpurpose and standard use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and other equipment specified in this catalog or the individual product specification sheets. TAIYO YUDEN has the line-up of the products intended for use in automotive electronic equipment, telecommunications infrastructure and industrial equipment, or medical devices classified as GHTF Classes A to C (Japan Classes I to III). Therefore, when using our products for these equipment, please check available applications specified in this catalog or the individual product specification sheets and use the corresponding products. 2. Equipment Requiring Inquiry Please be sure to contact TAIYO YUDEN for further information before using the products listed in this catalog for the following equipment (excluding intended equipment as specified in this catalog or the individual product specification sheets) which may cause loss of human life, bodily injury, serious property damage and/or serious public impact due to a failure or defect of the products and/or malfunction attributed thereto. (1) Transportation equipment (automotive powertrain control system, train control system, and ship control system, etc.) (2) Traffic signal equipment (3) Disaster prevention equipment, crime prevention equipment (4) Medical devices classified as GHTF Class C (Japan Class III) (5) H i g h l y p u b l i c i n f o r m a t i o n n e t wo r k e q u i p m e n t , d a t a processing equipment (telephone exchange, and base station, etc.) (6) Any other equipment requiring high levels of quality and/or reliability equal to the equipment listed above 3. Equipment Prohibited for Use Please do not incorporate our products into the following equipment requiring extremely high levels of safety and/or reliability. (1) Aerospace equipment (artificial satellite, rocket, etc.) (2) Aviation equipment *1 (3) Medical devices classified as GHTF Class D (Japan Class IV), implantable medical devices *2 4. Limitation of Liability Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment that is not intended for use by TAIYO YUDEN, or any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above. ■ Safety Design When using our products for high safety and/or reliability-required equipment or circuits, please fully perform safety and/or reliability evaluation. In addition, please install (i) systems equipped with a protection circuit and a protection device and/or (ii) systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault for a failsafe design to ensure safety. ■ Intellectual Property Rights Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights. ■ Limited Warranty Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a failure or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement. ■ TAIYO YUDEN’s Official Sales Channel The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter “TAIYO YUDEN’ s official sales channel”). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN’ s official sales channel. ■ Caution for Export Some of our products listed in this catalog may require specific procedures for export according to“U.S. Export Administration Regulations”,“Foreign Exchange and Foreign Trade Control Law” of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff. ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/) . 2 21 for General Electronic Equipment MULTILAYER CERAMIC CAPACITORS MULTILAYER CERAMIC CAPACITORS CERAMIC CAPACITORS WAVE REFLOW ■PARTS NUMBER J M K ① ② ③ 3 1 6 ④ MULTILAYER CERAMIC CAPACITORS ①Rated voltage Code P A J L E T G U H Q S X ②Series name Code M V W △ ⑤ B J 1 ⑥ 0 6 ⑦ ③End termination Code K S Rated voltage[VDC] 2.5 4 6.3 10 16 25 35 50 100 250 630 2000 A End termination Plated Cu Internal Electrodes (For High Frequency) ④Dimension(L×W) Dimensions (L×W)[mm] 021 0.25× 0.125 042 0.4 × 0.2 063 0.6 × 0.3 1.0 × 0.5 105 0.52× 1.0 ※ 1.6 × 0.8 107 0.8 × 1.6 ※ 2.0 × 1.25 212 1.25× 2.0 ※ 316 3.2 × 1.6 325 3.2 × 2.5 432 4.5 × 3.2 Note : ※LW reverse type(□WK) only Type Series name Multilayer ceramic capacitor Multilayer ceramic capacitor for high frequency LW reverse type multilayer capacitor ⑤Dimension tolerance Code Type △ ALL 063 105 107 △=Blank space M L - T △ ⑧ ⑨ ⑩ ⑪ ⑫ L[mm] Standard W[mm] Standard 0.6±0.05 1.0±0.10 1.6+0.15/-0.05 0.3±0.05 0.5±0.10 0.8+0.15/-0.05 212 2.0+0.15/-0.05 1.25+0.15/-0.05 316 3.2±0.20 1.6±0.20 325 063 105 3.2±0.30 0.6±0.09 1.0+0.15/-0.05 2.5±0.30 0.3±0.09 0.5+0.15/-0.05 107 1.6+0.20/-0 0.8+0.20/-0 212 2.0+0.20/-0 1.25+0.20/-0 316 105 063 105 E 008004 01005 0201 0402 0204 0603 0306 0805 0508 1206 1210 1812 T[mm] Standard 0.3±0.05 0.5±0.10 0.8+0.15/-0.05 0.45±0.05 0.85±0.10 1.25+0.15/-0.05 0.85±0.10 1.6±0.20 2.5±0.30 0.3±0.09 0.5+0.15/-0.05 0.45±0.05 0.8+0.20/-0 0.45±0.05 0.85±0.10 1.25+0.20/-0 1.6±0.30 0.5+0.20/-0 0.3 + 0.25/ - 0 0.5+0.30/-0 △= Blank space B C EIA(inch) 3.2±0.30 1.6±0.30 1.0+0.20/-0 0.5+0.20/-0 0.6 + 0.25/- 0 0.3 + 0.25/- 0 1.0+0.30/-0 0.5+0.30/-0 Note: cf. STANDARD EXTERNAL DIMENSIONS ⑥Temperature characteristics code ■High dielectric type(Excluding Super low distortion multilayer ceramic capacitor) Applicable Temperature Code Ref. Temp.[℃] Capacitance change standard range[℃] JIS B -25~+ 85 20 ±10% EIA X5R -55~+ 85 25 ±15% B7 EIA X7R -55~+125 25 ±15% C6 EIA X6S -55~+105 25 ±22% C7 EIA X7S -55~+125 25 ±22% LD(※) EIA X5R -55~+ 85 25 ±15% BJ Note : ※.LD Low distortion high value multilayer ceramic capacitor Capacitance tolerance ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% ±10% ±20% Tolerance code K M K M K M K M K M K M △= Blank space c_mlcc_e-E09R01.doc ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/) . 4 21 for General Electronic Equipment ■Temperature compensating type Applicable Code standard UJ C0G JIS UJ EIA JIS EIA U2J UK U2K Capacitance change -55~+125 25 0±30ppm/℃ -55~+125 -55~+125 -55~+125 ⑥Series code ・Super low distortion multilayer ceramic capacitor Code Series code SD Standard ・Medium-High Voltage Multilayer Ceramic Capacitor Code Series code SD Standard ⑦Nominal capacitance Code (example) 0R5 010 100 101 102 103 104 105 106 107 Note : R=Decimal point ⑧Capacitance tolerance Code A B C D F G J K M Z Nominal capacitance 0.5pF 1pF 10pF 100pF 1,000pF 10,000pF 0.1μF 1.0μF 10μF 100μF Capacitance tolerance ±0.05pF ±0.1pF ±0.25pF ±0.5pF ±1pF ±2% ±5% ±10% ±20% +80/-20% 20 25 20 25 -750±120ppm/℃ -750±250ppm/℃ ⑨Thickness Code K H E C D P T K V W A D F G L N Y M ⑩Special code Code - ⑪Packaging Code F T P R W ⑫Internal code Code △ Capacitance tolerance ±0.05pF ±0.1pF ±0.25pF ±0.5pF ±5% ±0.25pF ±0.5pF ±5% Tolerance code A B C D J C D J ±0.25pF C Thickness[mm] 0.125 0.13 0.18 0.2 0.3 0.45(107type or more) 0.5 MULTILAYER CERAMIC CAPACITORS UK EIA Ref. Temp.[℃] CERAMIC CAPACITORS CG Temperature range[℃] 0.8 0.85(212type or more) 1.15 1.25 1.6 1.9 2.0 max 2.5 Special code Standard Packaging φ178mm Taping (2mm pitch) φ178mm Taping (4mm pitch) φ178mm Taping (4mm pitch, 1000 pcs/reel) 325 type(Thickness code M) φ178mm Taping (2mm pitch)105type only (Thickness code E,H) φ178mm Taping(1mm pitch)021/042type only Internal code Standard ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/) . c_mlcc_e-E09R01.doc 21 5 for General Electronic Equipment ■STANDARD EXTERNAL DIMENSIONS W Type( EIA ) CERAMIC CAPACITORS T e Dimension [mm] T 0.125±0.013 0.125±0.013 □MK021(008004) □VS021(008004) L 0.25±0.013 0.25±0.013 W 0.125±0.013 0.125±0.013 □MK042(01005) 0.4±0.02 0.2±0.02 0.2±0.02 □VS042(01005) 0.4±0.02 0.2±0.02 0.2±0.02 □MK063(0201) 0.6±0.03 0.3±0.03 0.3±0.03 L MULTILAYER CERAMIC CAPACITORS L □MK105(0402) 1.0±0.05 0.5±0.05 □VK105(0402) □WK105(0204)※ 1.0±0.05 0.52±0.05 0.5±0.05 1.0±0.05 □MK107(0603) 1.6±0.10 0.8±0.10 □WK107(0306)※ 0.8±0.10 1.6±0.10 □MK212(0805) 2.0±0.10 1.25±0.10 □WK212(0508)※ 1.25±0.15 2.0±0.15 □MK316(1206) 3.2±0.15 1.6±0.15 □MK325(1210) 3.2±0.30 2.5±0.20 □MK432(1812) 4.5±0.40 3.2±0.30 W T e ※ LW reverse type 0.13±0.02 0.18±0.02 0.2±0.02 0.3±0.03 0.5±0.05 0.5±0.05 0.3±0.05 0.45±0.05 0.8±0.10 0.5±0.05 0.45±0.05 0.85±0.10 1.25±0.10 0.85±0.10 0.85±0.10 1.15±0.10 1.6±0.20 0.85±0.10 1.15±0.10 1.9±0.20 1.9+0.1/-0.2 2.5±0.20 2.0+0/-0.30 2.5±0.20 *1 K K C D C P T H E C P V W P K A V K D G D D F L D F N Y M Y M e 0.0675±0.0275 0.0675±0.0275 0.1±0.03 0.1±0.03 0.15±0.05 0.25±0.10 0.25±0.10 0.18±0.08 0.35±0.25 0.25±0.15 0.5±0.25 0.3±0.2 0.5+0.35/-0.25 0.6±0.3 0.6±0.4 0.9±0.6 Note : ※. LW reverse type, *1.Thickness code ■STANDARD QUANTITY Type EIA(inch) Dimension 021 008004 [mm] 0.125 042 01005 0.2 063 0201 105 0402 0.3 0.13 0.18 0.2 0.3 0.5 0204 ※ 107 0603 0306 ※ 212 0805 0508 ※ 316 1206 325 1210 432 1812 0.30 0.45 0.8 0.50 0.45 0.85 1.25 0.85 0.85 1.15 1.6 0.85 1.15 1.9 2.0 max 2.5 2.0 max 2.5 Code K C D P T H E C P V W P K A V K D G D D F L D F N Y M Y M Standard quantity[pcs] Paper tape Embossed tape - 50000 - 40000 15000 - - - 20000 15000 20000 15000 - - 10000 - 4000 - - 4000 4000 - - 4000 4000 - - 3000 - - 3000 2000 - 2000 - - - 1000 1000 500 Note : ※.LW Reverse type(□WK) c_mlcc_e-E09R01.doc ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/) . 6 21 for General Electronic Equipment ■PARTS NUMBER LW Reversal Decoupling Capacitors(LWDCTM) CERAMIC CAPACITORS ●105TYPE 【Temperature Characteristic BJ : X5R(-55~+85℃)】 0.3mm thickness(P) Part number 1 Part number 2 MULTILAYER CERAMIC CAPACITORS TWK105 BJ104MP-F EWK105 BJ224MP-F LWK105 BJ474MP-F JWK105 BJ104MP-F JWK105 BJ474MP-F JWK105 BJ105MP-F JWK105 BJ225MP-F Rated voltage [V] 25 16 10 6.3 Temperature characteristics X5R X5R X5R X5R*1 X5R*1 X5R X5R Capacitance [F] Capacitance tolerance [%] tanδ [%] 0.1 0.22 0.47 0.1 0.47 1 2.2 ±20 ±20 ±20 ±20 ±20 ±20 ±20 5 10 10 5 10 10 10 μ μ μ μ μ μ μ HTLT Rated voltage x % 150 150 150 150 150 150 150 Thickness*3 [mm] 0.3±0.05 0.3±0.05 0.3±0.05 0.3±0.05 0.3±0.05 0.3±0.05 0.3±0.05 Soldering R:Reflow W:Wave R R R R R R R 【Temperature Characteristic C6 : X6S(-55~+105℃), C7 : X7S(-55~+125℃)】 0.3mm thickness(P) Part number 1 Part number 2 EWK105 C6104MP-F LWK105 C7104MP-F LWK105 C6224MP-F JWK105 C7104MP-F JWK105 C7224MP-F JWK105 C6474MP-F AWK105 C6224MP-F AWK105 C6474MP-F AWK105 C6105MP-F AWK105 C6225MP-F Rated voltage [V] 16 10 6.3 4 Temperature characteristics X6S X7S X6S X7S X7S X6S X6S X6S X6S X6S Capacitance [F] Capacitance tolerance [%] tanδ [%] 0.1 0.1 0.22 0.1 0.22 0.47 0.22 0.47 1 2.2 ±20 ±20 ±20 ±20 ±20 ±20 ±20 ±20 ±20 ±20 5 5 10 5 10 10 10 10 10 10 Capacitance [F] Capacitance tolerance [%] tanδ [%] 0.1 0.22 0.47 1 2.2 1 2.2 4.7 10 ±20 ±20 ±20 ±20 ±20 ±20 ±20 ±20 ±20 5 5 5 10 10 10 10 10 10 μ μ μ μ μ μ μ μ μ μ HTLT Rated voltage x % 150 150 150 150 150 150 150 150 150 150 Thickness*3 [mm] 0.3±0.05 0.3±0.05 0.3±0.05 0.3±0.05 0.3±0.05 0.3±0.05 0.3±0.05 0.3±0.05 0.3±0.05 0.3±0.05 Soldering R:Reflow W:Wave R R R R R R R R R R ●107TYPE 【Temperature Characteristic BJ : X5R(-55~+85℃)】 0.5mm thickness(V) Part number 1 Part number 2 TWK107 BJ104MV-T EWK107 BJ224MV-T EWK107 BJ474MV-T LWK107 BJ105MV-T LWK107 BJ225MV-T JWK107 BJ105MV-T JWK107 BJ225MV-T JWK107 BJ475MV-T AWK107 BJ106MV-T Rated voltage [V] 25 16 10 6.3 4 Temperature characteristics X5R*1 X5R*1 X5R*1 X5R X5R X5R*1 X5R X5R X5R μ μ μ μ μ μ μ μ μ HTLT Rated voltage x % 150 150 150 150 150 150 150 150 150 Thickness*3 [mm] 0.5±0.05 0.5±0.05 0.5±0.05 0.5±0.05 0.5±0.05 0.5±0.05 0.5±0.05 0.5±0.05 0.5±0.05 Soldering R:Reflow W:Wave R R R R R R R R R 【Temperature Characteristic B7 : X7R(-55~+125℃), C6 : X6S(-55~+105℃), C7 : X7S(-55~+125℃)】 0.5mm thickness(V) Part number 1 Part number 2 TWK107 B7104MV-T EWK107 B7224MV-T EWK107 B7474MV-T JWK107 C7105MV-T AWK107 C7225MV-T AWK107 C6475MV-T PWK107 C6106MV-T Rated voltage [V] 25 16 6.3 4 2.5 Temperature characteristics X7R X7R X7R X7S X7S X6S X6S Capacitance [F] Capacitance tolerance [%] tanδ [%] 0.1 0.22 0.47 1 2.2 4.7 10 ±20 ±20 ±20 ±20 ±20 ±20 ±20 5 5 5 10 10 10 10 Capacitance tolerance [%] tanδ [%] ±10, ±20 ±20 ±10, ±20 ±20 ±20 10 10 10 10 10 μ μ μ μ μ μ μ HTLT Rated voltage x % 150 150 150 150 150 150 150 Thickness*3 [mm] 0.5±0.05 0.5±0.05 0.5±0.05 0.5±0.05 0.5±0.05 0.5±0.05 0.5±0.05 Soldering R:Reflow W:Wave R R R R R R R ●212TYPE 【Temperature Characteristic BJ : X5R(-55~+85℃)】 0.85mm thickness(D) Part number 1 Part number 2 Rated voltage [V] 25 16 TWK212 BJ475[]D-T EWK212 BJ106MD-T LWK212 BJ475[]D-T LWK212 BJ106MD-T JWK212 BJ226MD-T 10 6.3 Temperature characteristics X5R X5R X5R X5R X5R Capacitance [F] 4.7 10 4.7 10 22 μ μ μ μ μ HTLT Rated voltage x % 150 150 150 150 150 Thickness*3 [mm] 0.85±0.10 0.85±0.10 0.85±0.10 0.85±0.10 0.85±0.10 Soldering R:Reflow W:Wave R R R R R 【Temperature Characteristic B7 : X7R(-55~+125℃), C6 : X6S(-55~+105℃)】 0.85mm thickness(D) Part number 1 TWK212 B7225[]D-T EWK212 C6475[]D-T LWK212 C6106MD-T AWK212 C6226MD-T Part number 2 Rated voltage [V] 25 16 10 4 Temperature characteristics X7R X6S X6S X6S Capacitance [F] 2.2 4.7 10 22 μ μ μ μ Capacitance tolerance [%] tanδ [%] ±10, ±20 ±10, ±20 ±20 ±20 5 10 10 10 HTLT Rated voltage x % 150 150 150 150 Thickness*3 [mm] 0.85±0.10 0.85±0.10 0.85±0.10 0.85±0.10 Soldering R:Reflow W:Wave R R R R c_mlcc_e-E09R01.xlsx ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/) . 32 21 Multilayer Ceramic Capacitors ■PACKAGING ①Minimum Quantity ●Taped package Thickness Type(EIA) □MK021(008004) □VS021(008004) □MK042(01005) □VS042(01005) □MK063(0201) □WK105(0204) ※ □MK105(0402) □MF105(0402) □VK105(0402) □MK107(0603) □WK107(0306) ※ □MF107(0603) □VS107(0603) □MJ107(0603) □MK212(0805) □WK212(0508) ※ □MF212(0805) □VS212(0805) □MJ212(0805) □MK316(1206) □MF316(1206) □MJ316(1206) □MK325(1210) □MF325(1210) □MJ325(1210) □MK432(1812) Note : ※ LW Reverse type. mm code 0.125 K 0.2 0.2 0.3 0.3 0.13 0.18 0.2 0.3 0.5 0.5 0.45 0.5 0.8 0.7 0.8 0.45 0.85 1.25 0.85 0.85 1.25 0.85 1.15 1.6 1.15 1.6 0.85 1.15 1.9 2.0max. 2.5 1.9 2.5 2.5 C, D C P,T P H E C P V W K V A C A K D G D D G D F L F L D F N Y M N M M Standard quantity [pcs] Paper tape Embossed tape - 50000 - 40000 15000 10000 - - 20000 15000 10000 10000 4000 - 4000 4000 3000 - - 20000 15000 - - - - - 4000 - - 3000 4000 - - 4000 4000 - 4000 - - - - 3000 - - 2000 - 3000 2000 3000 2000 - 2000 - - - - 1000 2000 500(T), 1000(P) 500 ②Taping material ※No bottom tape for pressed carrier tape ●Card board carrier tape ●Embossed tape Top tape Top tape Base tape Sprocket hole Sprocket hole Bottom tape Chip cavity Base tape Chip cavity ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_pack_e-E06R01 Chip filled Chip ※ LW Reverse type. ③Representative taping dimensions ●Paper Tape(8mm wide) ●Pressed carrier tape( 2mm pitch) Unit:mm(inch) A B T 8.0±0.3 (0.315±0.012) Sprocket hole 1.75±0.1 (0.069±0.004) 3.5±0.05 (0.138±0.002) φ1.5+0.1/-0 (φ0.059+0.004/-0) T1 2.0±0.05 (0.079±0.002) F 4.0±0.1 (0.157±0.004) Chip Cavity Type(EIA) A 0.37 Insertion Pitch F B 0.67 □MK063(0201) □WK105(0204) ※ 0.65 1.15 □MK105(0402) (*1 C) □MK105(0402) (*1 P) Note *1 Thickness, C:0.2mm ,P:0.3mm. ※ LW Reverse type. 2.0±0.05 ●Punched carrier tape (2mm pitch) 0.45max. 0.42max. 0.4max. 0.45max. 0.3max. 0.42max. Unit:mm T 8.0±0.3 (0.315±0.012) B 2.0±0.05 (0.079±0.002) 1.75±0.1 (0.069±0.004) 3.5±0.05 (0.138±0.002) A F T1 Unit:mm(inch) φ1.5+0.1/-0 (φ0.059+0.004/-0) Sprocket hole Tape Thickness T 4.0±0.1 (0.157±0.004) A Chip Cavity B Insertion Pitch F Tape Thickness T 0.65 1.15 2.0±0.05 0.8max. Type(EIA) □MK105 (0402) □MF105 (0402) □VK105 (0402) Unit:mm ●Punched carrier tape (4mm pitch) B T 8.0±0.3 (0.315±0.012) A F Unit:mm(inch) 1.75±0.1 (0.069±0.004) 3.5±0.05 (0.138±0.002) Sprocket hole φ1.5+0.1/-0 (φ0.059+0.004/-0) 4.0±0.1 (0.157±0.004) 2.0±0.1 (0.079±0.004) ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_pack_e-E06R01 Chip Cavity Type(EIA) A Insertion Pitch F B □MK107(0603) □WK107(0306) ※ 1.0 1.8 □MF107(0603) 4.0±0.1 □MK212(0805) 1.65 2.4 □WK212(0508) ※ □MK316(1206) 2.0 3.6 Note:Taping size might be different depending on the size of the product. ※ LW Reverse type. ●Embossed tape(4mm wide) Unit:mm 4.0±0.05 (0.157±0.002) B 1.0±0.02 (0.039±0.001) 1.1max. 0.9±0.05 (0.035±0.002) 1.8±0.02 (0.071±0.001) A F 1.1max. Unit:mm(inch) φ0.8±0.04 (φ0.031±0.002) Sprocket hole Tape Thickness T 2.0±0.04 (0.079±0.002) Chip Cavity Type(EIA) □MK021(008004) □VS021(008004) □MK042(01005) □VS042(01005) A B 0.135 0.27 0.23 0.43 Insertion Pitch F K Tape Thickness T 1.0±0.02 0.5max. 0.25max. Unit:mm ●Embossed tape(8mm wide) Unit:mm(inch) 3.5±0.05 (0.138±0.002) Sprocket hole A B F 1.75±0.1 (0.069±0.004) 8.0±0.3 (0.315±0.012) φ1.5+0.1/-0 (φ0.059+0.004/-0) 4.0±0.1 (0.157±0.004) 2.0±0.1 (0.079±0.004) Type(EIA) □MK105(0402) □WK107(0306) ※ □MK212(0805) □MF212(0805) □MK316(1206) □MF316(1206) □MK325(1210) □MF325(1210) Note: ※ LW Reverse type. Chip Cavity A 0.6 1.0 B 1.1 1.8 1.65 2.4 2.0 3.6 2.8 3.6 Insertion Pitch F 2.0±0.1 4.0±0.1 Tape Thickness K 0.6max 1.3max. T 0.2±0.1 0.25±0.1 3.4max. 0.6max. Unit:mm ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_pack_e-E06R01 ●Embossed tape(12mm wide) Unit:mm(inch) 5.5±0.05 (0.217±0.002) Sprocket hole A B 4.0±0.1 (0.157±0.004) 12.0±0.3 (0.472±0.012) 1.75±0.1 (0.069±0.004) φ1.5+0.1/-0 (φ0.059+0.004/-0) 2.0±0.1 (0.079±0.004) F Chip Cavity Type(EIA) A 3.1 3.7 □MK325(1210) □MK432(1812) B 4.0 4.9 Insertion Pitch F 8.0±0.1 8.0±0.1 K 4.0max. 4.0max. Tape Thickness E 2.0±0.5 T 0.6max. 0.6max. Unit:mm ④Trailer and Leader Blank portion Chip cavity Blank portion Leader 100mm or more (3.94inches or more) 160mm or more (6.3inches or more) Direction of tape feed 400mm or more (15.7inches or more) ⑤Reel size t E C R B A D W A φ178±2.0 B φ50min. C φ13.0±0.2 D φ21.0±0.8 4mm wide tape 8mm wide tape 12mm wide tape T 1.5max. 2.5max. 2.5max. W 5±1.0 10±1.5 14±1.5 Unit:mm R 1.0 ⑥Top Tape Strength The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below. Pull direction 0~20° Top tape Base tape ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_pack_e-E06R01 Super Low Distortion Multilayer Ceramic Capacitors , Medium-High Voltage Multilayer Ceramic Capacitors and High Reliability Application Multilayer Ceramic Capacitors are noted separately. Multilayer Ceramic Capacitors ■RELIABILITY DATA 1.Operating Temperature Range Temperature Compensating(Class1) Standard High Frequency Type -55 to +125℃ B7 C6 C7 Specification B X5R X7R X6S X7S Temperature Range -25 to +85℃ -55 to +85℃ -55 to +125℃ -55 to +105℃ -55 to +125℃ LD(※) X5R -55 to +85℃ BJ Specified Value High Permittivity (Class2) Note: ※LD Low distortion high value multilayer ceramic capacitor 2. Storage Conditions Temperature Compensating(Class1) Standard High Frequency Type -55 to +125℃ Specification Temperature Range B -25 to +85℃ BJ X5R -55 to +85℃ B7 X7R -55 to +125℃ C6 X6S -55 to +105℃ C7 X7S -55 to +125℃ LD(※) X5R -55 to +85℃ Note: ※LD Low distortion high value multilayer ceramic capacitor Specified Value High Permittivity (Class2) 3. Rated Voltage Specified Value Temperature Compensating(Class1) Standard 50VDC, 25VDC, 16VDC High Frequency Type 50VDC, 25VDC, 16VDC High Permittivity (Class2) 50VDC, 35VDC, 25VDC, 16VDC, 10VDC, 6.3VDC, 4VDC, 2.5VDC 4. Withstanding Voltage (Between terminals) Specified Value Temperature Compensating(Class1) Standard High Frequency Type No breakdown or damage High Permittivity (Class2) Test Methods and Remarks Class 1 Rated voltage×3 Applied voltage Duration Charge/discharge current Class 2 Rated voltage×2.5 1 to 5 sec. 50mA max. 5. Insulation Resistance Specified Value Temperature Compensating(Class1) Standard High Frequency Type High Permittivity (Class2) Note 1 Test Methods and Remarks Applied voltage Duration Charge/discharge current 10000 MΩ min. C≦0.047 F : 10000 MΩ min. C>0.047μF : 500MΩ・μF : Rated voltage : 60±5 sec. : 50mA max. ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_reli_e-E09R01 6. Capacitance (Tolerance) Specified Value Standard C□ U□ 0.2pF≦C≦5pF 0.2pF≦C≦10pF C>10pF : ±0.25pF : ±0.5pF : ±5% or ±10% High Frequency Type CG 0.2pF≦C≦2pF C>2pF : ±0.1pF : ±5% Temperature Compensating(Class1) High Permittivity (Class2) Test Methods and Remarks ±10% or ±20% Standard Preconditioning Measuring frequency Measuring voltage Nte Bias application Class 1 High Frequency Type None 1MHz±10% 0.5 to 5Vrms Class 2 C≦10μF C>10μF Thermal treatment (at 150℃ for 1hr) Note 2 1kHz±10% 120±10Hz 1±0.2Vrms 0.5±0.1Vrms None 7. Q or Dissipation Factor Specified Value Temperature Compensating(Class1) C<30pF : Q≧400+20C C≧30pF : Q≧1000 (C:Nominal capacitance) Standard High Frequency Type High Permittivity (Class2) Note 1 Refer to detailed specification BJ, B7, C6, C7:2.5% max. Class 1 High Frequency Type None 1MHz±10% 1GHz 0.5 to 5Vrms Standard Test Methods and Remarks Preconditioning Measuring frequency Measuring voltage Note 1 Bias application High Frequency Type Measuring equipment Measuring jig Class 2 C≦10μF C>10μF Thermal treatment (at 150℃ for 1hr) Note 2 1kHz±10% 120±10Hz 1±0.2Vrms 0.5±0.1Vrms None : HP4291A : HP16192A 8. Temperature Characteristic (Without voltage application) Temperature Characteristic [ppm/℃] C□ : 0 CG Standard Temperature Compensating(Class1) U□ : -750 High Frequency Type UJ, UK Temperature Characteristic [ppm/℃] C□ : 0 CG Specified Value Tolerance [ppm/℃] G : ±30 J:±120 K:±250 Tolerance [ppm/℃] G : ±30 Capacitance Reference Temperature Range change temperature ±10% 20℃ -25 to +85℃ ±15% 25℃ -55 to +85℃ ±15% 25℃ -55 to +125℃ ±22% 25℃ -55 to +105℃ ±22% 25℃ -55 to +125℃ ±15% 25℃ -55 to +85℃ distortion high value multilayer ceramic capacitor Specification B X5R B7 X7R C6 XS C7 X7S LD(※) X5R Note : ※LD Low BJ High Permittivity (Class2) Class 1 Capacitance at 20℃ and 85℃ shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation. (C85-C20) ×106(ppm/℃) △T=65 C20×△T Test Methods and Remarks Class 2 Capacitance at each step shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation. Step B X5R、X7R、X6S、X7S 1 Minimum operating temperature 2 20℃ 25℃ 3 Maximum operating temperature (C-C2) C2 ×100(%) C :Capacitance in Step 1 or Step 3 C2 :Capacitance in Step 2 ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_reli_e-E09R01 9. Deflection Specified Value Temperature Compensating(Class1) Standard Appearance Capacitance change : No abnormality : Within ±5% or ±0.5 pF, whichever is larger. High Frequency Type Appearance Capacitance change : No abnormality : Within±0.5 pF Appearance Capacitance change : No abnormality : Within ±12.5% High Permittivity (Class2) Board Thickness Warp Duration Test Methods and Remarks Multilayer Ceramic Capacitors 021, 042, 063, ※105 Type The other types Glass epoxy-resin substrate 0.8mm 1.6mm 1mm 10 sec. ※ 105 Type thickness, C: 0.2mm ,P: 0.3mm. Capacitance measurement shall be conducted with the board bent 10. Body Strength Specified Value Standard Temperature Compensating(Class1) High Frequency Type High Permittivity (Class2) Test Methods and Remarks - No mechanical damage. - High Frequency 105Type Applied force : 5N Duraton : 10 sec. 11. Adhesive Strength of Terminal Electrodes Specified Value Standard Temperature Compensating(Class1) High Frequency Type No terminal separation or its indication. High Permittivity (Class2) Test Methods and Remarks Applied force Duration Multilayer Ceramic Capacitors 021, 042, 063 Type 105 Type or more 2N 5N 30±5 sec. 12. Solderability Specified Value Temperature Compensating(Class1) Standard High Frequency Type At least 95% of terminal electrode is covered by new solder. High Permittivity (Class2) Test Methods and Remarks Solder type Solder temperature Duration Eutectic solder H60A or H63A 230±5℃ Lead-free solder Sn-3.0Ag-0.5Cu 245±3℃ 4±1 sec. ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_reli_e-E09R01 13. Resistance to Soldering Standard Appearance Capacitance change Q Insulation resistance Withstanding voltage : No abnormality : Within ±2.5% or ±0.25pF, whichever is larger. : Initial value : Initial value (between terminals) : No abnormality High Frequency Type Appearance Capacitance change Q Insulation resistance Withstanding voltage : No abnormality : Within ±2.5% : Initial value : Initial value (between terminals) : No abnormality Appearance Capacitance change Dissipation factor Insulation resistance Withstanding voltage : No abnormality : Within ±7.5% : Initial value : Initial value (between terminals): No abnormality Temperature Compensating(Class1) Specified Value High Permittivity (Class2) Note 1 Class 1 021, 042, 063 Type 105 Type Preconditioning Preheating Test Methods and Remarks None 80 to 100℃, 2 to 5 min. 150 to 200℃, 2 to 5 min. 150℃, 1 to 2 min. Solder temp. Duration Recovery 270±5℃ 3±0.5 sec. 6 to 24 hrs (Standard condition) Note 5 021, 042、063 Type Preconditioning Preheating 150℃, 1 to 2 min. Solder temp. Duration Recovery Class 2 105, 107, 212 Type 316, 325, 432 Type Thermal treatment (at 150℃ for 1 hr) Note 2 80 to 100℃, 2 to 5 min. 80 to 100℃, 5 to 10 min. 150 to 200℃, 2 to 5 min. 150 to 200℃, 5 to 10 min. 270±5℃ 3±0.5 sec. 24±2 hrs (Standard condition) Note 5 14. Temperature Cycle (Thermal Shock) Standard Appearance Capacitance change Q Insulation resistance Withstanding voltage : No abnormality : Within ±2.5% or ±0.25pF, whichever is larger. : Initial value : Initial value (between terminals) : No abnormality High Frequency Type Appearance Capacitance change Q Insulation resistance Withstanding voltage : No abnormality : Within ±0.25pF : Initial value : Initial value (between terminals) : No abnormality Appearance Capacitance change Dissipation factor Insulation resistance Withstanding voltage : No abnormality : Within ±7.5% : Initial value : Initial value (between terminals) : No abnormality Temperature Compensating(Class1) Specified Value High Permittivity (Class2) Note 1 Class 1 Preconditioning Test Methods and Remarks 1 cycle Number of cycles Recovery Class 2 Thermal treatment (at 150℃ for 1 hr) Note 2 None Step 1 2 3 4 Temperature(℃) Minimum operating temperature Normal temperature Maximum operating temperature Normal temperature Time(min.) 30±3 2 to 3 30±3 2 to 3 5 times 6 to 24 hrs (Standard condition) Note 5 24±2 hrs (Standard condition) Note 5 ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_reli_e-E09R01 15. Humidity (Steady State) Appearance Capacitance change Q Standard Temperature Compensating(Class1) Specified Value High Frequency Type High Permittivity (Class2) Note 1 Insulation resistance : No abnormality : Within ±5% or ±0.5pF, whichever is larger. : C<10pF : Q≧200+10C 10≦C<30pF : Q≧275+2.5C C≧30pF:Q≧350(C:Nominal capacitance) : 1000 MΩ min. Appearance Capacitance change Insulation resistance : No abnormality : Within ±0.5pF, : 1000 MΩ min. Appearance Capacitance change Dissipation factor Insulation resistance : : : : Class 1 Standard Test Methods and Remarks Preconditioning Temperature Humidity Duration Recovery No abnormality Within ±12.5% 5.0% max. 50 MΩμF or 1000 MΩ whichever is smaller. Class 2 All items Thermal treatment( at 150℃ for 1 hr) Note 2 40±2℃ 90 to 95%RH 500+24/-0 hrs 24±2 hrs (Standard condition) Note 5 High Frequency Type None 40±2℃ 60±2℃ 90 to 95%RH 500+24/-0 hrs 6 to 24 hrs (Standard condition) Note 5 16. Humidity Loading Appearance Capacitance change Q Standard Insulation resistance Temperature Compensating(Class1) Specified Value Appearance Capacitance change Note 1 Appearance Capacitance change Dissipation factor Insulation resistance : : : : 90 to 95%RH 500+24/-0 hrs Rated voltage 50mA max. 50mA max. 6 to 24 hrs (Standard condition) Note 5 24±2 hrs(Standard condition) Note 5 Preconditioning Temperature Humidity Duration Applied voltage Charge/discharge current Recovery Class 1 High Frequency Type No abnormality Within ±12.5% 5.0% max. 25 MΩμF or 500 MΩ, whichever is smaller. Class 2 All items Voltage treatment (Rated voltage are applied for 1 hour at 40℃) Note 3 40±2℃ 90 to 95%RH 500+24/-0 hrs Rated voltage Standard Test Methods and Remarks Insulation resistance : No abnormality : C≦2pF:Within ±0.4 pF C>2pF:Within ±0.75 pF (C:Nominal capacitance) : 500 MΩ min. High Frequency Type High Permittivity (Class2) : No abnormality : Within ±7.5% or ±0.75pF, whichever is larger. : C<30pF:Q≧100+10C/3 C≧30pF:Q≧200 (C:Nominal capacitance) : 500 MΩ min. None 40±2℃ 60±2℃ ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_reli_e-E09R01 17. High Temperature Loading Appearance Capacitance change Q Standard Temperature Compensating(Class1) Specified Value High Frequency Type High Permittivity (Class2) Note 1 Test Methods and Remarks Temperature Duration Applied voltage Charge/discharge current Recovery Appearance Capacitance change Insulation resistance : No abnormality : Within ±3% or ±0.3pF, whichever is larger. : 1000 MΩ min. Appearance Capacitance change Dissipation factor Insulation resistance : : : : Class 1 High Frequency Type No abnormality Within ±12.5% 5.0% max. 50 MΩμF or 1000 MΩ, whichever is smaller. Maximum operating temperature 1000+48/-0 hrs Rated voltage×2 Note 4 Class 2 BJ, LD(※) C6 B7, C7 Voltage treatment(Twice the rated voltage shall be applied for 1 hour at 85℃, 105℃ or 125℃) Note 3, 4 Maximum operating temperature 1000+48/-0 hrs Rated voltage×2 Note 4 50mA max. 50mA max. 6 to 24hr (Standard condition) Note 5 24±2 hrs (Standard condition) Note 5 Standard Preconditioning Insulation resistance : No abnormality : Within ±3% or ±0.3pF, whichever is larger. : C<10pF: Q≧200+10C 10≦C<30pF:Q≧275+2.5C C≧30pF: Q≧350(C:Nominal capacitance) : 1000 MΩ min. None Note: ※LD Low distortion high value multilayer ceramic capacitor Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail. Note 2 Thermal treatment : Initial value shall be measured after test sample is heat-treated at 150+0/-10℃ for an hour and kept at room temperature for 24±2hours. Note 3 Voltage treatment : Initial value shall be measured after test sample is voltage-treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours. Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information. Note 5 Standard condition: Temperature: 5 to 35℃, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition. Temperature: 20±2℃, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition". ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_reli_e-E09R01 High Reliability Application Multilayer Ceramic Capacitors are noted separately. Precautions on the use of Multilayer Ceramic Capacitors ■PRECAUTIONS 1. Circuit Design Precautions ◆Verification of operating environment, electrical rating and performance 1. A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications. Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications. ◆Operating Voltage (Verification of Rated voltage) 1. The operating voltage for capacitors must always be their rated voltage or less. If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less. For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less. 2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC voltage or a pulse voltage having rapid rise time is used in a circuit. 2. PCB Design Precautions ◆Pattern configurations (Design of Land-patterns) 1. When capacitors are mounted on PCBs, the amount of solder used (size of fillet) can directly affect the capacitor performance. Therefore, the following items must be carefully considered in the design of land patterns: (1)Excessive solder applied can cause mechanical stresses which lead to chip breaking or cracking. Therefore, please consider appropriate land-patterns for proper amount of solder. (2)When more than one component are jointly soldered onto the same land, each component's soldering point shall be separated by solder-resist. ◆Pattern configurations (Capacitor layout on PCBs) After capacitors are mounted on boards, they can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering of the boards, etc.). For this reason, land pattern configurations and positions of capacitors shall be carefully considered to minimize stresses. ◆Pattern configurations (Design of Land-patterns) The following diagrams and tables show some examples of recommended land patterns to prevent excessive solder amounts. (1)Recommended land dimensions for typical chip capacitors Land patterns for PCBs ●Multilayer Ceramic Capacitors : Recommended land dimensions Land pattern (unit: mm) Solder-resist Wave-soldering Chip capacitor Type 107 212 316 325 L 1.6 2.0 3.2 3.2 C Size W 0.8 1.25 1.6 2.5 A 0.8 to 1.0 1.0 to 1.4 1.8 to 2.5 1.8 to 2.5 B 0.5 to 0.8 0.8 to 1.5 0.8 to 1.7 0.8 to 1.7 B A B C 0.6 to 0.8 0.9 to 1.2 1.2 to 1.6 1.8 to 2.5 Chip capacitor W Technical considerations L Reflow-soldering Type 021 L 0.25 Size W 0.125 A 0.095~0.135 B 0.085~0.125 C 0.110~0.150 Note:Recommended land 042 0.4 0.2 0.15~0.25 0.10~0.20 0.15~0.30 size might be 063 105 107 212 316 0.6 1.0 1.6 2.0 3.2 0.3 0.5 0.8 1.25 1.6 0.20~0.30 0.45~0.55 0.6~0.8 0.8~1.2 1.8~2.5 0.20~0.30 0.40~0.50 0.6~0.8 0.8~1.2 1.0~1.5 0.25~0.40 0.45~0.55 0.6~0.8 0.9~1.6 1.2~2.0 different according to the allowance of the size of the product. ●LWDC: Recommended land dimensions (unit: mm) Type 105 107 L 0.52 0.8 Size W 1.0 1.6 A 0.18~0.22 0.25~0.3 B 0.2~0.25 0.3~0.4 C 0.9~1.1 1.5~1.7 for reflow-soldering 212 1.25 2.0 0.5~0.7 0.4~0.5 1.9~2.1 325 3.2 2.5 1.8~2.5 1.0~1.5 1.8~3.2 432 4.5 3.2 2.5~3.5 1.5~1.8 2.3~3.5 LWDC W L ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_prec_e-E08R01 (2)Examples of good and bad solder application Item Not recommended Lead wire of component Recommended Solder-resist Mixed mounting of SMD and leaded components Chassis Solder (for grounding) Solder-resist Component placement close to the chassis Electrode pattern Lead wire of component Soldering iron Hand-soldering of leaded components near mounted components Solder-resist Solder-resist Horizontal component placement ◆Pattern configurations (Capacitor layout on PCBs) 1-1. The following is examples of good and bad capacitor layouts ; capacitors shall be located to minimize any stresses from board warp or deflection. Items Not recommended Recommended possible mechanical Place the product at a right angle to the direction of the anticipated mechanical stress. Deflection of board 1-2. The amount of mechanical stresses given will vary depending on capacitor layout. Please refer to diagram below. E D Perforation C A B Slit Magnitude of stress A>B=C>D>E 1-3. When PCB is split, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, please consider the PCB, split methods as well as chip location. 3. Mounting Precautions ◆Adjustment of mounting machine 1. When capacitors are mounted on PCB, excessive impact load shall not be imposed on them. 2. Maintenance and inspection of mounting machines shall be conducted periodically. ◆Selection of Adhesives 1. When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked : size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information. ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_prec_e-E08R01 ◆Adjustment of mounting machine 1. When the bottom dead center of a pick-up nozzle is too low, excessive force is imposed on capacitors and causes damages. To avoid this, the following points shall be considerable. (1)The bottom dead center of the pick-up nozzle shall be adjusted to the surface level of PCB without the board deflection. (2)The pressure of nozzle shall be adjusted between 1 and 3 N static loads. (3)To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins shall be used on the other side of the PCB. The following diagrams show some typical examples of good and bad pick-up nozzle placement: Item Improper method Proper method Single-sided mounting chipping or cracking supporting pins or back-up pins Double-sided mounting chipping or cracking Technical considerations supporting pins or back-up pins 2. As the alignment pin is worn out, adjustment of the nozzle height can cause chipping or cracking of capacitors because of mechanical impact on the capacitors. To avoid this, the monitoring of the width between the alignment pins in the stopped position, maintenance, check and replacement of the pin shall be conducted periodically. ◆Selection of Adhesives Some adhesives may cause IR deterioration. The different shrinkage percentage of between the adhesive and the capacitors may result in stresses on the capacitors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect components. Therefore, the following precautions shall be noted in the application of adhesives. (1)Required adhesive characteristics a. The adhesive shall be strong enough to hold parts on the board during the mounting & solder process. b. The adhesive shall have sufficient strength at high temperatures. c. The adhesive shall have good coating and thickness consistency. d. The adhesive shall be used during its prescribed shelf life. e. The adhesive shall harden rapidly. f. The adhesive shall have corrosion resistance. g. The adhesive shall have excellent insulation characteristics. h. The adhesive shall have no emission of toxic gasses and no effect on the human body. (2)The recommended amount of adhesives is as follows; After capacitor are bonded Amount adhesive [Recommended condition] a a Figure 212/316 case sizes as examples a 0.3mm min b b 100 to 120μm c Adhesives shall not contact land c c 4. Soldering Precautions ◆Selection of Flux Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; (1)Flux used shall be less than or equal to 0.1 wt%( in Cl equivalent) of halogenated content. Flux having a strong acidity content shall not be applied. (2)When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level. (3)When water-soluble flux is used, special care shall be taken to properly clean the boards. ◆Soldering Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions. Sn-Zn solder paste can adversely affect MLCC reliability. Please contact us prior to usage of Sn-Zn solder. Technical considerations ◆Selection of Flux 1-1. When too much halogenated substance(Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead to corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors. 1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in high humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleaning methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used. ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_prec_e-E08R01 ◆Soldering ・ Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. ・ Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock. ・ Preheating : Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be within 130℃. ・ Cooling : The temperature difference between the capacitors and cleaning process shall not be greater than 100℃. [Reflow soldering] 【Recommended conditions for eutectic soldering】 【Recommended condition for Pb-free soldering】 300 300 200 Peak 260℃ Max. Within 10sec. 230℃ Within 10sec. 60sec. 60sec Min. Min. Slow cooling 100 Temperature(℃) Temperature(℃) Preheating 0 200 Slow cooling 100 0 Preheating150℃ Heating above 230℃ 60sec. Min. 40sec. Max. 1/2T~1/3T Capacitor Caution ①The ideal condition is to have solder mass(fillet)controlled to 1/2 to 1/3 of the thickness of a capacitor. ②Because excessive dwell times can adversely affect solderability, soldering duration shall be kept as close to recommended times as possible. soldering for 2 times. [Wave soldering] 【Recommended conditions for eutectic soldering】 300 100 Temperature(℃) Temperature(℃) Slow cooling PC board Peak 260℃ Max. Within 10sec. 230~250℃ Within 3sec. 200 T 【Recommended condition for Pb-free soldering】 300 Preheating 120sec. Min. Solder 200 120sec. Min. Preheating 150℃ 100 Slow cooling 0 0 Caution ①Wave soldering must not be applied to capacitors designated as for reflow soldering only. soldering for 1 times. 【Recommended condition for Pb-free soldering】 400 400 300 200 Slow cooling 100 0 Preheating 60sec. Min. Temperature(℃) Temperature(℃) 300 ⊿T Slow cooling 200 Preheating 150℃ Min. 100 0 400 Peak 350℃ Max. Within 3sec. 230~280℃ Within 3sec. 316type or less 200 0 Slow cooling ⊿T Preheating 150℃ Min. 100 60sec. Min. ⊿T ⊿T≦150℃ Peak 280℃ Max. Within 3sec. 300 温度(℃) [Hand soldering] 【Recommended conditions for eutectic soldering】 60sec. Min. 325type or more ⊿T ⊿T≦130℃ Caution ①Use a 50W soldering iron with a maximum tip diameter of 1.0 mm. ②The soldering iron shall not directly touch capacitors. soldering for 1 times. ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_prec_e-E08R01 5. Cleaning Precautions Technical considerations ◆Cleaning conditions 1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics. 1. The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). 2. Inappropriate cleaning conditions( insufficient or excessive cleaning) may adversely affect the performance of the capacitors. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead to the cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked; Ultrasonic output : 20 W/ℓ or les Ultrasonic frequency : 40 kHz or less Ultrasonic washing period : 5 min. or less 6. Resin coating and mold Precautions 1. With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance. 2. When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive heat may lead to damage or destruction of capacitors. The use of such resins, molding materials etc. is not recommended. 7. Handling Precautions ◆Splitting of PCB 1. When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board. 2. Board separation shall not be done manually, but by using the appropriate devices. ◆Mechanical considerations Be careful not to subject capacitors to excessive mechanical shocks. (1)If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used. (2)Please be careful that the mounted components do not come in contact with or bump against other boards or components. 8. Storage conditions Precautions ◆Storage 1. To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. ・Recommended conditions Ambient temperature : Below 30℃ Humidity : Below 70% RH The ambient temperature must be kept below 40℃. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capacitors shall be used within 6 months from the time of delivery. ・Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air. 2. The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits. Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment at 150℃ for 1hour. Technical considerations If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation and quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors. ※RCR-2335B(Safety Application Guide for fixed ceramic capacitors for use in electronic equipment)is published by JEITA. Please check the guide regarding precautions for deflection test, soldering by spot heat, and so on. ▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . c_mlcc_prec_e-E08R01
CEEMK212BJ105KG-T 价格&库存

很抱歉,暂时无法提供与“CEEMK212BJ105KG-T”相匹配的价格&库存,您可以联系我们找货

免费人工找货