有关敝司产品的注意事项
请务必在使用敝司产品之前阅读。
注意
■ 本产品目录所记载的内容为2016年10月之内容。因改良等原因,可能会不经预告而变更记载内容,所以请务必在
使用前先确认最新的产品信息。未按照本产品目录所记载的内容或交货规格说明书使用敝司产品的,即便其致使使
用设备发生损害、瑕疵等时,敝司也不承担任何责任,敬请悉知。
■ 就规格相关的详细内容,敝司备有交货规格说明书,详情请向敝司咨询。
■ 使用敝司产品时,请务必事先安装到设备之后,在实际使用的环境下进行评估和确认。
■ 本产品目录所中记载的产品可使用于一般电子设备[音像设备、办公自动化设备、家电产品、办公设备、信息 /通讯设
备(手机、电脑等)]。因此,若考虑将本产品目录所记载的产品使用于可能会直接危及生命或身体的设备[运输用设
备(汽车驱动控制设备、火车控制设备、船舶控制设备等)、交通信号设备、防灾设备、医疗用器械、高公共性信息通
信设备(电话交换机以及电话、无线、广播电视等基站)]等时,请务必事先向敝司咨询。
另外,请勿将敝司产品使用于对安全性和可靠性要求较高的设备(航天设备、航空设备、原子能控制设备、海底设
备、军事设备等)。
且即便属于一般电子设备,使用于对安全性和可靠性要求较高的设备、电路上时,敝司建议进行充分的安全评估,
并根据需要,在设计时追加保护电路等。
未经敝司的事先书面同意,把本产品目录中记载的产品使用于前述需要向敝司咨询的设备或敝司禁止使用的设备,
从而给客户或第三方造成的损害的,敝司不承担任何责任,敬请悉知。
■ 因使用敝司产品,发生第三方的知识产权等权利相关问题的,敝司不承担责任。另外,并不代表授予这些权利的实
施权,敬请悉知。
■ 除非书面合同中另有规定,敝司产品的保证范围仅限于交付的敝司产品单品,并且就敝司产品的故障或瑕疵所导致
的损害,敝司不承担任何责任,敬请悉知。
■ 本产品目录所记载的内容适用于从敝司营业所、销售子公司、销售代理店(即“正规销售渠道”)购买的敝司产
品,并不适用于从上述以外的渠道购买的敝司产品,敬请悉知。
■ 出口相关注意事项
本产品目录所记载的部分产品在出口时须事先确认《外汇和对外贸易法》以及美国出口管理的相关法规,并办理相
关手续。如有不明之处,请向敝司咨询。
17
多层共模模式扼流线圈
(MC 系列F 型)
MULTILAYER COMMON MODE CHOKE COILS(MC SERIES F TYPE)
回流焊
REFLOW
※使用温度范围:
-40 ~+85℃
* Operating Temp.:-40~+85℃
型号标示法
■PARTS
NUMBER
M C F
①
0
8
0
②
①类型 name
①Series
代码
Code
MCF
6
2 G
③ ④
1
2 0
⑤
- T
⑥
△
⑦
④Material
④材料
Code
代码
G
E
H
类型
Series
name
多层共模模式扼流线圈
Multilayer
common mode choke coil
EMI抑制元件/共模模式扼流线圈
②尺寸
②Dimensions
代码
Code
0605
0806
1210
2010
尺寸[mm]
Dimensions[mm]
0.65×0.50
0.85×0.65
1.25×1.0
2.0×1.0
③No. of Lines
③匝数
代码
Code
2
4
No. 匝数
of Lines
2线
lines
4线
lines
空格 space
△=Blank
Material
材料
Refer to impedance curves
for material differences
材料不同时,阻抗值也有所变化
⑤标称共模阻抗值
⑤Nominal common impedance
Code
代码
Nominal
common impedance[Ω]
标称共模阻抗值
〔Ω〕
(例)
(example)
120
12
900
90
⑥包装
⑥Packaging
代码
Code
-T
包装
Packaging
卷盘带装
Taping
⑦Internal code
⑦本公司管理记号
Code
代码
△
本公司管理记号
Internal code
标准品
Standard
标准外型尺寸/标准数量/等价电路
■STANDARD
EXTERNAL DIMENSIONS / STANDARD QUANTITY / EQUIVALENT CIRCUIT
4 4线LINES
2线
LINES
C
C
E1
A
A
B
E2
E2
Type
MCF0605
MCF0806
MCF1210
MCF2010
E1
P
P
B
等价电路
Equivalent Circuit
等价电路
Equivalent Circuit
・No polarity
·没有极性
・No polarity
·没有极性
A
B
0.65±0.05
(0.026±0.002)
0.85±0.05
(0.033±0.002)
1.0±0.15
(0.039±0.006)
2.0±0.15
(0.079±0.006)
0.50±0.05
(0.020±0.002)
0.65±0.05
(0.026±0.002)
1.25±0.15
(0.049±0.006)
1.0±0.15
(0.039±0.006)
C
E1
E2
0.30±0.05
0.15±0.1
0.12±0.1
(0.012±0.002)
(0.006±0.004)
(0.005±0.004)
0.40±0.05
0.27±0.1
0.2 +0.05/-0.1
(0.016±0.002)
(0.011±0.004)
(0.008 +0.002/-0.004)
0.55±0.1
0.3±0.1
0.2±0.1
(0.022±0.004)
(0.012±0.004)
(0.008±0.004)
0.45±0.1
0.25 +0.15/-0.1
0.25±0.15
(0.018±0.004) (0.010 +0.006/-0.004)
(0.010±0.006)
P
0.40±0.10
(0.016±0.004)
0.50±0.10
(0.020±0.004)
0.55±0.10
(0.022±0.004)
0.50±0.10
(0.020±0.004)
Standard
quantity
标准数量
[pcs]
[pcs]
卷盘带装
Taping
15000
10000
5000
4000
Unit:mm(inch)
单位:
mm(inch)
i_mlci_MCF_e-E05R01
▶ 由于篇幅有限,本产品目录中只记载了有代表性的产品规格,若考虑使用弊司产品时,请确认交货规格说明书中的详细规格。
另外,有关各产品的详细信息
(特性图、可靠性信息、使用时的注意事项等),请参阅弊司网站
(http://www.ty-top.com/ )。
132
17
■PARTS
NUMBER
型号一览
●MCF0605 型
type
Parts型号
number
MCF0605
MCF0605
MCF0605
MCF0605
2G120-T
2G350-T
2E600-T
2E900-T
EHS
No. 匝数
of Lines
Common共模阻抗
mode impedance
[Ω]
[Ω]
Measuring
frequency
测试频率
[[MHz]
MHz]
DC直流电阻
Resistance
[Ω](max.)
[Ω]
(max.)
Rated
current
额定电流
[[A](max.)
(max.)
A]
Rated
voltage
额定电压
[V]
[
V]
Insulation
resistance
绝缘阻抗
[[MΩ](min.)
(min.)
MΩ]
RoHS
RoHS
RoHS
RoHS
2
2
2
2
12±5
35±20%
60±25%
90±20%
100
100
100
100
2.5
6.5
3.5
3.9
0.05
0.05
0.05
0.05
5
5
5
5
100
100
100
100
EHS
No. 匝数
of Lines
Common共模阻抗
mode impedance
[Ω]
[Ω]
Measuring
frequency
测试频率
[[MHz]
MHz]
DC直流电阻
Resistance
[Ω](max.)
[Ω]
(max.)
Rated
current
额定电流
(max.)
[[A](max.)
A]
Rated
voltage
额定电压
[V]
[
V]
Insulation
resistance
绝缘阻抗
(min.)
[[MΩ](min.)
MΩ]
RoHS
RoHS
RoHS
RoHS
2
2
2
2
12±5
47±20%
90±20%
30±25%
100
100
100
100
2.5
4.0
5.0
1.5
0.13
0.10
0.10
0.15
5
5
5
5
100
100
100
100
EHS
No. 匝数
of Lines
Common共模阻抗
mode impedance
[Ω]
[Ω]
Measuring
frequency
测试频率
[[MHz]
MHz]
DC直流电阻
Resistance
[Ω](max.)
[Ω]
(max.)
Rated
current
额定电流
(max.)
[[A](max.)
A]
Rated
voltage
额定电压
[V]
[
V]
Insulation
resistance
绝缘阻抗
[[MΩ](min.)
(min.)
MΩ]
RoHS
RoHS
RoHS
RoHS
2
2
2
2
40±25%
90±25%
50±25%
90±20%
100
100
100
100
2.5
4.5
1.5
2.5
0.10
0.10
0.16
0.15
5
5
5
5
100
100
100
100
EHS
No. 匝数
of Lines
Common共模阻抗
mode impedance
[Ω]
[Ω]
Measuring
frequency
测试频率
[[MHz]
MHz]
DC直流电阻
Resistance
[Ω](max.)
[Ω]
(max.)
Rated
current
额定电流
(max.)
[[A](max.)
A]
Rated
voltage
额定电压
[V]
[
V]
Insulation
resistance
绝缘阻抗
[[MΩ](min.)
(min.)
MΩ]
RoHS
4
90±25%
100
4.5
0.10
5
100
●MCF0806型
type
Parts型号
number
MCF0806
MCF0806
MCF0806
MCF0806
2G120-T
2G470-T
2G900-T
2E300-T
●MCF1210 型
type
Parts型号
number
2G400-T
2G900-T
2H500-T
2H900-T
●MCF2010 型
type
Parts型号
number
MCF2010 4G900-T
■ELECTRICAL CHARACTERISTICS
Sdd
0
-10
-15
MCF0806 2G120
Sdd
-20
0
-25
-5
1
10
100
1000
-15
Scc
-20
-25
0
10000
-15
-20
-35
-10
Sdd
10
100
1000
Frequency[MHz]
10000
1
10
100
1000
-10
Scc
-25
-10
-15
-20
10000
Scc
-30
-35
Frequency[MHz]-15
-20
-35
Sdd
-5
-15
-5
-25
Scc
0
-30
1
MCF0806 2G900
5
-30
-5
Frequency[MHz]
-10
-10
-25
Sdd
0
-5
MCF0806 2G470
5
Scc
Magnitude[dB]
5
Magnitude[dB]
Magnitude[dB]
Magnitude[dB]
█ 特性图-5
MCF0806 2G900
5
Sdd
Magnitude[dB]
0
MCF0806 2G470
5
Magnitude[dB]
MCF0806 2G120
5
EMI抑制元件/共模模式扼流线圈
MCF1210
MCF1210
MCF1210
MCF1210
1
10
100
1000
10000
Frequency[MHz]
-20
Scc
-25
-30
1
10
100
1000
Frequency[MHz]
10000
-35
1
10
100
1000
Frequency[MHz]
10000
i_mlci_MCF_e-E05R01
▶ 由于篇幅有限,本产品目录中只记载了有代表性的产品规格,若考虑使用弊司产品时,请确认交货规格说明书中的详细规格。
另外,有关各产品的详细信息
(特性图、可靠性信息、使用时的注意事项等),请参阅弊司网站
(http://www.ty-top.com/ )。
17
133
Multilayer chip inductors
Multilayer chip inductors for high frequency, Multilayer chip bead inductors
Multilayer common mode choke coils(MC series F type)
Metal Multilayer Chip Power Inductors (MCOILTM MC series)
■PACKAGING
①Minimum Quantity
●Tape & Reel Packaging
Type
CK1608(0603)
CK2125(0805)
CKS2125(0805)
CKP1608(0603)
CKP2012(0805)
CKP2016(0806)
CKP2520(1008)
NM2012(0805)
NM2520(1008)
LK1005(0402)
LK1608(0603)
LK2125(0805)
HK0603(0201)
HK1005(0402)
HK1608(0603)
HK2125(0805)
HKQ0402(01005)
HKQ0603W(0201)
HKQ0603C(0201)
HKQ0603S(0201)
HKQ0603U(0201)
AQ105(0402)
BK0402(01005)
BK0603(0201)
BK1005(0402)
BKH0603(0201)
BKH1005(0402)
BK1608(0603)
BK2125(0805)
BK2010(0804)
BK3216(1206)
BKP0402(01005)
BKP0603(0201)
BKP1005(0402)
BKP1608(0603)
BKP2125(0805)
MCF0605(0202)
MCF0806(0302)
MCF1210(0504)
MCF2010(0804)
MCFK1608(0603)
MCFE1608(0603)
MCHK2012(0806)
MCKK2012(0805)
Thickness
mm(inch)
0.8 (0.031)
0.85(0.033)
1.25(0.049)
0.85(0.033)
1.25(0.049)
0.8 (0.031)
0.9 (0.035)
0.9 (0.035)
0.7 (0.028)
0.9 (0.035)
1.1 (0.043)
0.9 (0.035)
0.9 (0.035)
1.1 (0.043)
0.5 (0.020)
0.8 (0.031)
0.85(0.033)
1.25(0.049)
0.3 (0.012)
0.5 (0.020)
0.8 (0.031)
0.85(0.033)
1.0 (0.039)
0.2 (0.008)
0.3 (0.012)
0.3 (0.012)
0.3 (0.012)
0.3 (0.012)
0.5 (0.020)
0.2 (0.008)
0.3 (0.012)
0.5 (0.020)
0.3 (0.012)
0.5 (0.020)
0.8 (0.031)
0.85(0.033)
1.25(0.049)
0.45(0.018)
0.8 (0.031)
0.2 (0.008)
0.3 (0.012)
0.5 (0.020)
0.8 (0.031)
0.85(0.033)
0.3 (0.012)
0.4 (0.016)
0.55(0.022)
0.45(0.018)
0.6 (0.024)
0.65(0.026)
0.8 (0.031)
1.0(0.039)
Standard Quantity [pcs]
Paper Tape
Embossed Tape
4000
-
4000
-
-
2000
4000
-
-
2000
4000
-
-
3000
-
3000
-
3000
-
3000
-
2000
-
3000
-
3000
-
2000
10000
-
4000
-
4000
-
-
2000
15000
-
10000
-
4000
-
-
4000
-
3000
20000
40000
15000
-
15000
-
15000
-
15000
-
10000
-
20000
-
15000
-
10000
-
15000
-
10000
-
4000
-
4000
-
-
2000
4000
-
-
4000
20000
-
15000
-
10000
-
4000
-
4000
-
15000
-
-
10000
-
5000
-
4000
4000
-
4000
-
4000
-
3000
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_pack_e-E05R01
②Taping material
●Card board carrier tape
Top tape
Base tape
Sprocket hole
Bottom tape
Chip cavity
CK
CKP
CK
CKS
LK
LK
LK
HK
HK
HK
HKQ
HKQ
AQ
1608
1608
2125
2125
1005
1608
2125
0603
1005
1608
0402
0603
105
BK
BK
BK
BK
BK
BK
BKP
BKP
BKP
BKP
BKP
BKH
BKH
MCF
MC
MC
0402
0603
1005
1608
2125
2010
0402
0603
1005
1608
2125
0603
1005
0605
1608
2012
CK
CKS
CKP
CKP
CKP
NM
NM
LK
HKQ
HK
2125
2125
2012
2016
2520
2012
2520
2125
0402
2125
BK
BK
MCF
MCF
MCF
MC
2125
3216
0806
1210
2010
2012
Chip Filled
Chip
●Embossed Tape
Top tape
Sprocket hole
Base tape
Chip cavity
Chip Filled
Chip
③Taping Dimensions
●Paper tape (8mm wide)
B
T
8.0±0.3
(0.315±0.012)
A
F
Unit:mm(inch)
1.75±0.1
(0.069±0.004)
3.5±0.05
(0.138±0.002)
Sprocket hole
φ1.5+0.1/-0
(φ0.059+0.004/-0)
4.0±0.1
(0.157±0.004)
2.0±0.05
(0.079±0.002)
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_pack_e-E05R01
Type
Thickness
mm(inch)
CK1608(0603)
0.8 (0.031)
CK2125(0805)
0.85(0.033)
CKS2125(0805)
0.85(0.033)
CKP1608(0603)
0.8 (0.031)
LK1005(0402)
0.5 (0.020)
LK1608(0603)
0.8 (0.031)
LK2125(0805)
0.85(0.033)
HK0603(0201)
0.3 (0.012)
HK1005(0402)
0.5 (0.020)
HK1608(0603)
0.8 (0.031)
HKQ0402(01005)
0.2 (0.008)
HKQ0603W(0201)
0.3 (0.012)
HKQ0603C(0201)
0.3 (0.012)
HKQ0603S(0201)
0.3 (0.012)
HKQ0603U(0201)
0.3 (0.012)
AQ105(0402)
0.5 (0.020)
BK0402(01005)
0.2 (0.008)
BK0603(0201)
0.3 (0.012)
BK1005(0402)
0.5 (0.020)
BK1608(0603)
0.8 (0.031)
BK2125(0805)
0.85(0.033)
BK2010(0804)
0.45(0.018)
BKP0402(01005)
0.2 (0.008)
BKP0603(0201)
0.3 (0.012)
BKP1005(0402)
0.5 (0.020)
BKP1608(0603)
0.8 (0.031)
BKP2125(0805)
0.85(0.033)
BKH0603(0201)
0.3 (0.012)
BKH1005(0402)
0.5 (0.020)
MCF0605(0202)
0.3 (0.012)
MCFK1608(0603)
0.6 (0.024)
MCFE1608(0603)
0.65(0.026)
MCHK2012(0805)
0.8 (0.031)
Chip cavity
A
B
1.0±0.2
1.8±0.2
(0.039±0.008)
(0.071±0.008)
1.5±0.2
2.3±0.2
(0.059±0.008)
(0.091±0.008)
1.5±0.2
2.3±0.2
(0.059±0.008)
(0.091±0.008)
1.0±0.2
1.8±0.2
(0.039±0.008)
(0.071±0.008)
0.65±0.1
1.15±0.1
(0.026±0.004)
(0.045±0.004)
1.0±0.2
1.8±0.2
(0.039±0.008)
(0.071±0.008)
1.5±0.2
2.3±0.2
(0.059±0.008)
(0.091±0.008)
0.40±0.06
0.70±0.06
(0.016±0.002)
(0.028±0.002)
0.65±0.1
1.15±0.1
(0.026±0.004)
(0.045±0.004)
1.0±0.2
1.8±0.2
(0.039±0.008)
(0.071±0.008)
0.25±0.04
0.45±0.04
(0.010±0.002)
(0.018±0.002)
0.40±0.06
0.70±0.06
(0.016±0.002)
(0.028±0.002)
0.40±0.06
0.70±0.06
(0.016±0.002)
(0.028±0.002)
0.40±0.06
0.70±0.06
(0.016±0.002)
(0.028±0.002)
0.40±0.06
0.70±0.06
(0.016±0.002)
(0.028±0.002)
0.75±0.1
1.15±0.1
(0.030±0.004)
(0.045±0.004)
0.25±0.04
0.45±0.04
(0.010±0.002)
(0.018±0.002)
0.40±0.06
0.70±0.06
(0.016±0.002)
(0.028±0.002)
0.65±0.1
1.15±0.1
(0.026±0.004)
(0.045±0.004)
1.0±0.2
1.8±0.2
(0.039±0.008)
(0.071±0.008)
1.5±0.2
2.3±0.2
(0.059±0.008)
(0.091±0.008)
1.2±0.1
2.17±0.1
(0.047±0.004)
(0.085±0.004)
0.25±0.04
0.45±0.04
(0.010±0.002)
(0.018±0.002)
0.40±0.06
0.70±0.06
(0.016±0.002)
(0.028±0.002)
0.65±0.1
1.15±0.1
(0.026±0.004)
(0.045±0.004)
1.0±0.2
1.8±0.2
(0.039±0.008)
(0.071±0.008)
1.5±0.2
2.3±0.2
(0.059±0.008)
(0.091±0.008)
0.40±0.06
0.70±0.06
(0.016±0.002)
(0.028±0.002)
0.65±0.1
1.15±0.1
(0.026±0.004)
(0.045±0.004)
0.62±0.03
0.77±0.03
(0.024±0.001)
(0.030±0.001)
1.1±0.05
1.9±0.05
(0.043±0.002)
(0.075±0.002)
1.1±0.05
1.9±0.05
(0.043±0.002)
(0.075±0.002)
1.55±0.2
2.3±0.2
(0.061±0.008)
(0.091±0.008)
Insertion Pitch
F
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
2.0±0.05
(0.079±0.002)
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
2.0±0.05
(0.079±0.002)
2.0±0.05
(0.079±0.002)
4.0±0.1
(0.157±0.004)
2.0±0.05
(0.079±0.002)
2.0±0.05
(0.079±0.002)
2.0±0.05
(0.079±0.002)
2.0±0.05
(0.079±0.002)
2.0±0.05
(0.079±0.002)
2.0±0.05
(0.079±0.002)
2.0±0.05
(0.079±0.002)
2.0±0.05
(0.079±0.002)
2.0±0.05
(0.079±0.002)
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
2.0±0.05
(0.079±0.002)
2.0±0.05
(0.079±0.002)
2.0±0.05
(0.079±0.002)
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
2.0±0.05
(0.079±0.002)
2.0±0.05
(0.079±0.002)
2.0±0.05
(0.079±0.002)
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
Tape Thickness
T
1.1max
(0.043max)
1.1max
(0.043max)
1.1max
(0.043max)
1.1max
(0.043max)
0.8max
(0.031max)
1.1max
(0.043max)
1.1max
(0.043max)
0.45max
(0.018max)
0.8max
(0.031max)
1.1max
(0.043max)
0.36max
(0.014max)
0.45max
(0.018max)
0.45max
(0.018max)
0.45max
(0.018max)
0.45max
(0.018max)
0.8max
(0.031max)
0.36max
(0.014max)
0.45max
(0.018max)
0.8max
(0.031max)
1.1max
(0.043max)
1.1max
(0.043max)
0.8max
(0.031max)
0.36max
(0.014max)
0.45max
(0.018max)
0.8max
(0.031max)
1.1max
(0.043max)
1.1max
(0.043max)
0.45max
(0.018max)
0.8max
(0.031max)
0.45max
(0.018max)
0.72max
(0.028max)
0.9max
(0.035max)
0.9max
(0.035max)
Unit : mm(inch)
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_pack_e-E05R01
●Embossed Tape (8mm wide)
Unit:mm(inch)
A
B
8.0±0.3
(0.315±0.012)
3.5±0.05
(0.138±0.002)
Sprocket hole
F
1.75±0.1
(0.069±0.004)
φ1.5+0.1/-0
(φ0.059+0.004/-0)
4.0±0.1
(0.157±0.004)
2.0±0.05
(0.079±0.002)
Type
Thickness
mm(inch)
CK2125(0805)
1.25(0.049)
CKS2125(0805)
1.25(0.049)
CKP2012(0805)
0.9 (0.035)
CKP2016(0806)
0.9 (0.035)
Chip cavity
A
B
1.5±0.2
2.3±0.2
(0.059±0.008)
(0.091±0.008)
1.5±0.2
2.3±0.2
(0.059±0.008)
(0.091±0.008)
1.55±0.2
2.3±0.2
(0.061±0.008)
(0.091±0.008)
1.8±0.1
2.2±0.1
(0.071±0.004)
(0.087±0.004)
Insertion Pitch
F
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
2.3±0.1
(0.091±0.004)
2.8±0.1
(0.110±0.004)
4.0±0.1
(0.157±0.004)
1.55±0.2
(0.061±0.008)
2.3±0.2
(0.091±0.008)
4.0±0.1
(0.157±0.004)
2.3±0.1
(0.091±0.004)
2.8±0.1
(0.110±0.004)
4.0±0.1
(0.157±0.004)
1.5±0.2
(0.059±0.008)
2.3±0.2
(0.091±0.008)
4.0±0.1
(0.157±0.004)
1.5±0.2
(0.059±0.008)
2.3±0.2
(0.091±0.008)
4.0±0.1
(0.157±0.004)
1.5±0.2
(0.059±0.008)
1.9±0.1
(0.075±0.004)
0.75±0.05
(0.030±0.002)
1.15±0.05
(0.045±0.002)
1.1±0.1
(0.043±0.004)
1.55±0.2
(0.061±0.008)
2.3±0.2
(0.091±0.008)
3.5±0.1
(0.138±0.004)
0.95±0.05
(0.037±0.002)
1.40±0.05
(0.055±0.002)
2.3±0.1
(0.091±0.004)
2.3±0.2
(0.091±0.008)
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
2.0±0.05
(0.079±0.002)
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
4.0±0.1
(0.157±0.004)
0.7 (0.028)
CKP2520(1008)
0.9 (0.035)
1.1 (0.043)
NM2012(0805)
0.9 (0.035)
0.9 (0.035)
NM2520(1008)
1.1 (0.043)
LK2125(0805)
1.25(0.049)
0.85(0.033)
HK2125(0805)
1.0 (0.039)
BK2125(0805)
1.25(0.049)
BK3216(1206)
0.8(0.031)
MCF0806(0302)
0.4 (0.016)
MCF1210(0504)
0.55(0.022)
MCF2010(0804)
0.45(0.018)
MCKK2012(0805)
1.0 (0.039)
Tape Thickness
K
T
2.0
0.3
(0.079)
(0.012)
2.0
0.3
(0.079)
(0.012)
1.3
0.3
(0.051)
(0.012)
1.3
0.25
(0.051)
(0.01)
1.4
(0.055)
0.3
1.4
(0.012)
(0.055)
1.7
(0.067)
1.3
0.3
(0.051)
(0.012)
1.4
(0.055)
0.3
(0.012)
1.7
(0.067)
2.0
0.3
(0.079)
(0.012)
1.5
(0.059)
0.3
(0.012)
2.0
(0.079)
2.0
0.3
(0.079)
(0.012)
1.4
0.3
(0.055)
(0.012)
0.55
0.3
(0.022)
(0.012)
0.65
0.3
(0.026)
(0.012)
0.85
0.3
(0.033)
(0.012)
1.3
0.25
(0.051)
(0.010)
Unit : mm(inch)
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_pack_e-E05R01
●Embossed Tape (4mm wide)
Unit:mm(inch)
1.8±0.02
(0.071±0.001)
A
B
4.0±0.05
(0.157±0.002)
0.9±0.05
(0.035±0.002)
φ0.8±0.04
(φ0.031±0.002)
Sprocket hole
2.0±0.04
(0.079±0.002)
1.0±0.02
(0.039±0.001)
F
Chip cavity
Thickness
mm(inch)
0.2 (0.008)
Type
HKQ0402(01005)
A
0.23
B
0.43
Insertion Pitch
F
1.0±0.02
Tape Thickness
K
T
0.5max.
0.25max.
Unit : mm
④LEADER AND BLANK PORTION
Blank portion
Chip cavity
Blank portion
Leader
100mm or more
(3.94inches or more)
160mm or more
(6.3inches or more)
Direction of tape feed
400mm or more
(15.7inches or more)
⑤Reel Size
t
E
C
R
B
D
A
W
A
φ178±2.0
B
φ50 or more
C
φ13.0±0.2
4mm width tape
8mm width tape
t
1.5max.
2.5max.
W
5±1.0
10±1.5
D
φ21.0±0.8
E
2.0±0.5
R
1.0
(Unit : mm)
⑥Top tape strength
The top tape requires a peel-off force of 0.1~0.7N in the direction of the arrow as illustrated below.
Pull direction
0~15°
Top tape
Base tape
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_pack_e-E05R01
Multilayer chip inductors
Multilayer chip inductors for high frequency, Multilayer chip bead inductors
Multilayer common mode choke coils(MC series F type)
Metal Multilayer Chip Power Inductors (MCOILTM MC series)
■RELIABILITY DATA
1. Operating Temperature Range
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
Specified Value
-55~+125℃
BK2010
BK3216
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
HKQ0402
HK0603
HK1005
HK1608
HK2125
HKQ0603W/HKQ0603C/HKQ0603S/
HKQ0603U/
AQ105
MCFK1608
MCFE1608
MCHK2012
MCKK2012
-55~+85℃
-40~+85℃
-40~+85℃
-55~+125℃
-40~+85℃
-55~+125℃
-40~+125℃(Including self-generated heat)
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
2. Storage Temperature Range
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
Specified Value
-55~+125℃
BK2010
BK3216
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
HKQ0402
HK0603
HK1005
HK1608
HK2125
HKQ0603W/HKQ0603C/HKQ0603S/
HKQ0603U/
AQ105
MCFK1608
MCFE1608
MCHK2012
MCKK2012
-55~+85℃
-40~+85℃
-40~+85℃
-55~+125℃
-40~+85℃
-55~+125℃
-40~+85℃
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
3. Rated Current
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
BK2010
BK3216
150~750mA DC
100~500mA DC
120~1000mA DC
115~450mA DC
200~300mA DC
150~1500mA DC
200~1200mA DC
100mA DC
100~200mA DC
0.55~1.1A DC
0.8~1.8A DC
0.8~2.4A DC
1.0~3.0A DC
1.5~4.0A DC
0.05A DC
0.1~0.13A DC
0.1~0.15A DC
0.1A DC
50~60mA DC
60~500mA DC
110~280mA DC
0.35~0.9A DC
0.7~1.7A DC
0.9~1.6A DC
1.1~1.8A DC
1.0~1.2A DC
0.9~1.2A DC
20~25mA DC
1~150mA DC
5~300mA DC
60~470mA DC
110~300mA DC (-55~+125℃) 200~900mA DC (-55~+85℃)
150~300mA DC
300mA DC
100~500mA DC
100~850mA DC
160~850mA DC
130~600mA DC
190~900mA DC
280~710mA DC
Idc1 : 1900~2300mA DC, Idc2 : 1600~2100mA DC
Idc1 : 1400~2600mA DC, Idc2 : 800~1500mA DC
Idc1 : 3210~4320mA DC, Idc2 : 3240~3600mA DC
Idc1 : 4500~6200mA DC, Idc2 : 3100~4000mA DC
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
CKP1608
Specified Value
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
HK0603
HK1005
HK1608
HK2125
HKQ0402
HKQ0603W
HKQ0603C
HKQ0603S
HKQ0603U
AQ105
MCFK1608
MCFE1608
MCHK2012
MCKK2012
Definition of rated current:
・In the CK, CKS and BK Series, the rated current is the value of current at which the temperature of the element is increased within 20℃.
・In the BK Series P type, CK Series P type, NM Series, the rated current is the value of current at which the temperature of the element is increased within 40℃.
・In the LK, HK, HKQ0603, and AQ Series, the rated current is either the DC value at which the initial L value is decreased within 5% with the application of DC bias, or the value of
current at which the temperature of the element is increased within 20℃.
・In the HKQ0402(~9N1), the rated current is either the DC value at which the initial L value is decreased within 5% with the application of DC bias, or the value of current at which the
temperature of the element is increased within 20℃.
・In the HKQ0402(10N~), the rated current is either the DC value at which the initial L value is decreased within 5% with the application of DC bias, or the value of current at which the
temperature of the element is increased within 25℃.
・In the MC Series, Idc1 is the DC value at which the initial L value is decreased within 30% and Idc2 is the DC value at which the temperature of element is increased within 40℃ by
the application of DC bias. (at 20℃)
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
4. Impedance
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
Specified Value
Test Methods and
Remarks
BK2010
BK3216
10~330Ω ±5Ω(10Ω), ±25%(Other)
10~1200Ω ±25%
10~1800Ω ±25%
25~1500Ω ±25%
600~1800Ω ±25%
22~2500Ω ±25%
15~2500Ω ±25%
5~1000Ω ±25%
60~1000Ω ±25%
10~33Ω ±5Ω(10Ω)、±25%(Other)
10~120Ω ±5Ω(10Ω), ±25%(Other)
10~330Ω ±5Ω(EM100), ±25%(Other)
33~470Ω ±25%
33~330Ω ±25%
12~90Ω ±5Ω(12Ω), ±20%(35Ω), ±25%(Other)
12~90Ω ±5Ω(12Ω), ±20%(Other)
40~90Ω ±20%(2H900),±25%(Other)
90Ω ±25%
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
HKQ0402
HK0603
HK1005
HK1608
HK2125
HKQ0603W/HKQ0603C/HKQ0603S/
HKQ0603U
AQ105
MCFK1608
MCFE1608
MCHK2012
MCKK2012
BK0402Series, BKP0402Series
Measuring frequency
: 100±1MHz
Measuring equipment
: E4991A(or its equivalent)
Measuring jig
: 16197A(or its equivalent)
BK0603Series, BKP0603Series
Measuring frequency
: 100±1MHz
Measuring equipment
: 4291A(or its equivalent)
Measuring jig
: 16193A(or its equivalent)
BK1005Series, BKP1005Series ,BKH1005Series
Measuring frequency
: 100±1MHz
Measuring equipment
: 4291A(or its equivalent)
Measuring jig
: 16192A(or its equivalent), 16193A(or its equivalent)
BK1608・2125Series, BKP1608・2125Series
Measuring frequency
: 100±1MHz
Measuring equipment
: 4291A(or its equivalent), 4195A(or its equivalent)
Measuring jig
: 16092A(or its equivalent) or 16192A(or its equivalent)/HW
BK2010・3216Series, MCF Series
Measuring frequency
: 100±1MHz
Measuring equipment
: 4291A(or its equivalent), 4195A(or its equivalent)
Measuring jig
: 16192A(or its equivalent)
-
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
5. Inductance
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
Specified Value
BK2010
BK3216
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
HK0603
HK1005
HK1608
HK2125
HKQ0402
HKQ0603W
HKQ0603C
HKQ0603S
HKQ0603U
AQ105
MCFK1608
MCFE1608
MCHK2012
MCKK2012
CK、LK、CKP、NM、MC Series
Measuring frequency
Measuring frequency
Measuring frequency
Measuring frequency
Measuring frequency
Measuring frequency
Measuring frequency
Measuring equipment /jig
Test Methods and
Remarks
Measuring current
HK、HKQ、AQ Series
Measuring frequency
Measuring frequency
Measuring frequency
Measuring frequency
Measuring frequency
Measuring equipment /jig
-
4.7~10.0μH: ±20%
0.1~10.0μH: ±20%
1.0~10.0μH: ±20%
0.33~2.2μH: ±20%
0.47~4.7μH: ±20%
0.47~4.7μH: ±20%
0.47~4.7μH: ±20%
0.82~1.0μH: ±20%
1.0~2.2μH: ±20%
0.12~2.2μH: ±10 or 20%
0.047~33.0μH: ±20% 0.10~12.0μH: ±10%
0.047~33.0μH: ±20% 0.10~12.0μH: ±10%
1.0~6.2nH: ±0.3nH 6.8~100nH: ±5%
1.0~6.2nH: ±0.3nH 6.8~270nH: ±5%
1.0~5.6nH: ±0.3nH 6.8~470nH: ±5%
1.5~5.6nH: ±0.3nH 6.8~470nH: ±5%
0.5~3.9nH: ±0.1 or 0.2 or 0.3nH 4.3~5.6nH: ±0.3nH or 3% or 5%
6.2~47nH: ±3 or 5%
0.6~3.9nH: ±0.1 or 0.2 or 0.3nH 4.3~6.2nH: ±0.2 or 0.3nH or 3 or 5%
6.8~30nH: ±3 or 5% 33~100nH: ±5%
0.6~3.9nH: ±0.1 or 0.2 or 0.3nH 4.3~6.2nH: ±0.2 or 0.3nH 6.8~22nH: ±3 or 5%
0.6~6.2nH: ±0.2 or 0.3nH 6.8~22nH: ±3 or 5%
0.6~4.2nH: ±0.1 or 0.2 or 0.3nH 4.3~6.5nH: ±0.2 or 0.3nH 6.8~22nH: ±3 or 5%
1.0~6.2nH: ±0.3nH 6.8~15nH: ±5%
0.24~0.47H: ±20%
0.24~1.0μH: ±20%
0.24~0.47H: ±20%
0.24~0.47H: ±20%
: 2~4MHz(CK1608)
: 2~25MHz(CK2125)
: 2~10MHz(CKS2125)
: 10~25MHz(LK1005)
: 1~50MHz(LK1608)
: 0.4~50MHz(LK2125)
: 1MHz(CKP1608・CKP2012・CKP2016・CKP2520・NM2012・NM2520・MCFK1608・MCFE1608・MCHK2012・MCKK2012)
:・4194A+16085B+16092A(or its equivalent) ・4195A+41951+16092A(or its equivalent)
・4294A+16192A(or its equivalent)
・4291A+16193A(or its equivalent)/LK1005
・ 4285A + 42841A + 42842C + 42851 - 61100 ( or its equivalent ) /CKP1608 ・ CKP2012 ・ CKP2016 ・ CKP2520 ・ NM2012 ・
NM2520・MCFK1608・MCFE1608・MCHK2012・MCKK2012
:・1mA rms(0.047~4.7μH)
・0.1mA rms(5.6~33μH)
: 100MHz(HK0603・HK1005・AQ105)
: 50/100MHz(HK1608・HK2125)
: 500MHz(HKQ0603C・HKQ0603S・HKQ0603U)
: 300/500MHz(HKQ0603W)
: 100/500MHz(HKQ0402)
:・4291A+16197A(or its equivalent)/HK0603・AQ105
・4291A+16193A(or its equivalent)/HK1005
・E4991A+16197A(or its equivalent)/HKQ0603S・HKQ0603U・HKQ0603W・HKQ0603C
・4291A+16092A + in-house made jig(or its equivalent)/HK1608・HK2125
・E4991A+16196D(or its equivalent)/HKQ0402
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
6. Q
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
Specified Value
BK2010
BK3216
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
HK0603
HK1005
HK1608
HK2125
HKQ0402
HKQ0603W
HKQ0603C
HKQ0603S
HKQ0603U
AQ105
MCFK1608
MCFE1608
MCHK2012
MCKK2012
LK Series
Measuring frequency
Measuring frequency
Measuring frequency
Measuring equipment /jig
Measuring current
Test Methods and
Remarks
HK、HKQ、AQ Series
Measuring frequency
Measuring frequency
Measuring frequency
Measuring frequency
Measuring frequency
Measuring equipment /jig
-
-
10~20 min.
10~35 min.
15~50 min.
4~5 min.
8 min.
8~12 min.
10~18 min.
3~8 min.
6~15 min.
14~15 min.
10~13 min.
14 min.
8 min.
-
: 10~25MHz(LK1005)
: 1~50MHz(LK1608)
: 0.4~50MHz(LK2125)
:・4194A+16085B+16092A(or its equivalent)
・4195A+41951+16092A(or its equivalent)
・4294A+16192A(or its equivalent)
・4291A+16193A(or its equivalent)/LK1005
・1mA rms(0.047~4.7μH)
・0.1mA rms(5.6~33μH)
: 100MHz(HK0603・HK1005・AQ105)
: 50/100MHz(HK1608・HK2125)
: 500MHz(HKQ0603C・HKQ0603S・HKQ0603U)
: 300/500MHz(HKQ0603W)
: 100/500MHz(HKQ0402)
:・4291A+16197A(or its equivalent)/HK0603・AQ105
・4291A+16193A(or its equivalent)/HK1005
・E4991A+16197A(or its equivalent)/HKQ0603S・HKQ0603U・HKQ0603W・HKQ0603C
・4291A+16092A + in-house made jig(or its equivalent)/HK1608, HK2125
・E4991A+16196D(or its equivalent)HKQ0402
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
7. DC Resistance
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
Specified Value
Test Methods and
Remarks
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
HK0603
HK1005
HK1608
HK2125
HKQ0402
HKQ0603W
HKQ0603C
HKQ0603S
HKQ0603U
AQ105
MCFK1608
MCFE1608
MCHK2012
MCKK2012
BK2010
BK3216
0.07~1.2Ωmax.
0.065~1.50Ω max.
0.03~0.90Ω max.
0.26~3.20Ω max.
0.85~2.00Ω max.
0.05~1.10Ω max.
0.05~0.75Ω max.
0.10~0.90Ω max.
0.15~0.80Ω max.
0.05~0.15Ω max.
0.030~0.180Ω max.
0.0273~0.220Ω max.
0.025~0.18Ω max.
0.020~0.075Ω max.
2.5~6.5Ω max
2.5~5.0Ω max.
2.5~4.5Ω max.
4.5Ω max.
0.45~0.85Ω(±30%)
0.16~0.65Ω max.
0.12~0.52Ω max.
0.15~0.35Ω max.
0.08~0.28Ω max.
0.075~0.20Ω max
0.05~0.16Ω max.
0.10~0.15Ω max.
0.11~0.22Ω max.
0.41~1.16Ω max.
0.2~2.2Ω max.
0.1~1.1Ω max.
0.11~3.74Ω max.
0.08~4.8Ω max.
0.05~2.6Ω max.
0.10~1.5Ω max.
0.08~5.0Ω max.
0.07~4.1Ω max.
0.07~1.6Ω max.
0.06~1.29Ω max.
0.06~1.29Ω max.
0.07~0.45Ω max.
0.050~0.085Ω max.
0.100~0.340Ω max.
0.024~0.036Ω max.
0.025~0.039Ω max.
Measuring equipment:VOAC-7412, VOAC-7512, VOAC-7521(made by Iwasaki Tsushinki), HIOKI3227 (or its equivalent)
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
8. Self Resonance Frequency(SRF)
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
Specified Value
Test Methods and
Remarks
BK2010
BK3216
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
HK0603
HK1005
HK1608
HK2125
HKQ0402
HKQ0603W
HKQ0603C
HKQ0603S
HKQ0603U
AQ105
MCFK1608
MCFE1608
MCHK2012
MCKK2012
LK、CK Series :
Measuring equipment
Measuring jig
HK、HKQ、AQ Series :
Measuring equipment
-
17~25MHz min.
24~235MHz min.
24~75MHz min.
-
40~180MHz min.
9~260MHz min.
13~320MHz min.
900~10000MHz min.
400~10000MHz min.
300~10000MHz min.
200~4000MHz min.
1200~10000MHz min.
800~10000MHz min.
2500~10000MHz min.
1900~10000MHz min.
1900~10000MHz min.
2300~10000MHz min.
-
: 4195A(or its equivalent)
: 41951+16092A(or its equivalent)
: 8719C(or its equivalent)・8753D(or its equivalent)/HK2125
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
9. Temperature Characteristic
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
Specified Value
BK2010
BK3216
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
HK0603
HK1005
HK1608
HK2125
HKQ0402
HKQ0603W
HKQ0603C
-
Inductance change:Within ±10%
HKQ0603S
Test Methods and
Remarks
HKQ0603U
AQ105
MCFK1608
MCFE1608
MCHK2012
MCKK2012
HK、HKQ、AQ Series:
Temperature range
Reference temperature
MC Series:
Temperature range
Reference temperature
: -30~+85℃
: +20℃
: -40~+85℃
: +20℃
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
10. Resistance to Flexure of Substrate
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
Specified Value
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
HK0603
HK1005
HK1608
HK2125
HKQ0402
HKQ0603W
HKQ0603C
HKQ0603S
HKQ0603U
AQ105
MCFK1608
MCFE1608
MCHK2012
MCKK2012
Warp
Testing board
Thickness
BK2010
BK3216
No mechanical damage.
: 2mm(BK Series without 0402size、BKP、BKH1005、CK、CKS、CKP、LK、HK、HKQ0603S、HKQ0603U、
AQ Series、MCF1210、MC Series)
: 1mm(BK0402、BKP0402、BKH0603、HKQ0402、HKQ0603W、HKQ0603C Series、MCF Series without 1210 size,)
: glass epoxy-resin substrate
: 0.8mm
20
Test Methods and
Remarks
R-230
Board
Warp
Deviation±1
45
45
(Unit:mm)
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
11. Solderability
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
Specified Value
Test Methods and
Remarks
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
HK0603
HK1005
HK1608
HK2125
HKQ0402
HKQ0603W
HKQ0603C
HKQ0603S
HKQ0603U
AQ105
MCFK1608
MCFE1608
MCHK2012
MCKK2012
Solder temperature
Solder temperature
Duration
BK2010
BK3216
At least 75% of terminal electrode is covered by new solder.
:230±5℃ (JIS Z 3282 H60A or H63A)
:245±3℃ (Sn/3.0Ag/0.5Cu)
:4±1 sec.
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
12. Resistance to Soldering
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
Specified Value
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
BK2010
BK3216
Appearance:No significant abnormality
Impedance change:Within ±30%
Appearance:No significant abnormality
Impedance change:Within ±20%
No mechanical damage.
Remaining terminal electrode:70% min
Inductance change
R10~4R7: Within ±10%
6R8~100: Within ±15%
CKS2125 : Within ±20%
CKP1608、CKP2012、CKP2016、CKP2520、NM2012、NM2520: Within ±30%
No mechanical damage.
Remaining terminal electrode:70% min.
Inductance change: Within ±15%
No mechanical damage.
Remaining terminal electrode:70% min.
Inductance change
47N~4R7: Within ±10%
5R6~330: Within ±15%
HK0603
HK1005
HK1608
HK2125
No mechanical damage.
HKQ0402
Remaining terminal electrode:70% min.
HKQ0603W
Inductance change: Within ±5%
HKQ0603C
HKQ0603S
HKQ0603U
AQ105
MCFK1608
No mechanical damage.
MCFE1608
Remaining terminal electrode:70% min.
MCHK2012
Inductance change: Within ±10%
MCKK2012
Solder temperature
:260±5℃
Duration
:10±0.5 sec.
Test Methods and
Preheating temperature
:150 to 180℃
Remarks
Preheating time
:3 min.
Flux
:Immersion into methanol solution with colophony for 3 to 5 sec.
Recovery
:2 to 3 hrs of recovery under the standard condition after the test.(See Note 1)
(Note 1) When there are questions concerning measurement result;measurement shall be made after 48±2 hrs of recovery under the standard condition.
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
13. Thermal Shock
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
BK2010
BK3216
Appearance:No significant abnormality
Impedance change: Within ±30%
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
Appearance:No significant abnormality
Impedance change: Within ±20%
MCF 1210
MCF 2010
CK1608
No mechanical damage.
Inductance change:Within ±20% Q change:Within ±30%
CK2125
Inductance change:Within ±20% (CKS2125)
CKS2125
CKP1608
Specified Value
CKP2012
CKP2016
No mechanical damage.
Inductance change: Within ±30%
CKP2520
NM2012
NM2520
LK1005
No mechanical damage.
LK1608
Inductance change: Within ±10% Q change: Within ±30%
LK2125
HK0603
HK1005
HK1608
HK2125
HKQ0402
No mechanical damage.
Inductance change: Within ±10% Q change: Within ±20%
HKQ0603W
HKQ0603C
HKQ0603S
HKQ0603U
AQ105
MCFK1608
MCFE1608
Appearance:No significant abnormality
Inductance change: Within ±10%
MCHK2012
MCKK2012
Conditions for 1 cycle
Step
temperature(℃)
time(min.)
1
Minimum operating temperature +0/-3
30±3
Test Methods and
2
Room temperature
2~3
Remarks
3
Maximum operating temperature +3/-0
30±3
4
Room temperature
2~3
Number of cycles:5
Recovery:2 to 3 hrs of recovery under the standard condition after the test.(See Note 1)
(Note 1) When there are questions concerning measurement result;measurement shall be made after 48±2 hrs of recovery under the standard condition.
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
14. Damp Heat( Steady state)
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
Specified Value
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
BK2010
BK3216
Appearance:No significant abnormality
Impedance change: Within ±30%
Appearance:No significant abnormality
Impedance change: Within ±20%
No mechanical damage.
Inductance change: Within ±20% Q change: Within ±30%
Inductance change: Within ±20%
No mechanical damage.
Inductance change: Within ±30%
No mechanical damage.
Inductance change: Within ±10% Q change: Within ±30%
No mechanical damage.
Inductance change: Within ±20% Q change: Within ±30%
HK0603
HK1005
HK1608
HK2125
HKQ0402
No mechanical damage.
Inductance change: Within ±10% Q change: Within ±20%
HKQ0603W
HKQ0603C
HKQ0603S
HKQ0603U
AQ105
MCFK1608
MCFE1608
Appearance:No significant abnormality
Inductance change: Within ±10%
MCHK2012
MCKK2012
BK、BKP、BKH Series、MCF Series:
Temperature
:40±2℃
Humidity
:90 to 95%RH
Duration
:500+24/-0 hrs
Recovery
:2 to 3 hrs of recovery under the standard condition after the removal from test chamber.(See Note 1)
Test Methods and
Remarks
LK、CK、CKS、CKP、NM、HK、HKQ、AQ、MC Series:
Temperature
:40±2℃( LK、CK、CKS、CKP Series)
:60±2℃( HK、HKQ、AQ、MC Series)
Humidity
:90 to 95%RH
Duration
:500±12 hrs
Recovery
:2 to 3 hrs of recovery under the standard condition after the removal from test chamber.(See Note 1)
(Note 1) When there are questions concerning measurement result;measurement shall be made after 48±2 hrs of recovery under the standard condition.
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
15. Loading under Damp Heat
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
CK1608
CK2125
CKS2125
Specified Value
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
BK2010
BK3216
Appearance:No significant abnormality
Impedance change: Within ±30%
No mechanical damage.
Inductance change: Within ±20% Q change: Within ±30%
No mechanical damage.
Inductance change: Within ±20%
No mechanical damage.
Inductance change: Within ±30%
No mechanical damage.
Inductance change: Within ±10% Q change: Within ±30%
No mechanical damage.
Inductance change: 0.047~12.0μH: Within ±10% 15.0~33.0μH: Within ±15%
Q change: Within ±30%
No mechanical damage.
Inductance change: Within ±20% Q change: Within ±30%
HK0603
HK1005
HK1608
HK2125
HKQ0402
No mechanical damage.
Inductance change: Within ±10% Q change: Within ±20%
HKQ0603W
HKQ0603C
HKQ0603S
HKQ0603U
AQ105
MCFK1608※
MCFE1608※
Appearance:No significant abnormality
Inductance change: Within ±10%
MCHK2012※
MCKK2012※
BK、BKP、BKH Series:
Temperature
:40±2℃
Humidity
:90 to 95%RH
Applied current
:Rated current
Duration
:500+24/-0 hrs
Recovery
:2 to 3 hrs of recovery under the standard condition after the removal from test chamber.(See Note 1)
Test Methods and
LK、CK、CKS、CKP、NM、HK、HKQ、AQ、MC Series:
Remarks
Temperature
:40±2℃( LK、CK、CKS、CKP、NM Series)
:60±2℃( HK、HKQ、AQ、MC Series)
Humidity
:90 to 95%RH
Applied current
:Rated current ※MC series ; Idc2max
Duration
:500±12 hrs
Recovery
:2 to 3 hrs of recovery under the standard condition after the removal from test chamber.(See Note 1)
Note on standard condition: "standard condition" referred to herein is defined as follows:
5 to 35℃ of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.
When there are questions concerning measurement results:
In order to provide correlation data, the test shall be conducted under condition of 20±2℃ of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure.
Unless otherwise specified, all the tests are conducted under the "standard condition."
(Note 1) Measurement shall be made after 48±2 hrs of recovery under the standard condition.
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
16. Loading at High Temperature
BK0402
BK0603
BK1005
BKH0603
BKH1005
BK1608
BK2125
ARRAY
BKP0402
BKP0603
BKP1005
BKP1608
BKP2125
MCF 0605
MCF 0806
MCF 1210
MCF 2010
CK1608
CK2125
CKS2125
Specified Value
CKP1608
CKP2012
CKP2016
CKP2520
NM2012
NM2520
LK1005
LK1608
LK2125
BK2010
BK3216
Appearance:No significant abnormality
Impedance change: Within ±30%
Appearance:No significant abnormality
Impedance change: Within ±20%
No mechanical damage.
Inductance change: Within ±20% Q change: Within ±30%
No mechanical damage.
Inductance change: Within ±20%
No mechanical damage.
Inductance change: Within ±30%
No mechanical damage.
Inductance change: Within ±10% Q change: Within ±30%
No mechanical damage.
Inductance change: 0.047~12.0μH: Within ±10% 15.0~33.0μH: Within ±15%
Q change: Within ±30%
No mechanical damage.
Inductance change: Within ±20% Q change: Within ±30%
HK0603
HK1005
HK1608
HK2125
HKQ0402
No mechanical damage.
Inductance change: Within ±10% Q change: Within ±20%
HKQ0603W
HKQ0603C
HKQ0603S
HKQ0603U
AQ105
MCFK1608※
MCFE1608※
Appearance:No significant abnormality
Inductance change: Within ±10%
MCHK2012※
MCKK2012※
BK、BKH、BKP Series、MCF Series:
Temperature
: 125±3℃(BK、BKH Series)
: 85±3℃(BKP、MCF Series)
Applied current :Rated current
Duration
:500+24/-0 hrs
Recovery
:2 to 3 hrs of recovery under the standard condition after the removal from test chamber.
(See Note 1)
Test Methods and
LK、CK、CKS、CKP、NM、HKQ、AQ、MC Series:
Remarks
Temperature
: 85±2℃(LK、CK、CKS、CKP、NM、MC Series)
: 85±2℃(HK1608,2125)
: 85±2℃(HK1005, AQ105 operating temperature range-55~+85℃)
: 125±2℃(HKQ0402, HK0603, HK1005, HKQ0603S, HKQ0603U, HKQ0603W, HKQ0603C, AQ105
operating temperature range-55~+125℃)
Applied current :Rated current ※MC series ; Idc2max
Duration
:500±12 hrs
Recovery
:2 to 3 hrs of recovery under the standard condition after the test.(See Note 1)
Note on standard condition: "standard condition" referred to herein is defined as follows:
5 to 35℃ of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.
When there are questions concerning measurement results:
In order to provide correlation data, the test shall be conducted under condition of 20±2℃ of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless
otherwise specified, all the tests are conducted under the "standard condition."
(Note 1) Measurement shall be made after 48±2 hrs of recovery under the standard condition.
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_reli_e-E05R01
Precautions on the use of Multilayer chip inductors
Multilayer chip inductors for high frequency, Multilayer chip bead inductors
Multilayer common mode choke coils(MC series F type)
Metal Multilayer Chip Power Inductors (MCOILTM MC series)
■PRECAUTIONS
1. Circuit Design
Precautions
◆Verification of operating environment, electrical rating and performance
1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social
ramifications.
As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly
differentiated from components used in general purpose applications.
◆Operating Current(Verification of Rated current)
1. The operating current including inrush current for inductors must always be lower than their rated values.
2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.
2. PCB Design
Precautions
◆Pattern configurations(Design of Land-patterns)
1. When inductors are mounted on a PCB, the size of land patterns and the amount of solder used(size of fillet)can directly affect inductor
performance.
Therefore, the following items must be carefully considered in the design of solder land patterns:
(1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or
cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder
pads which in turn determines the amount of solder necessary to form the fillets.
(2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's
soldering point is separated by solder-resist.
(3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to
design land patterns smaller than terminal electrode of chips.
◆Pattern configurations(Inductor layout on panelized[ breakaway] PC boards)
1. After inductors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing
processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered
boards etc.)For this reason, planning pattern configurations and the position of SMD inductors should be carefully performed to
minimize stress.
◆Pattern configurations(Design of Land-patterns)
1. The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts(larger fillets
which extend above the component end terminations). Examples of improper pattern designs are also shown.
(1) Recommended land dimensions for a typical chip inductor land patterns for PCBs
Land pattern
Solder-resist
Chip inductor
Chip inductor
W
C
B
Technical
considerations
A
B
Recommended land dimensions for wave-soldering
Type
1608
2012
2125
L
1.6
2.0
2.0
Size
W
0.8
1.25
1.25
A
0.8~1.0
1.0~1.4
1.0~1.4
B
0.5~0.8
0.8~1.5
0.8~1.5
C
0.6~0.8
0.9~1.2
0.9~1.2
L
(Unit:mm)
2016
2520
2.0
2.5
1.6
2.0
1.0~1.4
1.0~1.4
0.8~1.5
0.6~1.0
1.3~1.6
1.6~2.0
3216
3.2
1.6
1.8~2.5
0.8~1.7
1.2~1.6
Recommended land dimensions for reflow-soldering (Unit:mm)
Type
0402
0603
1005
105
1608
L
0.4
0.6
1.0
1.0
1.6
Size
W
0.2
0.3
0.5
0.6
0.8
A
0.15~0.25 0.20~0.30 0.45~0.55 0.50~0.55
0.8~1.0
B
0.10~0.20 0.20~0.30 0.40~0.50 0.30~0.40
0.6~0.8
C
0.15~0.30 0.25~0.40 0.45~0.55 0.60~0.70
0.6~0.8
2012
2.0
1.25
0.8~1.2
0.8~1.2
0.9~1.6
2125
2.0
1.25
0.8~1.2
0.8~1.2
0.9~1.6
2016
2.0
1.6
0.8~1.2
0.8~1.2
1.2~2.0
2520
2.5
2.0
1.0~1.4
0.6~1.0
1.8~2.2
3216
3.2
1.6
1.8~2.5
0.6~1.5
1.2~2.0
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_prec_e-E05R01
b
b
a
a
a
a
Excess solder can affect the ability of chips to withstand mechanical stresses. Therefore, please take proper precautions when
designing land-patterns.
Recommended land dimension for Reflow-soldering
d
c
c
Type
3216
2010
1210
0806
0605
L
3.2
2.0
1.25
0.85
0.65
Size
W
1.6
1.0
1.0
0.65
0.50
a
0.7~0.9 0.5~0.6 0.45~0.55 0.25~0.35 0.27~0.33
b
0.8~1.0
c
0.4~0.5
d
0.8
(Unit:mm)
d
((2) Examples of good and bad solder application
Item
0.5~0.6
0.2~0.3
0.5
0.7~0.8 0.25~0.35 0.17~0.23
0.25~0.35 0.25~0.35 0.20~0.26
0.55
0.5
0.4
Not recommended
Recommended
Lead wire of component
Solder-resist
Mixed mounting of SMD and
leaded components
Chassis
Solder (for grounding)
Solder-resist
Component placement close to
the chassis
Electrode pattern
Lead wire of component
Soldering iron
Hand-soldering of leaded
components near mounted
components
Solder-resist
Solder-resist
Horizontal component
placement
◆Pattern configurations(Inductor layout on panelized[ breakaway] PC boards)
1-1. The following are examples of good and bad inductor layout; SMD inductors should be located to minimize any possible mechanical
stresses from board warp or deflection.
Item
Not recommended
Recommended
Position the component at a
right angle to the direction of
the mechanical stresses that
are anticipated.
Deflection of the board
1-2. To layout the inductors for the breakaway PC board, it should be noted that the amount of mechanical stresses given will vary
depending on inductor layout.
An example below should be counted for better design.
E
D
Perforation
C
A
B
Slit
Magnitude of stress
A>B=C>D>E
1-3. When breaking PC boards along their perforations, the amount of mechanical stress on the inductors can vary according to the
method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and
perforation. Thus, any ideal SMD inductor layout must also consider the PCB splitting procedure.
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_prec_e-E05R01
3. Considerations for automatic placement
Precautions
◆Adjustment of mounting machine
1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards.
2. The maintenance and inspection of the mounter should be conducted periodically.
◆Selection of Adhesives
1. Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics
unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening
temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and
amounts of adhesive to use.
◆Adjustment of mounting machine
1. If the lower limit of the pick-up nozzle is low, too much force may be imposed on the inductors, causing damage. To avoid this, the
following points should be considered before lowering the pick-up nozzle:
(1) The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the
board.
(2) The pick-up pressure should be adjusted between 1 and 3N static loads.
(3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins should be
used under the PC board. The following diagrams show some typical examples of good pick-up nozzle placement:
Item
Improper method
Proper method
Single-sided mounting
chipping
or cracking
supporting pins
or back-up pins
Double-sided mounting
chipping
or cracking
Technical
considerations
supporting pins
or back-up pins
2. As the alignment pin wears out, adjustment of the nozzle height can cause chipping or cracking of the inductors because of mechanical
impact on the inductors. To avoid this, the monitoring of the width between the alignment pin in the stopped position, and maintenance,
inspection and replacement of the pin should be conducted periodically.
◆Selection of Adhesives
1. Some adhesives may cause reduced insulation resistance. The difference between the shrinkage percentage of the adhesive and that of
the inductors may result in stresses on the inductors and lead to cracking. Moreover, too little or too much adhesive applied to the
board may adversely affect component placement, so the following precautions should be noted in the application of adhesives.
(1) Required adhesive characteristics
a. The adhesive should be strong enough to hold parts on the board during the mounting & solder process.
b. The adhesive should have sufficient strength at high temperatures.
c. The adhesive should have good coating and thickness consistency.
d. The adhesive should be used during its prescribed shelf life.
e. The adhesive should harden rapidly.
f. The adhesive must not be contaminated.
g. The adhesive should have excellent insulation characteristics.
h. The adhesive should not be toxic and have no emission of toxic gasses.
(2) When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect
component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much
adhesive may cause defective soldering due excessive flow of adhesive on to the land or solder pad.
Amount of adhesives
After inductors are bonded
[Recommended conditions]
a
a
Figure
0805 case sizes as examples
a
0.3mm min
b
b
100~120μm
c
Area with no adhesive
c
c
4. Soldering
Precautions
◆Selection of Flux
1. Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use;
(1) Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong
acidity content should not be applied.
(2) When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level.
(3) When using water-soluble flux, special care should be taken to properly clean the boards.
◆Soldering
1. Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions, and please contact us
about peak temperature when you use lead-free paste.
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_prec_e-E05R01
◆Selection of Flux
1-1. When too much halogenated substance(Chlorine, etc.)content is used to activate the flux, or highly acidic flux is used, an excessive
amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the
surface of the Inductor.
1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may
detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.
1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high
humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The
cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.
◆Soldering
1-1. Preheating when soldering
Heating: Chip inductor components should be preheated to within 100 to 130℃ of the soldering. Cooling: The temperature difference
between the components and cleaning process should not be greater than 100℃.
Chip inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the
soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal
shock.
[Reflow soldering]
【Recommended conditions for eutectic soldering】
【Recommended condition for Pb-free soldering】
300
300
Peak
260℃ Max.
Within 10sec.
230℃
Within 10sec.
60sec. 60sec
Min.
200 Min.
Temperature(℃)
Temperature(℃)
Preheating
Slow cooling
100
0
200
Slow
cooling
100
0
Preheating150℃ Heating above
230℃
60sec. Min.
40sec. Max.
※Ceramic chip components should be preheated to within 100 to 130℃ of the
soldering.
※Assured to be reflow soldering for 2 times.
※ MC series; Peak 230 ℃ (eutectic soldering) 、 260 ℃ (Pb-free soldering)max
within 5sec.
Caution
1. The ideal condition is to have solder mass(fillet)controlled to 1/2 to 1/3 of the thickness of the inductor, as shown
below:
1/2T~1/3T
Inductor
Technical
considerations
Solder
T
PC board
2. Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to
recommended times as possible.
[Wave soldering]
【Recommended conditions for eutectic soldering】
【Recommended condition for Pb-free soldering】
300
Preheating
120sec. Min.
Peak
260℃ Max.
Within 10sec.
230~250℃
Within 3sec.
200
Slow cooling
100
Temperature(℃)
Temperature(℃)
300
0
200
120sec. Min.
Preheating
150℃
100
Slow
cooling
0
※Ceramic chip components should be preheated to within 100 to 130℃ of the
soldering.
※Assured to be wave soldering for 1 time.
※Except for reflow soldering type.
Caution
1. Make sure the inductors are preheated sufficiently.
2. The temperature difference between the inductor and melted solder should not be greater than 100 to 130℃.
3. Cooling after soldering should be as gradual as possible.
4. Wave soldering must not be applied to the inductors designated as for reflow soldering only.
[Hand soldering]
【Recommended conditions for eutectic soldering
【Recommended condition for Pb-free soldering】
400
400
Peak
350℃ Max.
Within 3sec.
230~280℃
Within 3sec.
300
200
Slow cooling
100
0
Preheating
60sec. Min.
Temperature(℃)
Temperature(℃)
300
⊿T
Slow cooling
200
100
0
Preheating
150℃ Min.
60sec. Min.
(※⊿T≦190℃( 3216Type max), ⊿T≦130℃( 3225 Type min)
※It is recommended to use 20W soldering iron and the tip is 1φor less.
※The soldering iron should not directly touch the components.
※Assured to be soldering iron for 1 time.
Note: The above profiles are the maximum allowable soldering condition, therefore
these profiles are not always recommended.
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_prec_e-E05R01
Caution
1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm.
2. The soldering iron should not directly touch the inductor.
5. Cleaning
Precautions
◆Cleaning conditions
1. When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux
used and purpose of the cleaning(e.g. to remove soldering flux or other materials from the production process.)
2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the inductor's
characteristics.
Technical
considerations
◆Cleaning conditions
1. The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation
of the inductor's electrical properties(especially insulation resistance).
2. Inappropriate cleaning conditions(insufficient or excessive cleaning)may detrimentally affect the performance of the inductors.
(1) Excessive cleaning
a. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the
cracking of the inductor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions
should be carefully checked;
Ultrasonic output
Below 20W/ℓ
Ultrasonic frequency
Below 40kHz
Ultrasonic washing period
5 min. or less
6. Post cleaning processes
Precautions
◆Application of resin coatings, moldings, etc. to the PCB and components.
1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while
left under normal storage conditions resulting in the deterioration of the inductor's performance.
2. When a resin's hardening temperature is higher than the inductor's operating temperature, the stresses generated by the excess heat
may lead to inductor damage or destruction.
3. Stress caused by a resin's temperature generated expansion and contraction may damage inductors.
The use of such resins, molding materials etc. is not recommended.
7. Handling
Precautions
◆Breakaway PC boards(splitting along perforations)
1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection
or twisting to the board.
2. Board separation should not be done manually, but by using the appropriate devices.
◆General handling precautions
1. Always wear static control bands to protect against ESD.
2. Keep the inductors away from all magnets and magnetic objects.
3. Use non-magnetic tweezers when handling inductors.
4. Any devices used with the inductors( soldering irons, measuring instruments) should be properly grounded.
5. Keep bare hands and metal products(i.e., metal desk)away from chip electrodes or conductive areas that lead to chip electrodes.
6. Keep inductors away from items that generate magnetic fields such as speakers or coils.
◆Mechanical considerations
1. Be careful not to subject the inductors to excessive mechanical shocks.
(1) If inductors are dropped on the floor or a hard surface they should not be used.
(2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other
boards or components.
8. Storage conditions
Precautions
◆Storage
1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control
temperature and humidity in the storage area. Humidity should especially be kept as low as possible.
Recommended conditions
Ambient temperature Below 30℃
Humidity Below 70% RH
The ambient temperature must be kept below 40℃. Even under ideal storage conditions inductor electrode solderability decreases as
time passes, so inductors should be used within 6 months from the time of delivery.
*The packaging material should be kept where no chlorine or sulfur exists in the air.
Technical
considerations
◆Storage
1. If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of
terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within
6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors.
▶ This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .
i_mlci_prec_e-E05R01