0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
B64290P0676X830

B64290P0676X830

  • 厂商:

    TDK(东电化)

  • 封装:

  • 描述:

    聚对二甲苯 N30 铁氧体磁芯磁环 型 长度 宽 直径 高

  • 详情介绍
  • 数据手册
  • 价格&库存
B64290P0676X830 数据手册
Ferrites and Accessories Ring Cores Ring cores with the new blue epoxy coating from Siemens Matsushita Components Ring Cores Ring cores are firmly established in a large variety of advanced equipment and systems in electrical and electronic engineering. In telecommunications they are found in interface transformers for ISDN applications and in chokes for data and signal lines. EMC solutions with input and output chokes in switch-mode power supplies are just as dependent on ring cores as the filters of frequency converters used in electric drives for traction applications and elevators. Lighting engineering needs them too – ring cores in drive transformers for power transistors in electronic ballasts have long been state of the art. Core point: benefits that pay off Ring cores offer exceptional advantages compared to other types of core, advantages that are indispensable for special requirements. They include in particular high inductance for small space needs, low parasitic capacitance and – because of the smaller number of turns – the low ohmic resistance of chokes and transformers. A further benefit is that ring cores have low magnetic leakage. New: coating made to measure We offer a wide selection of uncoated and coated ring cores. The type of coating depends on the materials used in different size categories. We work with the following variants: parylene (Galxyl) is used for small diameter (< 10 mm) ring cores, polyamide is the material for ring core diameters from 4 to 30 mm. For ring cores of larger diameters and those of high-permeablility materials (e.g. T46), we have a new development called blue epoxy coating. This is an electrostatically deposited powder coating exhibiting decisive advantages compared to conventional polyamide coating: ● ● ● ● No drop in AL unlike uncoated cores of high-permeability materials (T38 and T46) Much higher voltage strength Noticeably higher mechanical strength Substantially higher temperature resistance (up to 200 °C) In future we will make general use of the advantages of epoxy coating for all cores ≥ 30 mm in diameter. It will also be offered as a special coating for cores of other diameters. For further information contact the Siemens office near you or write us at Siemens Matsushita Components GmbH & Co. KG Marketing Kommunikation Postfach 801709 D-81617 München Internet: http://www.siemens.de/pr/index.htm Siemens Matsushita Components 3.97 3 Ring Cores ● Our product line includes a wide range of ring cores with finely graded diameters ranging from 2,5 to 200 mm (see overview of available types). Other core heights can be supplied on request. All cores are available in the usual materials. Ring cores are available in different coating versions, thus offering the appropriate solution for every application. The coating not only offers protection for the edges but also provides an insulation function. The following test setup is used to test the dielectric strength of the insulating coating: A copper ring is pressed to the top edge of the ring. It touches the ferrite ring at the edges (see diagram). The test duration is 2 seconds; the test voltages specified in the table are minimum values: Ferrite ring Urms Metal poles Core size Urms R 4 thru R 10 R 12,5 thru R 20 > R 20 1,0 kV 1,5 kV 2,0 kV For cores with high permeability, increased spread of the AL values of several percent must be expected due to the polyamide coating (K version). This effect can be avoided by using an epoxy resin coating (L version). For small ring cores, we have introduced a parylene coating (Galxyl) which features a low coating thickness and high dielectric strength. ● Ring cores are used primarily for pulse and broadband transformers, baluns and chokes. Owing to the magnetically closed circuit, high flux densities can be achieved at small volume. Magnetic leakage is negligible. ● Ring cores are also increasingly used for power applications. Here, the typical values for ampli- tude permeability and power loss, as summarized in the section on SIFERRIT materials (Data Book "Ferrites and Accessories", 1997), are applicable to the special power materials. ● In the list of preferred types, the AL1min value (measurement conditions 320 mT, 100 °C, 10 kHz) is also specified for power applications, in addition to a limiting value for power loss under the relevant measurement conditions. This provides a guarantee of the minimum amplitude permeability. ● Characteristic data for cores not included among the preferred types are available on request. Versions Version Ordering code ● Uncoated B64290-A... ● Coated with polyamide; thickness of coating approx. 0,2 to 0,4 mm B64290-K... ● Coated with parylene; thickness of coating approx. 10 to 15 μm, B64290-P... standard coating for small cores (≤ R 4) ● Coated with epoxy resin; thickness of coating approx. 0,15 to 0,3 mm, B64290-L... coating for cores ≥ R 30 4 3.97 Siemens Matsushita Components Ring Cores Application: Ring cores to suppress line interference With the ever-increasing use of electrical and electronic equipment, it becomes increasingly important to be able to ensure that all facilities will operate simultaneously in the context of electromagnetic compatibility (EMC) without interfering with each others’ respective functions. The EMC legislation which came into force at the beginning of 1996 applies to all electrical and electronic products marketed in the EU, both new and existing ones. So the latter may have to be modified so that they are neither susceptible to electromagnetic interference, nor emit spurious radiation. Ferrite cores are ideally suited for this purpose since they are able to suppress interference over a wide frequency range. At frequencies above 1 MHz, ferrite rings slipped over a conductor lead to an increase in the impedance of this conductor. The real component of this impedance absorbs the interference energy. A ferrite material´s suitability for suppressing interference within a specific frequency spectrum depends on its magnetic properties, which vary with frequency. Before the right material can be selected, the impedance lZl must be known as a function of frequency. The curve of impedance as a function frequency is characterized by the sharp increase in loss at resonance frequency. Measurement results: The measurements shown here were made at room temperature (23 ± 3 °C) using an HP 4191A RF impedance analyzer with a flux density of B ≤ 1 mT. The maximum of the impedance curve shifts to lower frequencies as the number of turns increases; this is due to the capacitive effect of the turns (figure 1, using R25/15 as an example). Figure 1 For direct comparison of the typical suppression characteristics of differenct ferrite materials, the impedance curves were normalized using the equation lZ l n = lZ l / N 2 x Σ (le / Ae); the geometry factor was calculated on the basis of the core dimensions (figure 2). These normalized impedance curves are guide values, mostly measured using ring core R 10 with a number of turns N = 1 (wire diameter 0,7 mm); they may vary slightly, depending on the geometry. Siemens Matsushita Components 3.97 5 Ring Cores Figure 2 6 3.97 Siemens Matsushita Components Ring Cores Ring cores are also available in split versions, which can easily be clipped onto cables. The residual air gap inevitable in the reassembled ferrite ring affects its impedance characteristic only slightly in the upper frequency range (figure 3, using R25/15 as an example). Integral core Split core Figure 3 The residual air gap has a positive effect on performance with dc biasing because magnetic saturation is not reached until higher signal levels (figure 4, using R25/15 as an example). Split core Integral core Figure 4 Siemens Matsushita Components 3.97 7 Ring Cores Overview of available types Type Dimensions da1) di1) mm mm R 2,5 2,5 ± 0,12 1,5 ± 0,1 R 3,0 R 3,9 3,05 ± 0,2 3,94 ±0,12 1,27 ± 0,2 2,24 ±0,12 R 3,9/2 R 4,0 3,94 ±0,12 4,0 ± 0,12 (4,5 max) 2,24 ±0,12 2,4 ± 0,12 (1,9 min) R 5,8 5,84 ±0,12 (6,36 max) 5,84 ±0,12 (6,36 max) 3,05 ±0,12 (2,53 min) 3,05 ±0,12 (2,53 min) R 6,3 6,3 ± 0,15 (7,25 max) 3,8 ± 0,12 (2,85 min) R 9,5/2 9,53 ±0,19 (10,5 max) 4,75 ±0,12 (3,8 min) R 9,5 9,53 ±0,19 (10,5 max) R 10 10,0 ± 0,2 (11,0 max) 4,75 ±0,12 (3,8 min) 6,0 ± 0,15 (5,05 min) R 12,5 12,5 ± 0,3 (13,6 max) 13,3 ± 0,3 (14,4 max) 14,0 ± 0,3 (15,1 max) 7,5 ± 0,2 (6,5 min) 8,3 ± 0,3 (7,2 min) 9,0 ± 0,25 (7,95 min) 15,0 ± 0,5 (16,3 max) 10,4 ± 0,4 (9,2 min) R 5,8/3 R 13,3 R 14 R 15 h1) mm 1,0 ± 0,1 1,27 ± 0,2 1,3 ± 0,12 2,0 ± 0,12 1,6 ± 0,1 (2,1 max) 1,52 ±0,12 (2,05 max) 3,0 ± 0,12 (3,55 max) 2,5 ± 0,12 (3,4 max) 2,0 ± 0,1 (2,9 max) 3,17 ±0,15 (4,1 max) 4,0 ± 0,15 (4,95 max) 5,0 ± 0,15 (5,95 max) 5,0 ± 0,15 (5,95 max) 5,0 ± 0,2 (6,0 max) 5,3 ± 0,3 (6,4 max) Magnetic characteristics le Ae Σl/A mm-1 mm mm2 Approx. weight g 12,30 6,02 0,49 5,65 8,56 5,99 9,21 1,06 1,08 5,56 7,69 9,21 9,63 1,66 1,25 Ve mm3 3,0 6,4 9,9 15,3 12,0 6,36 13,03 2,05 26,7 0,1 3,22 13,03 4,04 52,6 0,3 4,97 15,21 3,06 46,5 0,2 4,51 20,72 4,59 95,1 0,5 2,85 20,72 7,28 151 0,8 3,07 24,07 7,83 188 0,9 2,46 30,09 12,23 368 1,8 2,67 32,70 12,27 401 1,8 2,84 34,98 12,30 430 2,0 3,24 39,02 12,05 470 2,4 0,02 0,04 0,05 0,07 0,06 1) Values in parentheses apply to coated cores, ring cores made of NiZn ferrite may exceed the specified dimensions by up to 5 % 8 3.97 Siemens Matsushita Components Ring Cores Type Dimensions da1) di1) mm mm R 16 16,0 ± 0,4 (17,2 max) 9,6 ± 0,3 (8,5 min) R 17 17,0 ± 0,4 (18,2 max) 10,7 ± 0,3 (9,6 min) R 20/7 20,0 ± 0,4 (21,2 max) 22,1 ± 0,4 (23,3 max) 22,6 ± 0,4 (23,8 max) 10,0 ±0,25 (8,7 min) 13,7 ± 0,3 (12,6 min) 14,7 ± 0,2 (13,7 min) R23/9 22,6 ± 0,4 (23,8 max) 14,7 ± 0,2 (13,7 min) R 25/10 25,3 ± 0,7 (26,8 max) 14,8 ± 0,5 (13,5 min) R 25/15 25,3 ± 0,7 (26,8 max) 14,8 ± 0,5 (13,5 min) R 25/20 25,3 ± 0,7 (26,8 max) 29,5 ± 0,7 (31,0 max) 30,5 ± 1,0 (32,3 max) 14,8 ± 0,5 (13,5 min) 19,0 ± 0,5 17,7 min 20,0 ± 0,6 (18,2 min) 34,0 ± 0,7 (35,5 max) R 34/12,5 34,0 ± 0,7 (35,5 max) R 36 36,0 ± 0,7 (37,5 max) 20,5 ± 0,5 (19,2 min) 20,5 ± 0,5 (19,2 min) 23,0 ± 0,5 (21,7 min) R 40 40,0 ±1,0 (41,8 max) 24,0 ± 0,7 (22,5 min) R 42 41,8 ± 1,0 (43,6 max) 26,2 ± 0,6 (24,8 min) R 50 50,0 ± 1,0 (51,8 max) 30,0 ± 0,7 (28,5 min) R 58 58,3 ± 1,0 (60,1 max) 40,8 ± 0,8 (39,2 min) R 22 R23/8 R 29 R 30 R 34/10 h1) mm 6,3 ± 0,2 (7,3 max) 6,8 ± 0,2 (7,8 max) 7,0 ± 0,4 (8,2 max) 6,35 ±0,3 (7,4 max) 7,6 ± 0,2 (8,6 max) 9,2 ± 0,2 (10,2 max) 10,0 ± 0,2 (11,0 max) 15,0 ± 0,4 16,2 max) 20,0 ± 0,5 (21,3 max) 14,9 ± 0,4 (16,1 max) 12,5 ± 0,4 (13,7 max) 10,0 ± 0,3 (11,1 max) 12,5 ± 0,3 (13,6 max) 15,0 ± 0,4 (16,2 max) 16,0 ± 0,4 (17,2 max) 12,5 ± 0,3 (13,6 max) 20,0 ± 0,5 (21,3 max) 17,6 ± 0,4 (18,8 max) Magnetic characteristics le Ae Σl/A mm-1 mm mm2 Approx. weight g 1,95 38,52 19,73 Ve mm3 760 2,00 42,0 21,04 884 4,4 1,30 43,55 33,63 1465 7,6 2,07 54,15 26,17 1417 6,8 1,92 56,82 29,56 1680 8,1 1,59 56,82 35,78 2033 9,8 1,17 60,07 51,26 3079 16 0,78 60,07 76,89 4619 24 0,59 60,07 102,5 6157 33 0,96 73,78 76,98 5680 27 1,19 77,02 64,66 4980 25 1,24 82,06 66,08 5423 27 0,99 82,06 82,60 6778 33 0,94 89,65 95,89 8597 43 0,77 96,29 125,3 12070 61 1,08 103,0 95,75 9862 48 0,62 120,4 195,7 23560 118 1,00 152,4 152,4 23230 115 3,7 1) Values in parentheses apply to coated cores, ring cores made of NiZn ferrite may exceed the specified dimensions by up to 5 % Siemens Matsushita Components 3.97 9 Ring Cores Type Dimensions da1) di1) mm mm R 100 102,0 ± 2,0 65,8 ± 1,3 (104,8 max) (63,7 min) R 140 140,0 ± 3,0 103,0 ± 2,0 (143,8 max) (100,2 min) R 200 202,0 ± 4,0 153,0 ± 3,0 (206,8 max) (149,2 min) h1) mm 15,0 ± 0,5 (16,3 max) 25,0 ± 1,0 (26,8 max) 25,0 ± 1,0 (26,8 max) Magnetic characteristics le Ae Σl/A mm-1 mm mm2 Approx. weight g 0,96 255,3 267,2 Ve mm3 68220 0,82 375,8 458,9 172440 860 0,90 550,5 608,6 335030 1600 330 1) Values in parentheses apply to coated cores, ring cores made of NiZn ferrite may exceed the specified dimensions by up to 5 % 10 3.97 Siemens Matsushita Components Ring Cores Preferred types 1) Type Mate- AL value nH rial (1mT, 10 kHz, 25°C) AL1min nH (320 mT, N49: 200 mT, 10 kHz, 100 °C) Power loss per core (measurement conditions) Ordering code PU B64290- Pcs R 2,5 N 30 T 38 T 38 440 ± 25% 1020 ± 30% 1020 +30/-40% -P35-X830 -A35-X38 -P35-X38 40000 R4 K1 M 33 N 30 T 38 T 38 T46 K1 M 33 N 492) 13 ± 25% 123 ± 25% 700 ± 25% 1630 ± 30% 1630 +30/-40% 2450 +30/-30% -A36-X1 -A36-X33 -K36-X830 -A36-X38 -P36-X38 -A36-X46 16000 20 ± 25% 190 ± 25% 330 ± 25% -A37-X1 -K37-X33 -K37-X49 4000 R 6,3 R 9,5 / 2 R 10 R 12,5 N 30 N 30 T38 T38 T46 K1 M33 N492) 250 < 6 mW (50 mT/500 kHz/100°C) 1090 ± 25% 1090 ± 25% 2530 ± 30% 2530 +30/-40% 4180 ± 30% -A37-X830 -K37-X830 -A37-X38 -K37-X38 33 ± 25% 308 ± 25% 530 ± 25% -A38-X1 -K38-X33 -K38-X49 1000 3000 3000 -A38-X830 -K38-X830 -K38-X38 1000 3000 3000 -K44-X49 < 45 mW (50 mT/500 kHz/100°C) -K44-X27 < 70 mW (200 mT/25 kHz/100°C) -K44-X67 < 280 mW (200 mT/100 kHz/100°C) -A44-X830 -K44-X830 -A44-X35 -K44-X35 1500 -A681-X46 410 < 23 mW (50 mT/500 kHz/100°C) 1760 ± 25% 1760 ± 25% 4090 +30/-40% N30 N30 T38 N 492) 660 ± 25% 510 N27 1020 ± 25% 460 N 67 1070 ± 25% 460 N30 N30 T 35 T 35 2200 ± 25% 2200 ± 25% 3060 ± 25% 3060 +25/-30% Siemens Matsushita Components 3.97 1500 1500 500 1500 500 1500 11 Ring Cores Type Mate- AL value rial nH (1mT, 10 kHz, 25°C) AL1min nH (320 mT, N49: 200 mT, 10 kHz, 100 °C) Power loss per core (measurement conditions) Ordering code PU B64290- Pcs 1) The preferred core types are available at short notice. Other cores on request. 2) Preliminary data R 16 N 491) 840 ± 25% 640 -K45-X49 < 95 mW (50 mT/500 kHz/100°C) < 140 mW -K45-X27 (200 mT/25 kHz/100°C) < 500 mW -K45-X67 (200 mT/100 kHz/100°C) -K45-X830 -A45-X35 -K45-X35 -A45-X38 -K45-X38 < 280 mW -K632-X27 (200 mT/25 kHz/100°C) < 1,2 W -K632-X67 (200 mT/100 kHz/100°C) -A632-X830 -K632-X830 -A632-X35 -K632-X35 -K632-X38 2000 < 250 mW (200 mT/25 kHz/100°C) 300 N27 1290 ± 25% 580 N67 1350 ± 25% 580 N30 T35 T35 T38 T38 N 27 2770 ± 25% 3870 ± 25% 3870 +25/-30% 6440 ± 30% 6440 +30/-40% 870 1930 ± 25% N 67 2030 ± 25% N 30 N 30 T 35 T 35 T 38 4160 ± 25% 4160 ± 25% 5000 ± 25% 5000 +25/-30% 8500 +30/-40% N 27 1210 ± 25% N30 T 35 T 35 2610 ± 25% 3200 ± 25% 3200 +25/-30% N 27 2150 ± 25% 970 N 67 2260 ± 25% 970 N 30 N 30 T 35 T 35 4620 ± 25% 4620 ± 25% 5400 ± 25% 5400 +25/-30% N 30 4360 ± 25% -L58-X830 225 R 34/12,5 N 30 5460 ± 25% -L48-X830 225 R 20/7 R 22 R 25/10 R 34/10 12 870 550 -K638-X27 2000 2000 2000 1000 2000 1000 2000 1000 1000 500 1000 500 1000 1000 -K638-X830 300 -A638-X35 500 -K638-X35 300 -K618-X27 500 < 580 mW (200 mT/25 kHz/100°C) -K618-X67 < 2,4 W (200 mT/100 kHz/100°C) -A618-X830 -K618-X830 -A618-X35 -K618-X35 3.97 500 400 500 400 500 Siemens Matsushita Components Ring Cores Type Mate- AL value nH rial (1mT, 10 kHz, 25°C) AL1min nH (320 mT, N49: 200 mT, 10 kHz, 100 °C) Power loss per core (measurement conditions) Ordering code PU B64290- Pcs 1) Preliminary data N 27 2670 ± 25% 1200 N 67 2810 ± 25% 1200 N 30 N 30 5750 ± 25% 5750 ± 25% < 1,6 W -L674-X27 200 (200 mT/25 kHz/100°C) < 5,9 W -L674-X67 (200 mT/100 kHz/100°C) -A674-X830 -L674-X830 N 30 N 30 N 30 N 30 7000 ± 25% 7000 ± 25% 5000 ± 25% 5000 ± 25% -A659-X830 80 -L659-X830 -A22-X830 192 -L22-X830 R 50 N 30 N 30 8700 ± 25% 8700 ± 25% -A82-X830 -L82-X830 64 R 58 R 100 N 30 N 30 5400 ± 25% 5500 ± 25% -L40-X830 -A84-X830 90 24 R 140 R 200 N 30 N 30 6200 ± 25% 5500 ± 30% -A705-X830 4 -A711-X830 2 R 36 R 40 R 42 Siemens Matsushita Components 3.97 13 Ring Cores Published by Siemens Matsushita Components GmbH & Co. KG Marketing Kommunikation, Postfach 80 17 09, D-81617 München © Siemens Matsushita Components 1997. All Rights Reserved. As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. This brochure replaces the previous edition. For questions on technology, prices and delivery please contact the Sales Offices of Siemens AG, Passive Components and Electron Tubes Group, in the Federal Republic of Germany or the international Siemens Companies and Representatives. Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices. 14 3.97 Siemens Matsushita Components
B64290P0676X830
1. 物料型号:文档中列出了多种型号的环形磁芯,例如FUSO107-N、FUSO099-T等,以及它们的尺寸和磁特性。

2. 器件简介:环形磁芯在电气和电子工程的多种先进设备和系统中得到了广泛应用,如电信接口变压器、数据和信号线扼流圈、开关电源的EMC解决方案等。

3. 引脚分配:文档中没有提到具体的引脚分配,因为环形磁芯通常不涉及引脚分配,它们是被动元件。

4. 参数特性:环形磁芯具有高电感、低寄生电容、低欧姆电阻和低磁泄漏等优点。文档还介绍了不同材料的环形磁芯,如镍锌(NiZn)和锰锌(MnZn)。

5. 功能详解:环形磁芯主要用于脉冲和宽带变压器、平衡不平衡转换器(baluns)和扼流圈。它们可以承受高磁通密度,并且磁泄漏可以忽略不计。

6. 应用信息:环形磁芯在电磁兼容性(EMC)方面非常重要,能够抑制宽频段的干扰。文档还提供了不同频率下抑制特性的测量结果。

7. 封装信息:环形磁芯有多种涂层版本,包括未涂层、聚酰胺涂层、帕利林(parylene)涂层和环氧树脂涂层,以适应不同的应用需求。

8. 订购信息:文档提供了订购代码和包装单位(PU)信息,以及每包的数量(Pcs)。
B64290P0676X830 价格&库存

很抱歉,暂时无法提供与“B64290P0676X830”相匹配的价格&库存,您可以联系我们找货

免费人工找货