0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ICM-20649

ICM-20649

  • 厂商:

    TDK(东电化)

  • 封装:

    QFN-24_3X3MM-EP

  • 描述:

    ICM-20649

  • 数据手册
  • 价格&库存
ICM-20649 数据手册
ICM-20649 Datasheet World’s First Wide-Range 6-Axis MEMS MotionTracking™ Device for Sports and High Impact Applications APPLICATIONS GENERAL DESCRIPTION Many of today’s wearable and sports solutions, which analyze the motion of a user’s golf or tennis swings, soccer ball kicks, or basketball activities, require higher than currently available ±2000 dps (degrees per second) FSR for gyroscope and ±16g FSR for accelerometer to better insure that critical data is not lost at the point of high impact or high speed rotation. The ICM-20649 6-axis inertial sensor offers the smallest size, lowest profile and lowest power in conjunction with industry leading high FSR. With an extended FSR range of ±4000 dps for gyroscope and ±30g for accelerometer, the ICM-20649 enables precise analysis of contact sports applications providing continuous motion sensor data before, during and after impact providing more accurate feedback The ICM-20649 is the world’s first wide-range 6-axis MotionTracking device for Sports and other High Impact applications. It is available in a 3x3x0.9 mm 24-pin QFN package. ORDERING INFORMATION PART TEMP RANGE ICM-20649† −40°C to +85°C PACKAGE 24-Pin QFN †Denotes RoHS and Green-Compliant Package BLOCK DIAGRAM • • • Sports Wearable Sensors High Impact Applications FEATURES • • • • • • • • • • • • 3-Axis gyroscope with programmable FSR of ±500 dps, ±100 dps, ±2000 dps, and ±4000 dps 3-Axis accelerometer with programmable FSR of ±4g, ±8g, ±16g, and ±30g User-programmable interrupts Wake-on-motion interrupt for low power operation of applications processor 4kB FIFO buffer enables the applications processor to read the data in bursts On-Chip 16-bit ADCs and Programmable Filters DMP Enabled: o SMD, Step Count, Step Detect, Activity Classifier, RV, GRV o Calibration of accel/gyro/compass Host interface: 7 MHz SPI or 400 kHz I2C Digital-output temperature sensor VDD operating range of 1.71V to 3.6V MEMS structure hermetically sealed and bonded at wafer level RoHS and Green compliant TYPICAL OPERATING CIRCUIT RESV INT2 19 20 nCS AUX_DA 21 22 SDA / SDI 18 2 17 NC 16 NC NC 3 NC 4 15 NC NC 5 14 NC NC 6 13 VDD 11 12 INT1 FSYNC REGOUT 10 9 SDO / AD0 VDDIO 8 ICM-20649 7 InvenSense Inc. reserves the right to change specifications and information herein without notice unless the product is in mass production and the datasheet has been designated by InvenSense in writing as subject to a specified Product / Process Change Notification Method regulation. 23 24 1 NC C3, 0.1 µ F Motion Analysis Pod Architecture GND NC AUX_CL 1.8 – 3.3VDC SCL / SCLK nCS SCLK SDI C1, 0.1 mF SDO InvenSense, a TDK Group Company 1745 Technology Drive, San Jose, CA 95110 U.S.A +1(408) 988–7339 invensense.tdk.com Document Number: DS-000192 Revision: 1.1 Revision Date: 07/01/2021 1.8 – 3.3VDC C2, 0.1 mF ICM-20649 TABLE OF CONTENTS GENERAL DESCRIPTION........................................................................................................................................ 1 ORDERING INFORMATION ................................................................................................................................... 1 APPLICATIONS ...................................................................................................................................................... 1 FEATURES ............................................................................................................................................................. 1 TYPICAL OPERATING CIRCUIT .............................................................................................................................. 1 1 2 3 Introduction ....................................................................................................................................................... 10 1.1 Purpose and Scope .................................................................................................................................. 10 1.2 Product Overview.................................................................................................................................... 10 Features ............................................................................................................................................................. 11 2.1 Gyroscope Features ................................................................................................................................ 11 2.2 Accelerometer Features .......................................................................................................................... 11 2.3 DMP Features .......................................................................................................................................... 11 2.4 Additional Features ................................................................................................................................. 11 Electrical Characteristics .................................................................................................................................... 12 3.1 Gyroscope Specifications ........................................................................................................................ 12 3.2 Accelerometer Specifications.................................................................................................................. 13 3.3 Electrical Specifications ........................................................................................................................... 14 D.C. Electrical Characteristics .................................................................................................................. 14 A.C. Electrical Characteristics .................................................................................................................. 15 Other Electrical Specifications ................................................................................................................ 16 4 3.4 I2C Timing Characterization ..................................................................................................................... 17 3.5 SPI Timing Characterization .................................................................................................................... 18 3.6 Absolute Maximum Ratings .................................................................................................................... 19 Applications Information ................................................................................................................................... 20 4.1 Pin Out Diagram and Signal Description ................................................................................................. 20 4.2 Typical Operating Circuit ......................................................................................................................... 21 4.3 Bill of Materials for External Components .............................................................................................. 21 4.4 Block Diagram ......................................................................................................................................... 22 4.5 Overview ................................................................................................................................................. 22 4.6 Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning ............................................... 23 4.7 Three-Axis MEMS Accelerometer with 16-bit ADCs and Signal Conditioning......................................... 23 4.8 Digital Motion Processor ......................................................................................................................... 23 4.9 Primary I2C and SPI Serial Communications Interfaces ........................................................................... 23 ICM-20649 Solution Using I2C Interface .................................................................................................. 23 ICM-20649 Solution Using SPI Interface ................................................................................................. 25 4.10 Auxiliary I2C Serial Interface................................................................................................................ 26 4.11 Auxiliary I2C Bus Modes of Operation: ................................................................................................ 26 4.12 Self-Test .............................................................................................................................................. 26 Document Number: DS-000192 Revision: 1.1 Page 2 of 89 ICM-20649 4.13 Clocking............................................................................................................................................... 26 4.14 Sensor Data Registers ......................................................................................................................... 27 4.15 FIFO ..................................................................................................................................................... 27 4.16 FSYNC .................................................................................................................................................. 27 4.17 Interrupts ............................................................................................................................................ 27 4.18 Digital-Output Temperature Sensor ................................................................................................... 27 4.19 Bias and LDOs ..................................................................................................................................... 27 4.20 Charge Pump ...................................................................................................................................... 27 4.21 Power Modes ...................................................................................................................................... 27 5 Programmable Interrupts .................................................................................................................................. 29 6 Digital Interface ................................................................................................................................................. 30 7 8 6.1 I2C and SPI Serial Interfaces .................................................................................................................... 30 6.2 I2C Interface............................................................................................................................................. 30 6.3 I2C Communications Protocol ................................................................................................................. 31 6.4 I2C Terms ................................................................................................................................................. 33 6.5 SPI Interface ............................................................................................................................................ 33 Register Map ...................................................................................................................................................... 35 7.1 User Bank 0 Register Map: ...................................................................................................................... 35 7.2 User Bank 1 Register Map: ...................................................................................................................... 36 7.3 User Bank 2 Register Map: ...................................................................................................................... 36 7.4 User Bank 3 Register Map: ...................................................................................................................... 37 Register Descriptions ......................................................................................................................................... 38 8.1 USR Bank 0 Register Map ........................................................................................................................ 38 WHO_AM_I ............................................................................................................................................. 38 USER_CTRL .............................................................................................................................................. 38 LP_CONFIG .............................................................................................................................................. 39 PWR_MGMT_1........................................................................................................................................ 39 PWR_MGMT_2........................................................................................................................................ 40 INT_PIN_CFG ........................................................................................................................................... 40 INT_ENABLE ............................................................................................................................................ 41 INT_ENABLE_1 ........................................................................................................................................ 41 INT_ENABLE_2 ........................................................................................................................................ 41 INT_ENABLE_3 .................................................................................................................................... 42 I2C_MST_STATUS ............................................................................................................................... 42 INT_STATUS ........................................................................................................................................ 42 12.1.13 INT_STATUS_1 ....................................................................................................................... 43 INT_STATUS_2 .................................................................................................................................... 43 INT_STATUS_3 .................................................................................................................................... 43 DELAY_TIMEH ..................................................................................................................................... 43 DELAY_TIMEL ...................................................................................................................................... 44 Document Number: DS-000192 Revision: 1.1 Page 3 of 89 ICM-20649 ACCEL_XOUT_H .................................................................................................................................. 44 ACCEL_XOUT_L ................................................................................................................................... 44 ACCEL_YOUT_H .................................................................................................................................. 44 ACCEL_YOUT_L ................................................................................................................................... 45 ACCEL_ZOUT_H................................................................................................................................... 45 ACCEL_ZOUT_L ................................................................................................................................... 45 GYRO_XOUT_H ................................................................................................................................... 45 GYRO_XOUT_L .................................................................................................................................... 46 GYRO_YOUT_H ................................................................................................................................... 46 GYRO_YOUT_L .................................................................................................................................... 46 GYRO_ZOUT_H ................................................................................................................................... 46 GYRO_ZOUT_L .................................................................................................................................... 47 TEMP_OUT_H ..................................................................................................................................... 47 TEMP_OUT_L ...................................................................................................................................... 47 EXT_SLV_SENS_DATA_00 ................................................................................................................... 47 EXT_SLV_SENS_DATA_01 ................................................................................................................... 48 EXT_SLV_SENS_DATA_02 ................................................................................................................... 48 EXT_SLV_SENS_DATA_03 ................................................................................................................... 48 EXT_SLV_SENS_DATA_04 ................................................................................................................... 48 EXT_SLV_SENS_DATA_05 ................................................................................................................... 49 EXT_SLV_SENS_DATA_06 ................................................................................................................... 49 EXT_SLV_SENS_DATA_07 ................................................................................................................... 49 EXT_SLV_SENS_DATA_08 ................................................................................................................... 49 EXT_SLV_SENS_DATA_09 ................................................................................................................... 50 EXT_SLV_SENS_DATA_10 ................................................................................................................... 50 EXT_SLV_SENS_DATA_11 ................................................................................................................... 50 EXT_SLV_SENS_DATA_12 ................................................................................................................... 50 EXT_SLV_SENS_DATA_13 ................................................................................................................... 51 EXT_SLV_SENS_DATA_14 ................................................................................................................... 51 EXT_SLV_SENS_DATA_15 ................................................................................................................... 51 EXT_SLV_SENS_DATA_16 ................................................................................................................... 51 EXT_SLV_SENS_DATA_17 ................................................................................................................... 52 EXT_SLV_SENS_DATA_18 ................................................................................................................... 52 EXT_SLV_SENS_DATA_19 ................................................................................................................... 52 EXT_SLV_SENS_DATA_20 ................................................................................................................... 52 EXT_SLV_SENS_DATA_21 ................................................................................................................... 53 EXT_SLV_SENS_DATA_22 ................................................................................................................... 53 EXT_SLV_SENS_DATA_23 ................................................................................................................... 53 FIFO_EN_1 .......................................................................................................................................... 54 FIFO_EN_2 .......................................................................................................................................... 54 Document Number: DS-000192 Revision: 1.1 Page 4 of 89 ICM-20649 FIFO_RST ............................................................................................................................................. 55 FIFO_MODE ........................................................................................................................................ 55 FIFO_COUNTH..................................................................................................................................... 55 FIFO_COUNTL ..................................................................................................................................... 55 FIFO_R_W ........................................................................................................................................... 56 DATA_RDY_STATUS ............................................................................................................................ 56 FIFO_CFG ............................................................................................................................................ 56 REG_BANK_SEL ................................................................................................................................... 56 8.2 USR Bank 1 Register Map ........................................................................................................................ 57 SELF_TEST_X_GYRO ................................................................................................................................ 57 SELF_TEST_Y_GYRO ................................................................................................................................ 57 SELF_TEST_Z_GYRO................................................................................................................................. 57 SELF_TEST_X_ACCEL ............................................................................................................................... 57 SELF_TEST_Y_ACCEL................................................................................................................................ 58 SELF_TEST_Z_ACCEL ................................................................................................................................ 58 XA_OFFS_H.............................................................................................................................................. 58 XA_OFFS_L .............................................................................................................................................. 58 YA_OFFS_H .............................................................................................................................................. 58 YA_OFFS_L .......................................................................................................................................... 59 ZA_OFFS_H ......................................................................................................................................... 59 ZA_OFFS_L .......................................................................................................................................... 59 TIMEBASE_CORRECTION_PLL ............................................................................................................. 59 REG_BANK_SEL ................................................................................................................................... 60 8.3 USR Bank 2 Register Map ........................................................................................................................ 61 GYRO_SMPLRT_DIV................................................................................................................................. 61 GYRO_CONFIG_1 ..................................................................................................................................... 61 GYRO_CONFIG_2 ..................................................................................................................................... 62 XG_OFFS_USRH ....................................................................................................................................... 63 XG_OFFS_USRL ........................................................................................................................................ 64 YG_OFFS_USRH ....................................................................................................................................... 64 YG_OFFS_USRL ........................................................................................................................................ 64 ZG_OFFS_USRH ....................................................................................................................................... 64 ZG_OFFS_USRL ........................................................................................................................................ 64 ODR_ALIGN_EN .................................................................................................................................. 65 ACCEL_SMPLRT_DIV_1 ....................................................................................................................... 65 ACCEL_SMPLRT_DIV_2 ....................................................................................................................... 65 ACCEL_INTEL_CTRL ............................................................................................................................. 65 ACCEL_WOM_THR .............................................................................................................................. 66 ACCEL_CONFIG ................................................................................................................................... 66 ACCEL_CONFIG_2 ............................................................................................................................... 67 Document Number: DS-000192 Revision: 1.1 Page 5 of 89 ICM-20649 FSYNC_CONFIG ................................................................................................................................... 69 TEMP_CONFIG .................................................................................................................................... 69 MOD_CTRL_USR ................................................................................................................................. 70 REG_BANK_SEL ................................................................................................................................... 70 8.4 USR Bank 3 Register Map ........................................................................................................................ 71 I2C_MST_ODR_CONFIG .......................................................................................................................... 71 I2C_MST_CTRL ........................................................................................................................................ 71 I2C_MST_DELAY_CTRL ............................................................................................................................ 71 I2C_SLV0_ADDR ...................................................................................................................................... 72 I2C_SLV0_REG ......................................................................................................................................... 72 I2C_SLV0_CTRL ........................................................................................................................................ 72 I2C_SLV0_DO........................................................................................................................................... 73 I2C_SLV1_ADDR ...................................................................................................................................... 73 I2C_SLV1_REG ......................................................................................................................................... 73 I2C_SLV1_CTRL ................................................................................................................................... 74 SLV1_DO ............................................................................................................................................. 74 I2C_SLV2_ADDR .................................................................................................................................. 75 I2C_SLV2_REG ..................................................................................................................................... 75 I2C_SLV2_CTRL ................................................................................................................................... 75 I2C_SLV2_DO ...................................................................................................................................... 76 I2C_SLV3_ADDR .................................................................................................................................. 76 I2C_SLV3_REG ..................................................................................................................................... 76 I2C_SLV3_CTRL ................................................................................................................................... 77 I2C_SLV3_DO ...................................................................................................................................... 77 I2C_SLV4_ADDR .................................................................................................................................. 78 I2C_SLV4_REG ..................................................................................................................................... 78 I2C_SLV4_CTRL ................................................................................................................................... 78 I2C_SLV4_DO ...................................................................................................................................... 78 I2C_SLV4_DI ........................................................................................................................................ 79 REG_BANK_SEL ................................................................................................................................... 79 9 10 Use Notes ........................................................................................................................................................... 80 9.1 Gyroscope Mode Transition .................................................................................................................... 80 9.2 Power Management 1 Register Setting .................................................................................................. 80 9.3 DMP Memory Access .............................................................................................................................. 80 9.4 Time Base Correction .............................................................................................................................. 80 9.5 I2C Master Clock Frequency .................................................................................................................... 81 9.6 Clocking ................................................................................................................................................... 81 9.7 LP_EN Bit-Field Usage ............................................................................................................................. 82 9.8 Register Access Using SPI Interface ......................................................................................................... 82 Orientation of Axes ............................................................................................................................................ 83 Document Number: DS-000192 Revision: 1.1 Page 6 of 89 ICM-20649 11 Package Dimensions .......................................................................................................................................... 84 12 Part Number Part Markings ............................................................................................................................... 86 13 References ......................................................................................................................................................... 87 14 Revision History ................................................................................................................................................. 88 Document Number: DS-000192 Revision: 1.1 Page 7 of 89 ICM-20649 LIST OF FIGURES Figure 1. I2C Bus Timing Diagram ............................................................................................................................................................. 17 Figure 2. SPI Bus Timing Diagram............................................................................................................................................................. 18 Figure 3. Pin out Diagram for ICM-20649 3.0x3.0x0.9 mm QFN .............................................................................................................. 20 Figure 4. ICM-20649 Application Schematic (a) I2C operation (b) SPI operation ..................................................................................... 21 Figure 5. ICM-20649 Block Diagram......................................................................................................................................................... 22 Figure 6. ICM-20649 Solution Using I2C Interface .................................................................................................................................... 24 Figure 7. ICM-20649 Solution Using SPI Interface ................................................................................................................................... 25 Figure 8. START and STOP Conditions ...................................................................................................................................................... 31 Figure 9. Acknowledge on the I2C Bus ..................................................................................................................................................... 31 Figure 10. Complete I2C Data Transfer ..................................................................................................................................................... 32 Figure 11. Typical SPI Master / Slave Configuration ................................................................................................................................ 34 Figure 12. Orientation of Axes of Sensitivity and Polarity of Rotation .................................................................................................... 83 Figure 13. Package Dimensions................................................................................................................................................................ 84 Figure 14. Part Number Package Markings .............................................................................................................................................. 86 Document Number: DS-000192 Revision: 1.1 Page 8 of 89 ICM-20649 LIST OF TABLES Table 1. Gyroscope Specifications ........................................................................................................................................................... 12 Table 2. Accelerometer Specifications ..................................................................................................................................................... 13 Table 3. D.C. Electrical Characteristics ..................................................................................................................................................... 14 Table 4. A.C. Electrical Characteristics ..................................................................................................................................................... 16 Table 5. Other Electrical Specifications .................................................................................................................................................... 16 Table 6. I2C Timing Characteristics ........................................................................................................................................................... 17 Table 7. SPI Timing Characteristics (7 MHz) ............................................................................................................................................. 18 Table 8. Absolute Maximum Ratings ....................................................................................................................................................... 19 Table 9. Signal Descriptions ..................................................................................................................................................................... 20 Table 10. Bill of Materials ........................................................................................................................................................................ 21 Table 11. Power Modes for ICM-20649 ................................................................................................................................................... 28 Table 12. Table of Interrupt Sources ........................................................................................................................................................ 29 Table 13. Serial Interface ......................................................................................................................................................................... 30 Table 14. I2C Terms .................................................................................................................................................................................. 33 Table 15. Configuration............................................................................................................................................................................ 62 Table 16. Gyroscope Filter Bandwidths (Low-Power Mode) ................................................................................................................... 63 Table 17. Accelerometer Configuration ................................................................................................................................................... 67 Table 18. Accelerometer Configuration 2 ................................................................................................................................................ 68 Table 19. I2C Master Clock Frequency ..................................................................................................................................................... 81 Table 20. Package Dimensions ................................................................................................................................................................. 85 Table 21. Part Number Package Markings ............................................................................................................................................... 86 Document Number: DS-000192 Revision: 1.1 Page 9 of 89 ICM-20649 1 INTRODUCTION 1.1 PURPOSE AND SCOPE This document is a preliminary product specification, providing a description, specifications, and design related information on the ICM-20649 MotionTracking device. Final specifications are available via our sales contacts. For references to register map and descriptions of individual registers, please refer to the ICM-20649 Register Map and Register Descriptions sections. 1.2 PRODUCT OVERVIEW The ICM-20649 is a MotionTracking device that combines a 3-axis gyroscope, 3-axis accelerometer, and a Digital Motion Processor™ (DMP) all in a small 3.0x3.0x0.9mm QFN package. The device supports the following features: • • • • Android Lollipop support FIFO of size 4kB (FIFO size will vary depending on DMP feature-set) Runtime Calibration Enhanced FSYNC functionality to improve timing for applications like EIS ICM-20649 devices, with their 6-axis integration, on-chip DMP, and run-time calibration firmware, enable manufacturers to eliminate the costly and complex selection, qualification, and system level integration of discrete devices, guaranteeing optimal motion performance for consumers. The gyroscope has a programmable full-scale range up to ±4000 dps. The accelerometer has a user-programmable accelerometer full-scale range up to ±30g. Factory-calibrated initial sensitivity of both sensors reduces production-line calibration requirements. Other key features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and programmable interrupts. The device features I2C and SPI serial interfaces, a VDD operating range of 1.71V to 3.6V, and a separate digital IO supply, VDDIO from 1.71V to 3.6V. Communication with all registers of the device is performed using I2C at up to 100 kHz (standard-mode) or up to 400 kHz (fastmode), or SPI at up to 7 MHz. By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the package size down to a footprint and thickness of 3.0x3.0x0.9 mm (24-pin QFN), to provide a very small yet high-performance, low-cost package. The device provides high robustness by supporting 10,000g shock reliability. Document Number: DS-000192 Revision: 1.1 Page 10 of 89 ICM-20649 2 FEATURES 2.1 GYROSCOPE FEATURES The triple-axis MEMS gyroscope in the ICM-20649 includes the following features: • • • • 2.2 Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a user-programmable full-scale range of ±500 dps, ±1000 dps, ±2000 dps, and ±4000 dps and integrated 16-bit ADCs Digitally-programmable low-pass filter Factory calibrated sensitivity scale factor Self-test ACCELEROMETER FEATURES The triple-axis MEMS accelerometer in ICM-20649 includes the following features: • • • • 2.3 Digital-output X-, Y-, and Z-axis accelerometer with a programmable full scale range of ±4g, ±8g, ±16g, and ±30g and integrated 16-bit ADCs User-programmable interrupts Wake-on-motion interrupt for low power operation of applications processor Self-test DMP FEATURES The DMP in ICM-20649 includes the following capabilities: • • • • • • 2.4 Offloads computation of motion processing algorithms from the host processor. The DMP can be used to minimize power, simplify timing, simplify the software architecture, and save valuable MIPS on the host processor for use in applications. Optimized for Android Lollipop for low power features (AP suspended) including SMD, Step Count, Step Detect, Activity Classification, Rotation Vector, and Gaming Rotation Vector Optimized for Android Lollipop batching, both while the AP is active and suspended. The DMP will also batch data from externally connected sensors such as a compass, or pressure sensor. The DMP enables ultra-low power run-time and background calibration of the accelerometer, gyroscope, and compass, maintaining optimal performance of the sensor data for both physical and virtual sensors generated through sensor fusion. This enables the best user experience for all sensor enabled applications for the lifetime of the device. DMP features simplify the software architecture resulting in quicker time to market. DMP features are OS, Platform, and Architecture independent, supporting virtually any AP, MCU, or other embedded architecture. ADDITIONAL FEATURES The ICM-20649 includes the following additional features: • • • • • • I2C at up to 100 kHz (standard-mode) or up to 400 kHz (fast-mode) or SPI at up to 7 MHz for communication with registers Auxiliary master I2C bus for reading data from external sensors (e.g. magnetometer) Digital-output temperature sensor 10,000g shock tolerant MEMS structure hermetically sealed and bonded at wafer level RoHS and Green compliant Document Number: DS-000192 Revision: 1.1 Page 11 of 89 ICM-20649 3 ELECTRICAL CHARACTERISTICS 3.1 GYROSCOPE SPECIFICATIONS Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted. Note: All specifications apply to Standard (Duty-Cycled) Mode and Low-Noise Mode, unless noted otherwise. PARAMETER Full-Scale Range Gyroscope ADC Word Length Sensitivity Scale Factor Sensitivity Scale Factor Tolerance Sensitivity Scale Factor Variation Over Temperature Nonlinearity Cross-Axis Sensitivity CONDITIONS GYROSCOPE SENSITIVITY GYRO_FS_SEL = 0 GYRO_FS_SEL = 1 GYRO_FS_SEL = 2 GYRO_FS_SEL = 3 GYRO_FS_SEL = 0 GYRO_FS_SEL = 1 GYRO_FS_SEL = 2 GYRO_FS_SEL = 3 25°C -40°C to +85°C Best fit straight line; 25°C MIN TYP UNITS NOTES ±500 ±1000 ±2000 ±4000 16 65.5 32.8 16.4 8.2 ±0.5 ±2 dps dps dps dps bits LSB/(dps) LSB/(dps) LSB/(dps) LSB/(dps) % % 1 1 1 1 1 1 1 1 1 3 2 ±0.1 ±2 % % 2, 4 2, 4 dps dps/°C 3 2 3 3 1, 4 2, 4 562.5 dps/√Hz kHz Hz ms Hz 1.125k Hz ZERO-RATE OUTPUT (ZRO) 25°C (Component-level) ±5 -40°C to +85°C ±0.05 GYROSCOPE NOISE PERFORMANCE (GYRO_FS_SEL=0) Noise Spectral Density Based on Noise Bandwidth = 10 Hz 0.0175 GYROSCOPE MECHANICAL FREQUENCIES 25 27 LOW PASS FILTER RESPONSE Programmable Range 5.7 GYROSCOPE START-UP TIME From Full-Chip Sleep mode 35 Standard (duty-cycled) Mode 4.4 Low-Noise Mode GYRO_FCHOICE = 1; 4.4 OUTPUT DATA RATE GYRO_DLPFCFG = x Low-Noise Mode GYRO_FCHOICE = 0; GYRO_DLPFCFG = x MAX Initial ZRO Tolerance ZRO Variation Over Temperature 29 197 1 9k Hz Table 1. Gyroscope Specifications Notes: 1. 2. 3. 4. Guaranteed by design. Derived from validation or characterization of parts, not guaranteed in production. Tested in production. Low-noise mode specification. Document Number: DS-000192 Revision: 1.1 Page 12 of 89 ICM-20649 3.2 ACCELEROMETER SPECIFICATIONS Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted. Note: All specifications apply to Standard (Duty-Cycled) Mode and Low-Noise Mode, unless noted otherwise. PARAMETER Full-Scale Range ADC Word Length Sensitivity Scale Factor Initial Tolerance Sensitivity Change vs. Temperature Nonlinearity Cross-Axis Sensitivity Initial Tolerance Zero-G Level Change vs. Temperature Noise Spectral Density LOW PASS FILTER RESPONSE INTELLIGENCE FUNCTION INCREMENT ACCELEROMETER STARTUP TIME OUTPUT DATA RATE CONDITIONS ACCELEROMETER SENSITIVITY ACCEL_FS = 0 ACCEL_FS = 1 ACCEL_FS = 2 ACCEL_FS = 3 Output in two’s complement format ACCEL_FS = 0 ACCEL_FS = 1 ACCEL_FS = 2 ACCEL_FS = 3 Component-level -40°C to +85°C ACCEL_FS=0 Best Fit Straight Line MIN Component-level, all axes 0°C to +85°C ACCELEROMETER NOISE PERFORMANCE Based on Noise Bandwidth = 10 Hz Programmable Range 5.7 From Sleep mode From Cold Start, 1ms VDD ramp Low-Power Mode Low-Noise Mode ACCEL_FCHOICE = 1; ACCEL_DLPFCFG = x Low-Noise Mode ACCEL_FCHOICE = 0; ACCEL_DLPFCFG = x TYP MAX UNITS NOTES ±4 ±8 ±16 ±30 16 8,192 4,096 2,048 1,024 ±0.5 ±0.026 ±0.5 ±2 g g g g bits LSB/g LSB/g LSB/g LSB/g % %/ºC % % 1 1 1 1 1 1 1 1 1 3 2 2, 4 2, 4 ±65 ±0.80 mg mg/°C 3 2 µg/√Hz Hz 1, 4 32 mg/LSB 1 20 30 2, 4 2, 4 285 246 0.27 562.5 ms ms Hz 4.5 1.125k Hz 1 4.5k Hz Table 2. Accelerometer Specifications Notes: 1. 2. 3. 4. Guaranteed by design. Derived from validation or characterization of parts, not guaranteed in production. Tested in production. Low-noise mode specification. Document Number: DS-000192 Revision: 1.1 3 Page 13 of 89 ICM-20649 3.3 ELECTRICAL SPECIFICATIONS D.C. Electrical Characteristics Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted. PARAMETER CONDITIONS SUPPLY VOLTAGES VDD VDDIO MIN TYP MAX UNITS NOTES 1.71 1.71 1.8 1.8 3.6 3.6 V V 1 1 SUPPLY CURRENTS Gyroscope Only (DMP & Accelerometer disabled) Accelerometer Only (DMP & Gyroscope disabled) Gyroscope + Accelerometer (DMP disabled) Gyroscope Only (DMP & Accelerometer disabled) Accelerometer Only (DMP & Gyroscope disabled) Gyroscope + Accelerometer (DMP disabled) Full-Chip Sleep Mode Specified Temperature Range Low-Noise Mode 2.67 mA 2 Low-Noise Mode 760 µA 2 Low-Noise Mode 3.21 mA 2 1.23 mA 2, 3 68.9 µA 2, 3 1.27 mA 2, 3 8 µA 2 °C 1 Low-Power Mode, 102.3 Hz update rate, 1x averaging filter Low-Power Mode, 102.3 Hz update rate, 1x averaging filter Low-Power Mode, 102.3 Hz update rate, 1x averaging filter TEMPERATURE RANGE Performance parameters are not applicable beyond Specified Temperature Range -40 +85 Table 3. D.C. Electrical Characteristics Notes: 1. 2. 3. Guaranteed by design. Derived from validation or characterization of parts, not guaranteed in production. The 102.3 Hz ODR value shown here is an example; please see the section below for the full list of ODRs supported and corresponding current values. Document Number: DS-000192 Revision: 1.1 Page 14 of 89 ICM-20649 A.C. Electrical Characteristics Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted. PARAMETER CONDITIONS MIN TYP MAX UNITS NOTES 100 ms 1 85 °C LSB/°C LSB 1 100 100 ms ms 1 1 0.3*VDDIO V V pF 1 SUPPLIES Supply Ramp Time (TRAMP) Operating Range Sensitivity Room Temp Offset Supply Ramp Time (TRAMP) Start-up time for register read/write I2C ADDRESS VIH, High Level Input Voltage VIL, Low Level Input Voltage CI, Input Capacitance VOH, High Level Output Voltage VOL1, LOW-Level Output Voltage VOL.INT1, INT Low-Level Output Voltage Output Leakage Current tINT, INT Pulse Width Monotonic ramp. Ramp 0.01 20 rate is 10% to 90% of the final value. TEMPERATURE SENSOR Ambient -40 Untrimmed 333.87 21°C 0 Power-On RESET Valid power-on RESET 0.01 20 From power-up 11 AD0 = 0 1101000 AD0 = 1 1101001 DIGITAL INPUTS (FSYNC, AD0, SCLK, SDI, CS) 0.7*VDDIO < 10 DIGITAL OUTPUT (SDO, INT) 0.9*VDDIO RLOAD = 1 MΩ; RLOAD = 1 MΩ; OPEN = 1, 0.3 mA sink Current OPEN = 1 LATCH_INT_EN = 0 Vhys, Hysteresis VOL, LOW-Level Output Voltage IOL, LOW-Level Output Current Output Leakage Current tof, Output Fall Time from VIHmax to VILmax VIL, LOW-Level Input Voltage VIH, HIGH-Level Input Voltage Vhys, Hysteresis VOL1, LOW-Level Output Voltage VOL3, LOW-Level Output Voltage IOL, LOW-Level Output Current Output Leakage Current tof, Output Fall Time from VIHmax to VILmax Clock Frequency Initial Tolerance Document Number: DS-000192 Revision: 1.1 100 50 I2C I/O (SCL, SDA) -0.5 V 0.7*VDDIO VIL, LOW Level Input Voltage VIH, HIGH-Level Input Voltage V V V 0.1*VDDIO 0.1 nA µs 0.3*VDDIO VDDIO + 0.5 V V V 0.1*VDDIO 3 mA sink current VOL = 0.4 V VOL = 0.6 V Cb bus capacitance in pf 0 V V mA mA nA 0.4 3 6 100 20+0.1 Cb AUXILLIARY I/O (AUX_CL, AUX_DA) -0.5 V 0.7* VDDIO 250 ns 0.3*VDDIO VDDIO + 0.5 V V V 0.1* VDDIO VDDIO > 2 V; 1 mA sink current VDDIO < 2 V; 1 mA sink current VOL = 0.4 V VOL = 0.6 V Cb bus capacitance in pF 0 0.4 V V 0 0.2* VDDIO V 250 mA mA nA ns 3 6 100 20+0.1Cb INTERNAL CLOCK SOURCE Accelerometer Only Mode -5 Gyroscope or 6-Axis Mode WITHOUT Timebase -9 Correction Gyroscope or 6-Axis Mode -1 WITH Timebase Correction 1 +5 % 1 1 1 1 +9 % +1 Page 15 of 89 ICM-20649 PARAMETER Frequency Variation over Temperature CONDITIONS Accelerometer Only Mode Gyroscope or 6-Axis Mode MIN -10 TYP MAX +10 ±1 UNITS % % NOTES 1 1 Table 4. A.C. Electrical Characteristics Notes: 1. Derived from validation or characterization of parts, not guaranteed in production. Other Electrical Specifications Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted. PARAMETER SPI Operating Frequency, All Registers Read/Write I2C Operating Frequency CONDITIONS SERIAL INTERFACE MIN Low Speed Characterization High Speed Characterization All registers, Fast-mode All registers, Standard-mode TYP MAX 100 ±10% 7 ±10% Units kHz 400 100 MHz kHz kHz Table 5. Other Electrical Specifications Document Number: DS-000192 Revision: 1.1 Page 16 of 89 Notes ICM-20649 3.4 I2C TIMING CHARACTERIZATION Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted. PARAMETERS I2C TIMING fSCL, SCL Clock Frequency tHD.STA, (Repeated) START Condition Hold Time tLOW, SCL Low Period tHIGH, SCL High Period tSU.STA, Repeated START Condition Setup Time tHD.DAT, SDA Data Hold Time tSU.DAT, SDA Data Setup Time tr, SDA and SCL Rise Time tf, SDA and SCL Fall Time tSU.STO, STOP Condition Setup Time CONDITIONS I2C FAST-MODE MIN Cb bus cap. from 10 to 400 pF Cb bus cap. from 10 to 400 pF MAX UNITS NOTES 400 0.6 kHz µs 1, 2 1, 2 1.3 0.6 0.6 µs µs µs 1, 2 1, 2 1, 2 0 100 20+0.1Cb 20+0.1Cb 0.6 µs ns ns ns µs 1, 2 1, 2 1, 2 1, 2 1, 2 µs 1, 2 pF µs µs 1, 2 1, 2 1, 2 tBUF, Bus Free Time Between STOP and START Condition Cb, Capacitive Load for each Bus Line tVD.DAT, Data Valid Time tVD.ACK, Data Valid Acknowledge Time TYPICAL 300 300 1.3 < 400 0.9 0.9 Table 6. I2C Timing Characteristics Notes: 1. 2. Timing Characteristics apply to both Primary and Auxiliary I2C Bus. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets. tf SDA tSU.DAT tr 70% 30% 70% 30% continued below at tf SCL tr 70% 30% S tHD.STA tVD.DAT 70% 30% tHD.DAT 1/fSCL tLOW 1st clock cycle 9th clock cycle tHIGH tBUF SDA 70% 30% A tSU.STA tHD.STA SCL 70% 30% Sr tSU.STO tVD.ACK 9th clock cycle P S Figure 1. I2C Bus Timing Diagram Document Number: DS-000192 Revision: 1.1 Page 17 of 89 A ICM-20649 3.5 SPI TIMING CHARACTERIZATION Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted. Parameters SPI TIMING fSCLK, SCLK Clock Frequency Conditions Min Typical Max Units 7 MHz tLOW, SCLK Low Period 64 ns tHIGH, SCLK High Period 64 ns tSU.CS, CS Setup Time 8 ns tHD.CS, CS Hold Time 500 ns 5 ns tSU.SDI, SDI Setup Time tHD.SDI, SDI Hold Time 7 tVD.SDO, SDO Valid Time Cload = 20 pF tHD.SDO, SDO Hold Time tDIS.SDO, SDO Output Disable Time Cload = 20 pF Notes ns 59 ns 50 ns ns 6 Table 7. SPI Timing Characteristics (7 MHz) Note: 1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets. CS 70% 30% tFall tSU;CS SCLK tHIGH 70% 30% tLOW tHD;SDI LSB IN MSB IN tVD;SDO SDO tHD;CS 70% 30% tSU;SDI SDI tRise 1/fCLK MSB OUT tDIS;SDO tHD;SDO 70% 30% LSB OUT Figure 2. SPI Bus Timing Diagram Document Number: DS-000192 Revision: 1.1 Page 18 of 89 ICM-20649 3.6 ABSOLUTE MAXIMUM RATINGS Stress above those listed as “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability. Parameter Supply Voltage, VDD Supply Voltage, VDDIO REGOUT Input Voltage Level (AUX_DA, AD0, FSYNC, INT, SCL, SDA) Acceleration (Any Axis, unpowered) Operating Temperature Range Storage Temperature Range Electrostatic Discharge (ESD) Protection Latch-up Rating -0.5V to 4V -0.5V to 4V -0.5V to 2V -0.5V to VDD + 0.5V 10,000g for 0.2 ms -40°C to +105°C -40°C to +125°C 2 kV (HBM); 200V (MM) JEDEC Class II (2),125°C ±100 mA Table 8. Absolute Maximum Ratings Document Number: DS-000192 Revision: 1.1 Page 19 of 89 ICM-20649 4 APPLICATIONS INFORMATION 4.1 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION PIN NUMBER 7 8 9 10 11 12 13 18 19 20 21 22 23 24 1 – 6, 14 - 17 PIN NAME AUX_CL VDDIO AD0 / SDO REGOUT FSYNC INT1 VDD GND INT2 RESV AUX_DA nCS SCL / SCLK SDA / SDI NC PIN DESCRIPTION I2C Master serial clock, for connecting to external sensors. Digital I/O supply voltage. I2C Slave Address LSB (AD0); SPI serial data output (SDO). Regulator filter capacitor connection. Frame synchronization digital input. Connect to GND if unused. Interrupt 1. Power supply voltage. Power supply ground. Interrupt 2. Reserved. Connect to GND. I2C master serial data, for connecting to external sensors. Chip select (SPI mode only). I2C serial clock (SCL); SPI serial clock (SCLK). I2C serial data (SDA); SPI serial data input (SDI). No Connect pins. Do not connect. SDA / SDI SCL / SCLK nCS AUX_DA RESV INT2 24 23 22 21 20 19 Table 9. Signal Descriptions NC 1 18 GND NC 2 17 NC NC 3 NC 4 15 NC NC 5 14 NC NC 6 13 VDD 16 NC 7 8 9 10 11 12 AUX_CL VDDIO SDO / AD0 REGOUT FSYNC INT1 ICM-20649 Figure 3. Pin out Diagram for ICM-20649 3.0x3.0x0.9 mm QFN Document Number: DS-000192 Revision: 1.1 Page 20 of 89 ICM-20649 TYPICAL OPERATING CIRCUIT 1 18 NC 2 17 NC RESV INT2 19 20 21 AUX_DA nCS 22 23 SDA / SDI 24 INT2 RESV 20 21 nCS AUX_DA 22 SDA / SDI SCL / SCLK 23 24 19 GND NC GND NC 1 18 NC 2 17 NC NC 3 16 NC NC 3 NC 4 15 NC NC 4 15 NC NC 5 14 NC NC 5 14 NC NC 6 13 VDD NC 6 13 VDD C3, 0.1 µ F AD0 12 1.8 – 3.3VDC C2, 0.1 mF INT1 11 FSYNC 9 REGOUT 10 SDO / AD0 1.8 – 3.3VDC 8 7 C2, 0.1 mF C1, 0.1 mF C3, 0.1 µ F 16 NC ICM-20649 VDDIO 12 1.8 – 3.3VDC INT1 11 FSYNC REGOUT 10 9 SDO / AD0 8 VDDIO 7 ICM-20649 AUX_CL 1.8 – 3.3VDC SCLK SDI SCL / SCLK nCS VDDIO SCL SDA AUX_CL 4.2 C1, 0.1 mF SDO (a) (b) Figure 4. ICM-20649 Application Schematic (a) I2C operation (b) SPI operation 4.3 BILL OF MATERIALS FOR EXTERNAL COMPONENTS Component Label Specification Quantity Regulator Filter Capacitor C1 Ceramic, X7R, 0.1 µF ±10% 1 VDD Bypass Capacitor C2 Ceramic, X7R, 0.1 µF ±10% 1 VDDIO Bypass Capacitor C3 Ceramic, X7R, 0.1 µF ±10% 1 Table 10. Bill of Materials Document Number: DS-000192 Revision: 1.1 Page 21 of 89 ICM-20649 4.4 BLOCK DIAGRAM ICM-20649 INT1 Self test X Accel ADC Self test Y Accel ADC INT2 Interrupt Status Register nCS Slave I2C and SPI Serial Interface FIFO AD0 / SDO SCL / SCLK SDA / SDI Z Accel ADC Self test X Gyro ADC Self test Y Gyro Self test Z Gyro Temp Sensor Signal Conditioning Self test User & Config Registers Serial Interface Bypass Mux Master I2C Serial Interface Sensor Registers AUX_CL AUX_DA FSYNC ADC Digital Motion Processor (DMP) ADC ADC Bias & LDOs Charge Pump VDD GND REGOUT Figure 5. ICM-20649 Block Diagram 4.5 OVERVIEW The ICM-20649 is comprised of the following key blocks and functions: • • • • • • • • • • • • • • • Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning Digital Motion Processor (DMP) engine Primary I2C and SPI serial communications interfaces Auxiliary I2C serial interface Self-Test Clocking Sensor Data Registers FIFO FSYNC Interrupts Digital-Output Temperature Sensor Bias and LDOs Charge Pump Power Modes Document Number: DS-000192 Revision: 1.1 Page 22 of 89 ICM-20649 4.6 THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING The ICM-20649 consists of three independent vibratory MEMS rate gyroscopes, which detect rotation about the X-, Y-, and Z- Axes. When the gyros are rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage is digitized using individual on-chip 16-bit Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro sensors may be digitally programmed to ±500, ±1000, ±2000, or ±4000 degrees per second (dps). 4.7 THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING The ICM-20649’s 3-Axis accelerometer uses separate proof masses for each axis. Acceleration along a particular axis induces displacement on the corresponding proof mass, and capacitive sensors detect the displacement differentially. The ICM-20649’s architecture reduces the accelerometers’ susceptibility to fabrication variations as well as to thermal drift. When the device is placed on a flat surface, it will measure 0g on the X- and Y-axes and +1g on the Z-axis. The accelerometers’ scale factor is calibrated at the factory and is nominally independent of supply voltage. Each sensor has a dedicated sigma-delta ADC for providing digital outputs. The full scale range of the digital output can be adjusted to ±4g, ±8g, ±16g, or ±30g. 4.8 DIGITAL MOTION PROCESSOR The embedded Digital Motion Processor (DMP) within the ICM-20649 offloads computation of motion processing algorithms from the host processor. The DMP acquires data from accelerometers, gyroscopes, and additional third party sensors such as magnetometers, and processes the data. The resulting data can be read from the FIFO. The DMP has access to the external pins, which can be used for generating interrupts. The purpose of the DMP is to offload both timing requirements and processing power from the host processor. Typically, motion processing algorithms should be run at a high rate, often around 200 Hz, in order to provide accurate results with low latency. This is required even if the application updates at a much lower rate; for example, a low power user interface may update as slowly as 5 Hz, but the motion processing should still run at 200 Hz. The DMP can be used to minimize power, simplify timing, simplify the software architecture, and save valuable MIPS on the host processor for use in applications. The DMP is optimized for Android Lollipop support. 4.9 PRIMARY I2C AND SPI SERIAL COMMUNICATIONS INTERFACES The ICM-20649 communicates to a system processor using either a SPI or an I2C serial interface. The ICM-20649 always acts as a slave when communicating to the system processor. The LSB of the of the I2C slave address is set by pin 1 (AD0). ICM-20649 Solution Using I2C Interface In Figure 6, the system processor is an I2C master to the ICM-20649. In addition, the ICM-20649 is an I2C master to the optional external compass sensor. The ICM-20649 has limited capabilities as an I2C Master, and depends on the system processor to manage the initial configuration of any auxiliary sensors. The ICM-20649 has an interface bypass multiplexer, which connects the system processor I2C bus pins 23 and 24 (SCL and SDA) directly to the auxiliary sensor I2C bus pins 7 and 21 (AUX_CL and AUX_DA). Once the auxiliary sensors have been configured by the system processor, the interface bypass multiplexer should be disabled so that the ICM-20649 auxiliary I2C master can take control of the sensor I2C bus and gather data from the auxiliary sensors. Document Number: DS-000192 Revision: 1.1 Page 23 of 89 ICM-20649 Interrupt Status Register I2C Processor Bus: for reading all sensor data from MPU and for configuring external sensors (i.e. compass in this example) INT1 INT2 ICM-20649 AD0 Slave I2C or SPI Serial Interface VDD or GND SCL SCL SDA/SDI SDA System Processor FIFO Sensor I2C Bus: for configuring and reading from external sensors User & Config Registers Optional Sensor Master I2C Serial Interface Sensor Register Interface Bypass Mux AUX_CL SCL AUX_DA SDA Compass Factory Calibration Digital Motion Processor (DMP) Interface bypass mux allows direct configuration of compass by system processor Bias & LDOs VDD GND REGOUT Figure 6. ICM-20649 Solution Using I2C Interface Document Number: DS-000192 Revision: 1.1 Page 24 of 89 ICM-20649 ICM-20649 Solution Using SPI Interface In Figure 7, the system processor is an SPI master to the ICM-20649. Pins 9, 22, 23, and 24 are used to support the SDO, nCS, SCLK, and SDI signals for SPI communications. Because these SPI pins are shared with the I 2C slave pins (9, 23 and 24), the system processor cannot access the auxiliary I2C bus through the interface bypass multiplexer, which connects the processor I 2C interface pins to the sensor I2C interface pins. Since the ICM-20649 has limited capabilities as an I2C Master, and depends on the system processor to manage the initial configuration of any auxiliary sensors, another method must be used for programming the sensors on the auxiliary sensor I2C bus pins 7 and 21 (AUX_CL and AUX_DA). When using SPI communications between the ICM-20649 and the system processor, configuration of devices on the auxiliary I2C sensor bus can be achieved by using I2C Slaves 0-4 to perform read and write transactions on any device and register on the auxiliary I2C bus. The I2C Slave 4 interface can be used to perform only single byte read and write transactions. Once the external sensors have been configured, the ICM-20649 can perform single or multi-byte reads using the sensor I2C bus. The read results from the Slave 0-3 controllers can be written to the FIFO buffer as well as to the external sensor registers. For more information regarding the control of the ICM-20649’s auxiliary I2C interface, please refer to the ICM-20649 Register Map and Register Descriptions sections. Processor SPI Bus: for reading all data from MPU and for configuring MPU and external sensors Interrupt Status Register INT1 INT2 ICM-20649 Slave I2C or SPI Serial Interface nCS nCS SDO SDI SCLK SCLK SDI System Processor SDO FIFO Sensor I2C Bus: for configuring and reading data from external sensors Config Register Optional Sensor Master I2C Serial Interface Sensor Register Interface Bypass Mux AUX_CL SCL AUX_DA SDA Compass Factory Calibration Digital Motion Processor (DMP) I2C Master performs read and write transactions on Sensor I2C bus. Bias & LDOs VDD GND REGOUT Figure 7. ICM-20649 Solution Using SPI Interface Document Number: DS-000192 Revision: 1.1 Page 25 of 89 ICM-20649 4.10 AUXILIARY I2C SERIAL INTERFACE The ICM-20649 has an auxiliary I2C bus for communicating to an off-chip 3-Axis digital output magnetometer or other sensors. This bus has two operating modes: • • I2C Master Mode: The ICM-20649 acts as a master to any external sensors connected to the auxiliary I2C bus Pass-Through Mode: The ICM-20649 directly connects the primary and auxiliary I2C buses together, allowing the system processor to directly communicate with any external sensors. 4.11 AUXILIARY I2C BUS MODES OF OPERATION: I2C Master Mode: Allows the ICM-20649 to directly access the data registers of external digital sensors, such as a magnetometer. In this mode, the ICM-20649 directly obtains data from auxiliary sensors without intervention from the system applications processor. For example, in I2C Master mode, the ICM-20649 can be configured to perform burst reads, returning the following data from a magnetometer: • • • X magnetometer data (2 bytes) Y magnetometer data (2 bytes) Z magnetometer data (2 bytes) The I2C Master can be configured to read up to 24 bytes from up to 4 auxiliary sensors. A fifth sensor can be configured to work single byte read/write mode. Pass-Through Mode: Allows an external system processor to act as master and directly communicate to the external sensors connected to the auxiliary I2C bus pins (AUX_DA and AUX_CL). In this mode, the auxiliary I2C bus control logic (3rd party sensor interface block) of the ICM-20649 is disabled, and the auxiliary I2C pins AUX_CL and AUX_DA (pins 7 and 21) are connected to the main I2C bus (Pins 23 and 24) through analog switches internally. Pass-Through mode is useful for configuring the external sensors. 4.12 SELF-TEST Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can be activated by means of the gyroscope and accelerometer self-test registers. When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is used to observe the self-test response. The self-test response is defined as follows: SELF-TEST RESPONSE = SENSOR OUTPUT WITH SELF-TEST ENABLED – SENSOR OUTPUT WITHOUT SELF-TEST ENABLED The self-test response for each gyroscope axis is defined in the gyroscope specification table, while that for each accelerometer axis is defined in the accelerometer specification table. When the value of the self-test response is within the specified min/max limits, the part has passed self-test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test. It is recommended to use InvenSense MotionApps software for executing self-test. 4.13 CLOCKING The internal system clock sources include: (1) an internal relaxation oscillator, and (2) a PLL with MEMS gyroscope oscillator as the reference clock. With the recommended clock selection setting (CLKSEL = 1), the best clock source for optimum sensor performance and power consumption will be automatically selected based on the power mode. Specifically, the internal relaxation oscillator will be selected when operating in accelerometer only mode, while the PLL will be selected whenever gyroscope is on, which includes gyroscope and 6-axis modes. Document Number: DS-000192 Revision: 1.1 Page 26 of 89 ICM-20649 As clock accuracy is critical to the preciseness of distance and angle calculations performed by DMP, it should be noted that the internal relaxation oscillator and PLL show different performances in some aspects. The internal relaxation oscillator is trimmed to have a consistent operating frequency at room temperature, while the PLL clock frequency varies from part to part. The PLL frequency deviation from the nominal value in percentage is captured in register TIMEBASE_CORRECTION_PLL (detailed in section 12.5), and users can factor it in during distance and angle calculations to not sacrifice accuracy. Other than that, PLL has better frequency stability and lower frequency variation over temperature than the internal relaxation oscillator. 4.14 SENSOR DATA REGISTERS The sensor data registers contain the latest gyro, accelerometer, auxiliary sensor, and temperature measurement data. They are read-only registers, and are accessed via the serial interface. Data from these registers may be read anytime. 4.15 FIFO The ICM-20649 contains a FIFO of size 4kB (FIFO size will vary depending on DMP feature-set) that is accessible via the Serial Interface. The FIFO configuration register determines which data is written into the FIFO. Possible choices include gyro data, accelerometer data, temperature readings, auxiliary sensor readings, and FSYNC input. A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO. The FIFO register supports burst reads. The interrupt function may be used to determine when new data is available. For further information regarding the FIFO, please refer to the ICM-20649 Register Map and Register Descriptions sections. 4.16 FSYNC The FSYNC pin can be used from an external interrupt source to wake up the device from sleep. It is particularly useful in EIS applications to synchronize the gyroscope ODR with external inputs from an imaging sensor. Connecting the VSYNC or HSYNC pin of the image sensor subsystem to FSYNC on ICM-20649 allows timing synchronization between the two otherwise unconnected subsystems. An FSYNC_ODR delay time register is used to capture the delay between an FSYNC pulse and the very next gyroscope data ready pulse. 4.17 INTERRUPTS Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the INT pins configuration, the interrupt latching and clearing method, and triggers for the interrupt. Section 5 provides a summary of interrupt sources. The ICM-20649 includes two interrupt pins, INT1 and INT2. Certain DMP-based interrupts are mapped to INT2 while all other interrupts are mapped to INT1. The interrupt status can be read from the Interrupt Status register. For further information regarding interrupts, please refer to the ICM-20649 Register Map and Register Descriptions sections. 4.18 DIGITAL-OUTPUT TEMPERATURE SENSOR An on-chip temperature sensor and ADC are used to measure the ICM-20649 die temperature. The readings from the ADC can be read from the FIFO or the Sensor Data registers. 4.19 BIAS AND LDOS The bias and LDO section generates the internal supply and the reference voltages and currents required by the ICM-20649. Its two inputs are an unregulated VDD and a VDDIO logic reference supply voltage. The LDO output is bypassed by a capacitor at REGOUT. For further details on the capacitor, please refer to the Bill of Materials for External Components. 4.20 CHARGE PUMP An on-chip charge pump generates the high voltage required for the MEMS oscillators. 4.21 POWER MODES The following table lists the user-accessible power modes for ICM-20649. MODE 1 NAME Sleep Mode Document Number: DS-000192 Revision: 1.1 GYRO Off ACCEL Off DMP Off Page 27 of 89 ICM-20649 MODE 2 3 NAME Accelerometer Mode Gyroscope Mode 4 6-Axis Mode 5 DMP only mode GYRO Off Low-Noise or DutyCycled Low-Noise or DutyCycled Off ACCEL Low-Noise or Duty-Cycled Off DMP Duty-Cycled or Off Duty-Cycled or Off Low-Noise or Duty-Cycled Duty-Cycled or Off Off Duty-Cycled Table 11. Power Modes for ICM-20649 Note: The standard mode of gyroscope and accelerometer operation is duty-cycled. Document Number: DS-000192 Revision: 1.1 Page 28 of 89 ICM-20649 5 PROGRAMMABLE INTERRUPTS The ICM-20649 has a programmable interrupt system which can generate an interrupt signal on the INT pins. Status flags indicate the source of an interrupt. Interrupt sources may be enabled and disabled individually. The following table lists the interrupt sources and which interrupt may propagate to which pin. INTERRUPT SOURCE DMP Interrupt Wake on Motion Interrupt PLL RDY Interrupt I2C Master Interrupt Raw Data Ready Interrupt INTERRUPT PIN INT1/INT2 INT1 INT1 INT1 INT1 FIFO Overflow Interrupt INT1 FIFO Watermark Interrupt INT1 Table 12. Table of Interrupt Sources For information regarding interrupt registers, please refer to the ICM-20649 Register Map and Register Descriptions sections. Document Number: DS-000192 Revision: 1.1 Page 29 of 89 ICM-20649 6 DIGITAL INTERFACE 6.1 I2C AND SPI SERIAL INTERFACES The internal registers and memory of the ICM-20649 can be accessed using either I2C at 400 kHz or SPI at 7 MHz. SPI operates in four-wire mode. Pin Number 9 Pin Name AD0 / SDO I2C Pin Description Slave Address LSB (AD0); SPI serial data output (SDO) 22 23 24 nCS SCL / SCLK SDA / SDI Chip select (SPI mode only) I2C serial clock (SCL); SPI serial clock (SCLK) I2C serial data (SDA); SPI serial data input (SDI) Table 13. Serial Interface Note: To prevent switching into I2C mode when using SPI, the I2C interface should be disabled by setting the I2C_IF_DIS configuration bit. Setting this bit should be performed immediately after waiting for the time specified by the “Start-Up Time for Register Read/Write” in section 3.3.1. For further information regarding the I2C_IF_DIS bit, please refer to the ICM-20649 Register Map and Register Descriptions sections. 6.2 I2C INTERFACE I2C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bidirectional. In a generalized I2C interface implementation, attached devices can be a master or a slave. The master device puts the slave address on the bus, and the slave device with the matching address acknowledges the master. The ICM-20649 always operates as a slave device when communicating to the system processor, which thus acts as the master. SDA and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is 400 kHz. The slave address of the ICM-20649 is b110100X which is 7 bits long. The LSB bit of the 7-bit address is determined by the logic level on pin AD0. This allows two ICM-20649s to be connected to the same I2C bus. When used in this configuration, the address of the one of the devices should be b1101000 (pin AD0 is logic low) and the address of the other should be b1101001 (pin AD0 is logic high). Document Number: DS-000192 Revision: 1.1 Page 30 of 89 ICM-20649 6.3 I2C COMMUNICATIONS PROTOCOL START (S) and STOP (P) Conditions Communication on the I2C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see Figure 8). Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition. SDA SCL S P START condition STOP condition Figure 8. START and STOP Conditions Data Format / Acknowledge I2C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse. If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line (refer to Figure 9). DATA OUTPUT BY TRANSMITTER (SDA) not acknowledge DATA OUTPUT BY RECEIVER (SDA) acknowledge SCL FROM MASTER 1 2 8 9 clock pulse for acknowledgement START condition Figure 9. Acknowledge on the I2C Bus Document Number: DS-000192 Revision: 1.1 Page 31 of 89 ICM-20649 Communications After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line. However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take place when SCL is low, with the exception of start and stop conditions. SDA SCL 1–7 8 9 1–7 8 1–7 9 8 9 S P START ADDRESS condition R/W ACK DATA ACK DATA ACK STOP condition Figure 10. Complete I2C Data Transfer To write the internal ICM-20649 registers, the master transmits the start condition (S), followed by the I 2C address and the write bit (0). At the 9th clock cycle (when the clock is high), the ICM-20649 acknowledges the transfer. Then the master puts the register address (RA) on the bus. After the ICM-20649 acknowledges the reception of the register address, the master puts the register data onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the ICM20649 automatically increments the register address and loads the data to the appropriate register. The following figures show single and two-byte write sequences. Single-Byte Write Sequence Master S AD+W Slave RA ACK DATA ACK P ACK Burst Write Sequence Master S AD+W Slave RA ACK DATA ACK DATA ACK P ACK To read the internal ICM-20649 registers, the master sends a start condition, followed by the I 2C address and a write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the ICM-20649, the master transmits a start signal followed by the slave address and read bit. As a result, the ICM-20649 sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high at the 9th clock cycle. The following figures show single and two-byte read sequences. Document Number: DS-000192 Revision: 1.1 Page 32 of 89 ICM-20649 Single-Byte Read Sequence Master S AD+W Slave RA ACK S AD+R NACK ACK ACK P DATA Burst Read Sequence Master S AD+W Slave RA ACK S AD+R ACK ACK ACK DATA NACK P DATA 6.4 I2C TERMS SIGNAL S AD W R ACK NACK RA DATA P DESCRIPTION Start Condition: SDA goes from high to low while SCL is high Slave I2C address Write bit (0) Read bit (1) Acknowledge: SDA line is low while the SCL line is high at the 9th clock cycle Not-Acknowledge: SDA line stays high at the 9th clock cycle ICM-20649 internal register address Transmit or received data Stop condition: SDA going from low to high while SCL is high Table 14. I2C Terms 6.5 SPI INTERFACE SPI is a 4-wire synchronous serial interface that uses two control lines and two data lines. The ICM-20649 always operates as a Slave device during standard Master-Slave SPI operation. With respect to the Master, the Serial Clock output (SCLK), the Serial Data Output (SDO) and the Serial Data Input (SDI) are shared among the Slave devices. Each SPI slave device requires its own Chip Select (CS) line from the master. CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line is active at a time, ensuring that only one slave is selected at any given time. The CS lines of the non-selected slave devices are held high, causing their SDO lines to remain in a high-impedance (high-z) state so that they do not interfere with any active devices. SPI Operational Features 1. 2. 3. 4. 5. Data is delivered MSB first and LSB last Data is latched on the rising edge of SCLK Data should be transitioned on the falling edge of SCLK The maximum frequency of SCLK is 7 MHz SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit and indicates the Read (1) or Write (0) operation. The following 7 bits contain the Register Address. In cases of multiplebyte Read/Writes, data is two or more bytes: SPI Address format MSB R/W A6 A5 A4 A3 A2 A1 LSB A0 D6 D5 D4 D3 D2 D1 LSB D0 SPI Data format MSB D7 6. Supports Single or Burst Read/Writes. Document Number: DS-000192 Revision: 1.1 Page 33 of 89 ICM-20649 SCLK SDI SDO SPI Master /CS1 SPI Slave 1 /CS /CS2 SCLK SDI SDO /CS SPI Slave 2 Figure 11. Typical SPI Master / Slave Configuration Document Number: DS-000192 Revision: 1.1 Page 34 of 89 ICM-20649 7 REGISTER MAP The following table lists the register map for the ICM-20649, for user banks 0, 1, 2, 3. 7.1 USER BANK 0 REGISTER MAP: Addr (Hex) Addr (Dec.) Register Name Serial I/F 00 0 WHO_AM_I R 03 3 USER_CTRL R/W 05 5 LP_CONFIG R/W 06 6 PWR_MGMT_1 R/W 07 7 PWR_MGMT_2 R/W Bit7 Bit6 Bit5 Bit4 DMP_EN FIFO_EN I2C_MST_EN I2C_IF_DIS I2C_MST_CY CLE ACCEL_CYCLE GYRO_CYCLE SLEEP LP_EN - INT1_OPEN INT1_LATCH_ INT_EN Bit3 Bit1 Bit0 SRAM_RST I2C_MST_RST - WHO_AM_I[7:0] DEVICE_RESE T - 15 INT_PIN_CFG R/W INT1_ACTL 10 16 INT_ENABLE R/W REG_WOF_E N 11 17 INT_ENABLE_1 R/W INT2_ACTL 12 18 INT_ENABLE_2 R/W - 13 19 INT_ENABLE_3 R/W PASS_THROU GH DMP_RST TEMP_DIS CLKSEL[2:0] DISABLE_ACCEL 0F - I2C_MST_STATUS R/C 19 25 INT_STATUS R/C 1A 26 INT_STATUS_1 R/C 1B 27 INT_STATUS_2 R/C - 1C 28 INT_STATUS_3 R/C - 28 40 DELAY_TIMEH R DMP_INT2_E N DISABLE_GYRO ACTL_FSYNC FSYNC_INT_ MODE_EN BYPASS_EN - WOM_INT_E N PLL_RDY_EN DMP_INT1_E N I2C_MST_INT _EN RAW_DATA_ 0_RDY_EN FIFO_OVERFLOW_EN[4:0] FIFO_WM_EN[4:0] I2C_SLV4_DO NE 23 INT_ANYRD_ 2CLEAR INT2_LATCH_ EN INT2_OPEN 17 I2C_LOST_AR B I2C_SLV4_NA CK - I2C_SLV3_NA CK I2C_SLV2_NA CK I2C_SLV1_NA CK I2C_SLV0_NA CK WOM_INT PLL_RDY_INT DMP_INT1 I2C_MST_INT RAW_DATA_ 0_RDY_INT FIFO_OVERFLOW_INT[4:0] FIFO_WM_INT[4:0] DELAY_TIMEH[7:0] 29 41 DELAY_TIMEL R DELAY_TIMEL[7:0] 2D 45 ACCEL_XOUT_H R ACCEL_XOUT_H[7:0] 2E 46 ACCEL_XOUT_L R ACCEL_XOUT_L[7:0] 2F 47 ACCEL_YOUT_H R ACCEL_YOUT_H[7:0] 30 48 ACCEL_YOUT_L R ACCEL_YOUT_L[7:0] 31 49 ACCEL_ZOUT_H R ACCEL_ZOUT_H[7:0] 32 50 ACCEL_ZOUT_L R ACCEL_ZOUT_L[7:0] 33 51 GYRO_XOUT_H R GYRO_XOUT_H[7:0] 34 52 GYRO_XOUT_L R GYRO_XOUT_L[7:0] 35 53 GYRO_YOUT_H R GYRO_YOUT_H[7:0] 36 54 GYRO_YOUT_L R GYRO_YOUT_L[7:0] 37 55 GYRO_ZOUT_H R GYRO_ZOUT_H[7:0] 38 56 GYRO_ZOUT_L R GYRO_ZOUT_L[7:0] 39 57 TEMP_OUT_H R TEMP_OUT_H[7:0] 3A 58 TEMP_OUT_L R TEMP_OUT_L[7:0] 3B 59 EXT_SLV_SENS_DATA_00 R EXT_SLV_SENS_DATA_00[7:0] 3C 60 EXT_SLV_SENS_DATA_01 R EXT_SLV_SENS_DATA_01[7:0] 3D 61 EXT_SLV_SENS_DATA_02 R EXT_SLV_SENS_DATA_02[7:0] 3E 62 EXT_SLV_SENS_DATA_03 R EXT_SLV_SENS_DATA_03[7:0] 3F 63 EXT_SLV_SENS_DATA_04 R EXT_SLV_SENS_DATA_04[7:0] 40 64 EXT_SLV_SENS_DATA_05 R EXT_SLV_SENS_DATA_05[7:0] 41 65 EXT_SLV_SENS_DATA_06 R EXT_SLV_SENS_DATA_06[7:0] 42 66 EXT_SLV_SENS_DATA_07 R EXT_SLV_SENS_DATA_07[7:0] 43 67 EXT_SLV_SENS_DATA_08 R EXT_SLV_SENS_DATA_08[7:0] 44 68 EXT_SLV_SENS_DATA_09 R EXT_SLV_SENS_DATA_09[7:0] 45 69 EXT_SLV_SENS_DATA_10 R EXT_SLV_SENS_DATA_10[7:0] 46 70 EXT_SLV_SENS_DATA_11 R EXT_SLV_SENS_DATA_11[7:0] 47 71 EXT_SLV_SENS_DATA_12 R EXT_SLV_SENS_DATA_12[7:0] 48 72 EXT_SLV_SENS_DATA_13 R EXT_SLV_SENS_DATA_13[7:0] Document Number: DS-000192 Revision: 1.1 Bit2 Page 35 of 89 ICM-20649 Addr (Hex) Addr (Dec.) Register Name Serial I/F Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SLV_3_FIFO_ EN SLV_2_FIFO_ EN SLV_1_FIFO_ EN SLV_0_FIFO_ EN GYRO_Z_FIF O_EN GYRO_Y_FIF O_EN GYRO_X_FIF O_EN TEMP_FIFO_ EN 49 73 EXT_SLV_SENS_DATA_14 R EXT_SLV_SENS_DATA_14[7:0] 4A 74 EXT_SLV_SENS_DATA_15 R EXT_SLV_SENS_DATA_15[7:0] 4B 75 EXT_SLV_SENS_DATA_16 R EXT_SLV_SENS_DATA_16[7:0] 4C 76 EXT_SLV_SENS_DATA_17 R EXT_SLV_SENS_DATA_17[7:0] 4D 77 EXT_SLV_SENS_DATA_18 R EXT_SLV_SENS_DATA_18[7:0] 4E 78 EXT_SLV_SENS_DATA_19 R EXT_SLV_SENS_DATA_19[7:0] 4F 79 EXT_SLV_SENS_DATA_20 R EXT_SLV_SENS_DATA_20[7:0] 50 80 EXT_SLV_SENS_DATA_21 R EXT_SLV_SENS_DATA_21[7:0] 51 81 EXT_SLV_SENS_DATA_22 R EXT_SLV_SENS_DATA_22[7:0] 52 82 EXT_SLV_SENS_DATA_23 R EXT_SLV_SENS_DATA_23[7:0] 66 102 FIFO_EN_1 R/W 67 103 FIFO_EN_2 R/W - 68 104 FIFO_RST R/W - FIFO_RESET[4:0] 69 105 FIFO_MODE R/W - FIFO_MODE[4:0] 70 112 FIFO_COUNTH R - 71 113 FIFO_COUNTL R 72 114 FIFO_R_W R/W 74 116 DATA_RDY_STATUS R/C 76 7F 118 FIFO_CFG R/W 127 REG_BANK_SEL R/W 7.2 Addr (Hex) ACCEL_FIFO_ EN FIFO_CNT[12:8] FIFO_CNT[7:0] FIFO_R_W[7:0] WOF_STATU S - RAW_DATA_RDY[3:0] - - FIFO_CFG USER_BANK[1:0] - USER BANK 1 REGISTER MAP: Addr (Dec.) Register Name Serial I/F Bit7 Bit6 02 2 SELF_TEST_X_GYRO R/W XG_ST_DATA[7:0] 03 3 SELF_TEST_Y_GYRO R/W YG_ST_DATA[7:0] 04 4 SELF_TEST_Z_GYRO R/W ZG_ST_DATA[7:0] 0E 14 SELF_TEST_X_ACCEL R/W XA_ST_DATA[7:0] 0F 15 SELF_TEST_Y_ACCEL R/W YA_ST_DATA[7:0] 10 16 SELF_TEST_Z_ACCEL R/W ZA_ST_DATA[7:0] 14 20 XA_OFFS_H R/W XA_OFFS[14:7] 15 21 XA_OFFS_L R/W XA_OFFS[6:0] 17 23 YA_OFFS_H R/W YA_OFFS[14:7] 18 24 YA_OFFS_L R/W YA_OFFS[6:0] 1A 26 ZA_OFFS_H R/W ZA_OFFS[14:7] 1B 27 ZA_OFFS_L R/W ZA_OFFS[6:0] 28 40 TIMEBASE_CORRECTION_PL L R/W TBC_PLL[7:0] 7F 127 REG_BANK_SEL R/W - 7.3 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 - - - USER_BANK[1:0] - USER BANK 2 REGISTER MAP: Addr (Hex) Addr (Dec.) Register Name Serial I/F 00 0 GYRO_SMPLRT_DIV R/W 01 1 GYRO_CONFIG_1 R/W - 02 2 GYRO_CONFIG_2 R/W - 03 3 XG_OFFS_USRH R/W 04 4 XG_OFFS_USRL R/W X_OFFS_USER[7:0] 05 5 YG_OFFS_USRH R/W Y_OFFS_USER[15:8] 06 6 YG_OFFS_USRL R/W Y_OFFS_USER[7:0] 07 7 ZG_OFFS_USRH R/W Z_OFFS_USER[15:8] 08 8 ZG_OFFS_USRL R/W Z_OFFS_USER[7:0] Document Number: DS-000192 Revision: 1.1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 GYRO_SMPLRT_DIV[7:0] GYRO_DLPFCFG[2:0] XGYRO_CTEN YGYRO_CTEN GYRO_FS_SEL[1:0] ZGYRO_CTEN GYRO_AVGCFG[2:0] X_OFFS_USER[15:8] Page 36 of 89 GYRO_FCHOI CE ICM-20649 Addr (Hex) Addr (Dec.) Register Name Serial I/F 09 9 ODR_ALIGN_EN R/W 10 16 ACCEL_SMPLRT_DIV_1 R/W 11 17 ACCEL_SMPLRT_DIV_2 R/W 12 18 ACCEL_INTEL_CTRL R/W 13 19 ACCEL_WOM_THR R/W 14 20 ACCEL_CONFIG R/W 15 21 ACCEL_CONFIG_2 R/W 52 82 FSYNC_CONFIG R/W 53 83 TEMP_CONFIG R/W 54 84 MOD_CTRL_USR R/W 7F 127 REG_BANK_SEL R/W 7.4 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 ODR_ALIGN_ EN - ACCEL_SMPLRT_DIV[11:8] ACCEL_SMPLRT_DIV[7:0] ACCEL_INTEL _EN - ACCEL_INTEL _MODE_INT WOM_THRESHOLD[7:0] - ACCEL_DLPFCFG[2:0] AX_ST_EN_R EG DELAY_TIME _EN WOF_DEGLIT CH_EN - ACCEL_FCHOI CE ACCEL_FS_SEL[1:0] AY_ST_EN_R EG WOF_EDGE_I NT AZ_ST_EN_R EG DEC3_CFG[1:0] EXT_SYNC_SET[3:0] - TEMP_DLPFCFG[2:0] REG_LP_DMP _EN - USER_BANK[1:0] - USER BANK 3 REGISTER MAP: Addr (Hex) Addr (Dec.) Register Name Serial I/F 00 0 I2C_MST_ODR_CONFIG R/W Bit7 01 1 I2C_MST_CTRL R/W 02 2 I2C_MST_DELAY_CTRL R/W DELAY_ES_S HADOW 03 3 I2C_SLV0_ADDR R/W I2C_SLV0_RN W 04 4 I2C_SLV0_REG R/W 05 5 I2C_SLV0_CTRL R/W 06 6 I2C_SLV0_DO R/W 7 I2C_SLV1_ADDR R/W 08 8 I2C_SLV1_REG R/W 09 9 I2C_SLV1_CTRL R/W 0A 10 I2C_SLV1_DO R/W 0B 11 I2C_SLV2_ADDR R/W 0C 12 I2C_SLV2_REG R/W 0D 13 I2C_SLV2_CTRL R/W 0E 14 I2C_SLV2_DO R/W 0F 15 I2C_SLV3_ADDR R/W 10 16 I2C_SLV3_REG R/W 11 17 I2C_SLV3_CTRL R/W 12 18 I2C_SLV3_DO R/W 13 19 I2C_SLV4_ADDR R/W 14 20 I2C_SLV4_REG R/W 15 21 I2C_SLV4_CTRL R/W 16 22 I2C_SLV4_DO R/W 17 23 I2C_SLV4_DI R 7F 127 REG_BANK_SEL R/W Document Number: DS-000192 Revision: 1.1 Bit5 Bit4 Bit3 MULT_MST_ EN 07 Bit6 Bit2 Bit1 I2C_MST_ODR_CONFIG[3:0] - I2C_MST_P_ NSR - I2C_SLV4_DE LAY_EN I2C_MST_CLK[3:0] I2C_SLV3_DE LAY_EN I2C_SLV2_DE LAY_EN I2C_SLV1_DE LAY_EN I2C_ID_0[6:0] I2C_SLV0_REG[7:0] I2C_SLV0_BY TE_SW I2C_SLV0_EN I2C_SLV0_RE G_DIS I2C_SLV0_GR P I2C_SLV0_LENG[3:0] I2C_SLV0_DO[7:0] I2C_SLV1_RN W I2C_ID_1[6:0] I2C_SLV1_REG[7:0] I2C_SLV1_BY TE_SW I2C_SLV1_EN I2C_SLV1_RE G_DIS I2C_SLV1_GR P I2C_SLV1_LENG[3:0] I2C_SLV1_DO[7:0] I2C_SLV2_RN W I2C_ID_2[6:0] I2C_SLV2_REG[7:0] I2C_SLV2_BY TE_SW I2C_SLV2_EN I2C_SLV2_RE G_DIS I2C_SLV2_GR P I2C_SLV2_LENG[3:0] I2C_SLV2_DO[7:0] I2C_SLV3_RN W I2C_ID_3[6:0] I2C_SLV3_REG[7:0] I2C_SLV3_BY TE_SW I2C_SLV3_EN I2C_SLV3_RE G_DIS I2C_SLV3_GR P I2C_SLV3_LENG[3:0] I2C_SLV3_DO[7:0] I2C_SLV4_RN W I2C_ID_4[6:0] I2C_SLV4_REG[7:0] I2C_SLV4_BY TE_SW I2C_SLV4_EN I2C_SLV4_RE G_DIS I2C_SLV4_DLY[4:0] I2C_SLV4_DO[7:0] I2C_SLV4_DI[7:0] - Bit0 USER_BANK[1:0] - Page 37 of 89 I2C_SLV0_DE LAY_EN ICM-20649 8 REGISTER DESCRIPTIONS This section describes the function and contents of each register within the ICM-20649. Note: The device will come up in sleep mode upon power-up. 8.1 USR BANK 0 REGISTER MAP WHO_AM_I Name: WHO_AM_I Address: 0 (00h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0xE1 BIT 7:0 NAME WHO_AM_I[7:0] FUNCTION Register to indicate to user which device is being accessed. The value for ICM-20649 is 0xE1 USER_CTRL Name: USER_CTRL Address: 3 (03h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7 DMP_EN NAME 6 FIFO_EN 5 I2C_MST_EN 4 3 I2C_IF_DIS DMP_RST 2 SRAM_RST 1 I2C_MST_RST FUNCTION 1 – Enables DMP features. 0 – DMP features are disabled after the current processing round has completed. 1 – Enable FIFO operation mode. 0 – Disable FIFO access from serial interface. To disable FIFO writes by DMA, use FIFO_EN register. To disable possible FIFO writes from DMP, disable the DMP. 1 – Enable the I2C Master I/F module; pins ES_DA and ES_SCL are isolated from pins SDA/SDI and SCL/ SCLK. 0 – Disable I2C Master I/F module; pins ES_DA and ES_SCL are logically driven by pins SDA/SDI and SCL/ SCLK. 1 – Reset I2C Slave module and put the serial interface in SPI mode only. 1 – Reset DMP module. Reset is asynchronous. This bit auto clears after one clock cycle of the internal 20 MHz clock. 1 – Reset SRAM module. Reset is asynchronous. This bit auto clears after one clock cycle of the internal 20 MHz clock. 1 – Reset I2C Master module. Reset is asynchronous. This bit auto clears after one clock cycle of the internal 20 MHz clock. Note: This bit should only be set when the I2C master has hung. If this bit is set during an active I2C master transaction, the I2C slave will hang, which will require the host to reset the slave. 0 - Document Number: DS-000192 Revision: 1.1 Reserved. Page 38 of 89 ICM-20649 LP_CONFIG Name: LP_CONFIG Address: 5 (05h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x40 BIT 7 6 NAME I2C_MST_CYCLE 5 ACCEL_CYCLE 4 GYRO_CYCLE 3:0 - FUNCTION Reserved. 1 - Operate I2C master in duty cycled mode. ODR is determined by I2C_MST_ODR_CONFIG register. 0 – Disable I2C master duty cycled mode. 1 – Operate ACCEL in duty cycled mode. ODR is determined by ACCEL_SMPLRT_DIV register. 0 – Disable ACCEL duty cycled mode. 1 – Operate GYRO in duty cycled mode. ODR is determined by GYRO_SMPLRT_DIV register. 0 – Disable GYRO duty cycled mode. Reserved. PWR_MGMT_1 Name: PWR_MGMT_1 Address: 6 (06h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x41 BIT NAME FUNCTION 7 DEVICE_RESET 6 SLEEP 5 LP_EN 4 3 2:0 TEMP_DIS CLKSEL[2:0] 1 – Reset the internal registers and restores the default settings. Write a 1 to set the reset; the bit will auto clear. When set, the chip is set to sleep mode (in sleep mode all analog is powered off). Clearing the bit wakes the chip from sleep mode. The LP_EN only affects the digital circuitry, it helps to reduce the digital current when sensors are in LP mode. Please note that the sensors themselves are set in LP mode by the LP_CONFIG register settings. Sensors in LP mode, and use of LP_EN bit together help to reduce overall current. The bit settings are: 1: Turn on low power feature. 0: Turn off low power feature. LP_EN has no effect when the sensors are in low-noise mode. Reserved. When set to 1, this bit disables the temperature sensor. Document Number: DS-000192 Revision: 1.1 Code Clock Source 0 Internal 20 MHz oscillator 1-5 Auto selects the best available clock source – PLL if ready, else use the Internal oscillator 6 Internal 20 MHz oscillator 7 Stops the clock and keeps timing generator in reset Note: CLKSEL[2:0] should be set to 1~5 to achieve full gyroscope performance. Page 39 of 89 ICM-20649 PWR_MGMT_2 Name: PWR_MGMT_2 Address: 7 (07h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7:6 5:3 NAME DISABLE_ACCEL 2:0 DISABLE_GYRO FUNCTION Reserved. Only the following values are applicable: 111 – Accelerometer (all axes) disabled. 000 – Accelerometer (all axes) on. Only the following values are applicable: 111 – Gyroscope (all axes) disabled. 000 – Gyroscope (all axes) on. INT_PIN_CFG Name: INT_PIN_CFG Address: 15 (0Fh) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7 INT1_ACTL NAME 6 INT1_OPEN 5 INT1_LATCH__EN 4 INT_ANYRD_2CLEAR 3 ACTL_FSYNC 2 FSYNC_INT_MODE_EN 1 BYPASS_EN 0 - Document Number: DS-000192 Revision: 1.1 FUNCTION 1 – The logic level for INT1 pin is active low. 0 – The logic level for INT1 pin is active high. 1 – INT1 pin is configured as open drain. 0 – INT1 pin is configured as push-pull. 1 – INT1 pin level held until interrupt status is cleared. 0 – INT1 pin indicates interrupt pulse is width 50 µs. 1 – Interrupt status in INT_STATUS is cleared (set to 0) if any read operation is performed. 0 – Interrupt status in INT_STATUS is cleared (set to 0) only by reading INT_STATUS register. This bit only affects the interrupt status bits that are contained in the register INT_STATUS, and the corresponding hardware interrupt. This bit does not affect the interrupt status bits that are contained in registers INT_STATUS_1, INT_STATUS_2, INT_STATUS_3, and the corresponding hardware interrupt. 1 – The logic level for the FSYNC pin as an interrupt to the ICM-20649 is active low. 0 – The logic level for the FSYNC pin as an interrupt to the ICM-20649 is active high. 1 – This enables the FSYNC pin to be used as an interrupt. A transition to the active level described by the ACTL_FSYNC bit will cause an interrupt. The status of the interrupt is read in the I2C Master Status register PASS_THROUGH bit. 0 – This disables the FSYNC pin from causing an interrupt. When asserted, the I2C_MASTER interface pins (ES_CL and ES_DA) will go into ‘bypass mode’ when the I2C master interface is disabled. Reserved. Page 40 of 89 ICM-20649 INT_ENABLE Name: INT_ENABLE Address: 16 (10h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7 NAME REG_WOF_EN 6:5 4 DMP_INT2_EN 3 WOM_INT_EN 2 PLL_RDY_EN 1 DMP_INT1_EN 0 I2C_MST_INT_EN FUNCTION 1 – Enable wake on FSYNC interrupt 0 – Function is disabled. Reserved 1 – Enable DMP interrupt to propagate to interrupt pin 2. 0 – Function is disabled. 1 – Enable interrupt for wake on motion to propagate to interrupt pin 1. 0 – Function is disabled. 1 – Enable PLL RDY interrupt (PLL RDY means PLL is running and in use as the clock source for the system) to propagate to interrupt pin 1. 0 – Function is disabled. 1 – Enable DMP interrupt to propagate to interrupt pin 1. 0 – Function is disabled. 1 – Enable I2C master interrupt to propagate to interrupt pin 1. 0 – Function is disabled. INT_ENABLE_1 Name: INT_ENABLE_1 Address: 17 (11h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7 INT2_ACTL NAME 6 INT2_OPEN 5 INT2_LATCH_EN 4:1 0 RAW_DATA_0_RDY_EN FUNCTION 1 – The logic level for INT2 pin is active low. 0 – The logic level for INT2 pin is active high. 1 – INT2 pin is configured as open drain. 0 – INT2 pin is configured as push-pull. 1 – INT2 pin level held until interrupt status is cleared. 0 – INT2 pin indicates interrupt pulse is width 50 µs. Reserved. 1 – Enable raw data ready interrupt from any sensor to propagate to interrupt pin 1. 0 – Function is disabled. INT_ENABLE_2 Name: INT_ENABLE_2 Address: 18 (12h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7:5 4:0 NAME FIFO_OVERFLOW_EN[4:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Reserved. 1 – Enable interrupt for FIFO overflow to propagate to interrupt pin 1. 0 – Function is disabled. Page 41 of 89 ICM-20649 INT_ENABLE_3 Name: INT_ENABLE_3 Address: 19 (13h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7:5 4:0 NAME FIFO_WM_EN[4:0] FUNCTION Reserved. 1 – Enable interrupt for FIFO watermark to propagate to interrupt pin 1. 0 – Function is disabled. I2C_MST_STATUS Name: I2C_MST_STATUS Address: 23 (17h) Type: USR0 Bank: 0 Serial IF: R/C Reset Value: 0x00 BIT 7 NAME PASS_THROUGH 6 I2C_SLV4_DONE 5 I2C_LOST_ARB 4 I2C_SLV4_NACK 3 I2C_SLV3_NACK 2 I2C_SLV2_NACK 1 I2C_SLV1_NACK 0 I2C_SLV0_NACK FUNCTION Status of FSYNC interrupt – used as a way to pass an external interrupt through this chip to the host. If enabled in the INT_PIN_CFG register by asserting bit FSYNC_INT_MODE_EN, this will cause an interrupt. A read of this register clears all status bits in this register. Asserted when I2C slave 4’s transfer is complete, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted, and if the SLV4_DONE_INT_EN bit is asserted in the I2C_SLV4_CTRL register. Asserted when I2C slave loses arbitration of the I2C bus, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted. Asserted when slave 4 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted. Asserted when slave 3 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted. Asserted when slave 2 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted. Asserted when slave 1 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted. Asserted when slave 0 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted. INT_STATUS Name: INT_STATUS Address: 25 (19h) Type: USR0 Bank: 0 Serial IF: R/C Reset Value: 0x00 BIT 7:4 3 2 1 0 NAME WOM_INT PLL_RDY_INT DMP_INT1 I2C_MST_INT Document Number: DS-000192 Revision: 1.1 FUNCTION Reserved. 1 – Wake on motion interrupt occurred. 1 – Indicates that the PLL has been enabled and is ready (delay of 4 ms ensures lock). 1 – Indicates the DMP has generated INT1 interrupt. 1 - Indicates I2C master has generated an interrupt. Page 42 of 89 ICM-20649 12.1.13 INT_STATUS_1 Name: INT_STATUS_1 Address: 26 (1Ah) Type: USR0 Bank: 0 Serial IF: R/C Reset Value: 0x00 BIT NAME 7:1 0 RAW_DATA_0_RDY_INT FUNCTION Reserved. 1 – Sensor Register Raw Data, from all sensors, is updated and ready to be read. INT_STATUS_2 Name: INT_STATUS_2 Address: 27 (1Bh) Type: USR0 Bank: 0 Serial IF: R/C Reset Value: 0x00 BIT 7:5 4:0 NAME FIFO_OVERFLOW_INT[4:0] FUNCTION Reserved. 1 – FIFO Overflow interrupt occurred. INT_STATUS_3 Name: INT_STATUS_3 Address: 28 (1Ch) Type: USR0 Bank: 0 Serial IF: R/C Reset Value: 0x00 BIT 7:5 4:0 NAME FIFO_WM_INT[4:0] FUNCTION Reserved. 1 – Watermark interrupt for FIFO occurred. DELAY_TIMEH Name: DELAY_TIMEH Address: 40 (28h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME DELAY_TIMEH[7:0] FUNCTION High-byte of delay time between FSYNC event and the 1st gyro ODR event (after the FSYNC event). Reading DELAY_TIMEH will lock DELAY_TIMEH and DELAY_TIMEL from the next update. Reading DELAY_TIMEL will unlock DELAY_TIMEH and DELAY_TIMEL to take the next update due to an FSYNC event. Document Number: DS-000192 Revision: 1.1 Page 43 of 89 ICM-20649 DELAY_TIMEL Name: DELAY_TIMEL Address: 41 (29h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME DELAY_TIMEL[7:0] FUNCTION Low-byte of delay time between FSYNC event and the 1st gyro ODR event (after the FSYNC event). Reading DELAY_TIMEH will lock DELAY_TIMEH and DELAY_TIMEL from the next update. Reading DELAY_TIMEL will unlock DELAY_TIMEH and DELAY_TIMEL to take the next update due to an FSYNC event. Delay time in µs = (DELAY_TIMEH * 256 + DELAY_TIMEL) * 0.9645 ACCEL_XOUT_H Name: ACCEL_XOUT_H Address: 45 (2Dh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME ACCEL_XOUT_H[7:0] FUNCTION High Byte of Accelerometer X-axis data. ACCEL_XOUT_L Name: ACCEL_XOUT_L Address: 46 (2Eh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME ACCEL_XOUT_L[7:0] FUNCTION Low Byte of Accelerometer X-axis data. To convert the output of the accelerometer to acceleration measurement use the formula below: X_acceleration = ACCEL_XOUT/Accel_Sensitivity ACCEL_YOUT_H Name: ACCEL_YOUT_H Address: 47 (2Fh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME ACCEL_YOUT_H[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION High Byte of Accelerometer Y-axis data. Page 44 of 89 ICM-20649 ACCEL_YOUT_L Name: ACCEL_YOUT_L Address: 48 (30h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME ACCEL_YOUT_L[7:0] FUNCTION Low Byte of Accelerometer Y-axis data To convert the output of the accelerometer to acceleration measurement use the formula below: Y_acceleration = ACCEL_YOUT/Accel_Sensitivity ACCEL_ZOUT_H Name: ACCEL_ZOUT_H Address: 49 (31h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME ACCEL_ZOUT_H[7:0] FUNCTION High Byte of Accelerometer Z-axis data. ACCEL_ZOUT_L Name: ACCEL_ZOUT_L Address: 50 (32h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME ACCEL_ZOUT_L[7:0] FUNCTION Low Byte of Accelerometer Z-axis data. To convert the output of the accelerometer to acceleration measurement use the formula below: Z_acceleration = ACCEL_ZOUT/Accel_Sensitivity GYRO_XOUT_H Name: GYRO_XOUT_H Address: 51 (33h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME GYRO_XOUT_H[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION High Byte of Gyroscope X-axis data. Page 45 of 89 ICM-20649 GYRO_XOUT_L Name: GYRO_XOUT_L Address: 52 (34h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME GYRO_XOUT_L[7:0] FUNCTION Low Byte of Gyroscope X-axis data. To convert the output of the gyroscope to angular rate measurement use the formula below: X_angular_rate = GYRO_XOUT/Gyro_Sensitivity GYRO_YOUT_H Name: GYRO_YOUT_H Address: 53 (35h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME GYRO_YOUT_H[7:0] FUNCTION High Byte of Gyroscope Y-axis data. GYRO_YOUT_L Name: GYRO_YOUT_L Address: 54 (36h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME GYRO_YOUT_L[7:0] FUNCTION Low Byte of Gyroscope Y-axis data. To convert the output of the gyroscope to angular rate measurement use the formula below: Y_angular_rate = GYRO_YOUT/Gyro_Sensitivity GYRO_ZOUT_H Name: GYRO_ZOUT_H Address: 55 (37h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME GYRO_ZOUT_H[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION High Byte of Gyroscope Z-axis data. Page 46 of 89 ICM-20649 GYRO_ZOUT_L Name: GYRO_ZOUT_L Address: 56 (38h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME GYRO_ZOUT_L[7:0] FUNCTION Low Byte of Gyroscope Z-axis data. To convert the output of the gyroscope to angular rate measurement use the formula below: Z_angular_rate = GYRO_ZOUT/Gyro_Sensitivity TEMP_OUT_H Name: TEMP_OUT_H Address: 57 (39h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME TEMP_OUT_H[7:0] FUNCTION High Byte of Temp sensor data. TEMP_OUT_L Name: TEMP_OUT_L Address: 58 (3Ah) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME TEMP_OUT_L[7:0] FUNCTION Low Byte of Temp sensor data. To convert the output of the temperature sensor to degrees C use the following formula: TEMP_degC = ((TEMP_OUT – RoomTemp_Offset)/Temp_Sensitivity) + 21degC EXT_SLV_SENS_DATA_00 Name: EXT_SLV_SENS_DATA_00 Address: 59 (3Bh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_00[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. Page 47 of 89 ICM-20649 EXT_SLV_SENS_DATA_01 Name: EXT_SLV_SENS_DATA_01 Address: 60 (3Ch) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_01[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. EXT_SLV_SENS_DATA_02 Name: EXT_SLV_SENS_DATA_02 Address: 61 (3Dh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_02[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. EXT_SLV_SENS_DATA_03 Name: EXT_SLV_SENS_DATA_03 Address: 62 (3Eh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_03[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. EXT_SLV_SENS_DATA_04 Name: EXT_SLV_SENS_DATA_04 Address: 63 (3Fh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_04[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. Page 48 of 89 ICM-20649 EXT_SLV_SENS_DATA_05 Name: EXT_SLV_SENS_DATA_05 Address: 64 (40h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_05[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. EXT_SLV_SENS_DATA_06 Name: EXT_SLV_SENS_DATA_06 Address: 65 (41h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_06[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. EXT_SLV_SENS_DATA_07 Name: EXT_SLV_SENS_DATA_07 Address: 66 (42h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_07[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. EXT_SLV_SENS_DATA_08 Name: EXT_SLV_SENS_DATA_08 Address: 67 (43h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_08[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. Page 49 of 89 ICM-20649 EXT_SLV_SENS_DATA_09 Name: EXT_SLV_SENS_DATA_09 Address: 68 (44h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_09[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. EXT_SLV_SENS_DATA_10 Name: EXT_SLV_SENS_DATA_10 Address: 69 (45h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_10[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. EXT_SLV_SENS_DATA_11 Name: EXT_SLV_SENS_DATA_11 Address: 70 (46h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME FUNCTION 7:0 EXT_SLV_SENS_DATA_11[7:0] Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. EXT_SLV_SENS_DATA_12 Name: EXT_SLV_SENS_DATA_12 Address: 71 (47h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_12[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. Page 50 of 89 ICM-20649 EXT_SLV_SENS_DATA_13 Name: EXT_SLV_SENS_DATA_13 Address: 72 (48h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_13[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. EXT_SLV_SENS_DATA_14 Name: EXT_SLV_SENS_DATA_14 Address: 73 (49h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_14[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers. EXT_SLV_SENS_DATA_15 Name: EXT_SLV_SENS_DATA_15 Address: 74 (4Ah) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_15[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers. EXT_SLV_SENS_DATA_16 Name: EXT_SLV_SENS_DATA_16 Address: 75 (4Bh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_16[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. Page 51 of 89 ICM-20649 EXT_SLV_SENS_DATA_17 Name: EXT_SLV_SENS_DATA_17 Address: 76 (4Ch) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_17[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers. EXT_SLV_SENS_DATA_18 Name: EXT_SLV_SENS_DATA_18 Address: 77 (4Dh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_18[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers. EXT_SLV_SENS_DATA_19 Name: EXT_SLV_SENS_DATA_19 Address: 78 (4Eh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_19[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers. EXT_SLV_SENS_DATA_20 Name: EXT_SLV_SENS_DATA_20 Address: 79 (4Fh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_20[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers. Page 52 of 89 ICM-20649 EXT_SLV_SENS_DATA_21 Name: EXT_SLV_SENS_DATA_21 Address: 80 (50h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_21[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers. EXT_SLV_SENS_DATA_22 Name: EXT_SLV_SENS_DATA_22 Address: 81 (51h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME EXT_SLV_SENS_DATA_22[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(04)_REG, and I2C_SLV(0-4)_CTRL registers. EXT_SLV_SENS_DATA_23 Name: EXT_SLV_SENS_DATA_23 Address: 82 (52h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME FUNCTION 7:0 EXT_SLV_SENS_DATA_23[7:0] Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers. Document Number: DS-000192 Revision: 1.1 Page 53 of 89 ICM-20649 FIFO_EN_1 Name: FIFO_EN_1 Address: 102 (66h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7:4 3 NAME SLV_3_FIFO_EN 2 SLV_2_FIFO_EN 1 SLV_1_FIFO_EN 0 SLV_0_FIFO_EN FUNCTION Reserved. 1 – Write EXT_SENS_DATA registers associated to SLV_3 (as determined by I2C_SLV2_CTRL, I2C_SLV1_CTRL, and I2C_SL20_CTRL) to the FIFO at the sample rate. 0 – Function is disabled. 1 – Write EXT_SENS_DATA registers associated to SLV_2 (as determined by I2C_SLV0_CTRL, I2C_SLV1_CTRL, and I2C_SL20_CTRL) to the FIFO at the sample rate. 0 – Function is disabled. 1 – Write EXT_SENS_DATA registers associated to SLV_1 (as determined by I2C_SLV0_CTRL and I2C_SLV1_CTRL) to the FIFO at the sample rate. 0 – Function is disabled. 1 – Write EXT_SENS_DATA registers associated to SLV_0 (as determined by I2C_SLV0_CTRL) to the FIFO at the sample rate. 0 – Function is disabled. FIFO_EN_2 Name: FIFO_EN_2 Address: 103 (67h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7:5 4 NAME ACCEL_FIFO_EN 3 GYRO_Z_FIFO_EN 2 GYRO_Y_FIFO_EN 1 GYRO_X_FIFO_EN 0 TEMP_FIFO_EN Document Number: DS-000192 Revision: 1.1 FUNCTION Reserved. 1 – Write ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L to the FIFO at the sample rate. 0 – Function is disabled. 1 – Write GYRO_ZOUT_H and GYRO_ZOUT_L to the FIFO at the sample rate. 0 – Function is disabled. 1 – Write GYRO_YOUT_H and GYRO_YOUT_L to the FIFO at the sample rate. 0 – Function is disabled. 1 – Write GYRO_XOUT_H and GYRO_XOUT_L to the FIFO at the sample rate. 0 – Function is disabled. 1 – Write TEMP_OUT_H and TEMP_OUT_L to the FIFO at the sample rate. 0– Function is disabled. Page 54 of 89 ICM-20649 FIFO_RST Name: FIFO_RST Address: 104 (68h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7:5 4:0 NAME FIFO_RESET[4:0] FUNCTION Reserved. S/W FIFO reset. Assert and hold to set FIFO size to 0. Assert and de-assert to reset FIFO. FIFO_MODE Name: FIFO_MODE Address: 105 (69h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7:5 4:0 NAME FIFO_MODE[4:0] FUNCTION Reserved. 0 - Stream 1 - Snapshot When set to ‘1’, when the FIFO is full, additional writes will not be written to FIFO. When set to ‘0’, when the FIFO is full, additional writes will be written to the FIFO, replacing the oldest data. FIFO_COUNTH Name: FIFO_COUNTH Address: 112 (70h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:5 4:0 NAME FIFO_CNT[12:8] FUNCTION Reserved. High Bits, count indicates the number of written bytes in the FIFO. Reading this byte latches the data for both FIFO_COUNTH, and FIFO_COUNTL. FIFO_COUNTL Name: FIFO_COUNTL Address: 113 (71h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME FIFO_CNT[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Low bits, count indicates the number of written bytes in the FIFO. Page 55 of 89 ICM-20649 FIFO_R_W Name: FIFO_R_W Address: 114 (72h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME FIFO_R_W[7:0] FUNCTION Reading from or writing to this register actually reads/writes the FIFO. For example, to write a byte to the FIFO, write the desired byte value to FIFO_R_W[7:0]. To read a byte from the FIFO, perform a register read operation and access the result in FIFO_R_W[7:0]. DATA_RDY_STATUS Name: DATA_RDY_STATUS Address: 116 (74h) Type: USR0 Bank: 0 Serial IF: R/C Reset Value: 0x00 BIT 7 6:4 3:0 NAME WOF_STATUS RAW_DATA_RDY[3:0] FUNCTION Wake on FSYNC interrupt status. Cleared on read. Reserved. Data from sensors is copied to FIFO or SRAM. Set when sequence controller kicks off on a sensor data load. Only bit 0 is relevant in a single FIFO configuration. Cleared on read. FIFO_CFG Name: FIFO_CFG Address: 118 (76h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7:1 0 NAME FIFO_CFG FUNCTION Reserved. This bit should be set to 1 if interrupt status for each sensor is required. REG_BANK_SEL Name: REG_BANK_SEL Address: 127 (7Fh) Type: ALL Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT 7:6 5:4 NAME USER_BANK[1:0] 3:0 - Document Number: DS-000192 Revision: 1.1 FUNCTION Reserved. Use the following values in this bit-field to select a USER BANK. 0: Select USER BANK 0 1: Select USER BANK 1 2: Select USER BANK 2 3: Select USER BANK 3 Reserved. Page 56 of 89 ICM-20649 8.2 USR BANK 1 REGISTER MAP SELF_TEST_X_GYRO Name: SELF_TEST_X_GYRO Address: 2 (02h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME XG_ST_DATA[7:0] FUNCTION The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user. SELF_TEST_Y_GYRO Name: SELF_TEST_Y_GYRO Address: 3 (03h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME YG_ST_DATA[7:0] FUNCTION The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user. SELF_TEST_Z_GYRO Name: SELF_TEST_Z_GYRO Address: 4 (04h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME ZG_ST_DATA[7:0] FUNCTION The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user. SELF_TEST_X_ACCEL Name: SELF_TEST_X_ACCEL Address: 14 (0Eh) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME XA_ST_DATA[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Contains self-test data for the X Accelerometer. Page 57 of 89 ICM-20649 SELF_TEST_Y_ACCEL Name: SELF_TEST_Y_ACCEL Address: 15 (0Fh) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME YA_ST_DATA[7:0] FUNCTION Contains self-test data for the Y Accelerometer. SELF_TEST_Z_ACCEL Name: SELF_TEST_Z_ACCEL Address: 16 (10h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME ZA_ST_DATA[7:0] FUNCTION Contains self-test data for the Z Accelerometer. XA_OFFS_H Name: XA_OFFS_H Address: 20 (14h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: Trimmed on a per-part basis for optimal performance BIT 7:0 NAME XA_OFFS[14:7] FUNCTION Upper bits of the X accelerometer offset cancellation. XA_OFFS_L Name: XA_OFFS_L Address: 21 (15h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: Trimmed on a per-part basis for optimal performance BIT 7:1 0 NAME XA_OFFS[6:0] - FUNCTION Lower bits of the X accelerometer offset cancellation. Reserved. YA_OFFS_H Name: YA_OFFS_H Address: 23 (17h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: Trimmed on a per-part basis for optimal performance BIT 7:0 NAME YA_OFFS[14:7] Document Number: DS-000192 Revision: 1.1 FUNCTION Upper bits of the Y accelerometer offset cancellation. Page 58 of 89 ICM-20649 YA_OFFS_L Name: YA_OFFS_L Address: 24 (18h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: Trimmed on a per-part basis for optimal performance BIT 7:1 0 NAME YA_OFFS[6:0] - FUNCTION Lower bits of the Y accelerometer offset cancellation. Reserved. ZA_OFFS_H Name: ZA_OFFS_H Address: 26 (1Ah) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: Trimmed on a per-part basis for optimal performance BIT 7:0 NAME ZA_OFFS[14:7] FUNCTION Upper bits of the Z accelerometer offset cancellation. ZA_OFFS_L Name: ZA_OFFS_L Address: 27 (1Bh) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: Trimmed on a per-part basis for optimal performance BIT 7:1 0 NAME ZA_OFFS[6:0] - FUNCTION Lower bits of the Z accelerometer offset cancellation. Reserved. TIMEBASE_CORRECTION_PLL Name: TIMEBASE_CORRECTION_PLL Address: 40 (28h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME TBC_PLL[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION System PLL clock period error (signed, [-10%, +10%]). Page 59 of 89 ICM-20649 REG_BANK_SEL Name: REG_BANK_SEL Address: 127 (7Fh) Type: Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT 7:6 5:4 NAME USER_BANK[1:0] 3:0 - Document Number: DS-000192 Revision: 1.1 FUNCTION Reserved. Use the following values in this bit-field to select a USER BANK 0: Select USER BANK 0 1: Select USER BANK 1 2: Select USER BANK 2 3: Select USER BANK 3 Reserved. Page 60 of 89 ICM-20649 8.3 USR BANK 2 REGISTER MAP GYRO_SMPLRT_DIV Name: GYRO_SMPLRT_DIV Address: 0 (00h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME GYRO_SMPLRT_DIV[7:0] FUNCTION Gyro sample rate divider. Divides the internal sample rate to generate the sample rate that controls sensor data output rate, FIFO sample rate, and DMP sequence rate. Note: This register is only effective when FCHOICE = 1’b1 (FCHOICE_B register bit is 1’b0), and (0 < DLPF_CFG < 7). ODR is computed as follows: 1.1 kHz/(1+GYRO_SMPLRT_DIV[7:0]) GYRO_CONFIG_1 Name: GYRO_CONFIG_1 Address: 1 (01h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x01 BIT 7:6 5:3 2:1 NAME GYRO_DLPFCFG[2:0] GYRO_FS_SEL[1:0] 0 GYRO_FCHOICE Document Number: DS-000192 Revision: 1.1 FUNCTION Reserved. Gyro low pass filter configuration as shown in Table 15. Gyro Full Scale Select: 00 = ±500 dps 01= ±1000 dps 10 = ±2000 dps 11 = ±4000 dps 0 – Bypass gyro DLPF. 1 – Enable gyro DLPF. Page 61 of 89 ICM-20649 The gyroscope DLPF is configured by GYRO_DLPFCFG, when GYRO_FCHOICE = 1. The gyroscope data is filtered according to the value of GYRO_DLPFCFG and GYRO_FCHOICE as shown in Table 15. Output GYRO_FCHOICE GYRO_DLPFCFG 0 x 3dB BW [Hz] 12106 NBW [Hz] Rate [Hz] 12316 1 0 196.6 229.8 1 1 151.8 187.6 1 2 119.5 154.3 1 3 51.2 73.3 1 4 23.9 35.9 1 5 11.6 17.8 1 6 5.7 8.9 1 7 361.4 376.5 9000 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 Table 15. Configuration GYRO_CONFIG_2 Name: GYRO_CONFIG_2 Address: 2 (02h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:6 5 4 3 2:0 NAME XGYRO_CTEN YGYRO_CTEN ZGYRO_CTEN GYRO_AVGCFG[2:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Reserved. X Gyro self-test enable. Y Gyro self-test enable. Z Gyro self-test enable. Averaging filter configuration settings for low-power mode. 0: 1x averaging 1: 2x averaging 2: 4x averaging 3: 8x averaging 4: 16x averaging 5: 32x averaging 6: 64x averaging 7: 128x averaging Page 62 of 89 ICM-20649 Table 16 lists the gyroscope filter bandwidths available in the low-power mode of operation. In the low-power mode of operation, the gyroscope is duty-cycled. Averages 1x 2x 4x 8x 16x 32x 64x 128x GYRO_FCHOICE 1 1 1 1 1 1 1 1 GYRO_AVGCFG 0 1 2 3 4 5 6 7 Ton [ms] 1.15 1.59 2.48 4.26 7.82 14.93 29.15 57.59 NBW [Hz] 773.5 469.8 257.8 134.8 68.9 34.8 17.5 8.8 RMS Noise [dps-rms] TYP (based on gyroscope noise: 0.0175dps/Hz) 0.49 0.38 0.28 0.20 0.15 0.10 0.07 0.05 GYRO_SMPLRT_DIV ODR [Hz] Current Consumption [mA] TYP 255 4.4 1.04 1.05 1.05 1.06 1.09 1.14 1.24 1.45 64 17.3 1.07 1.08 1.10 1.15 1.25 1.45 1.85 N/A 63 17.6 1.07 1.08 1.11 1.16 1.26 1.46 1.87 32 34.1 1.10 1.12 1.17 1.27 1.47 1.86 31 35.2 1.10 1.13 1.18 1.28 1.48 1.89 22 48.9 1.13 1.16 1.23 1.37 1.66 2.22 16 66.2 1.16 1.21 1.30 1.49 1.88 15 70.3 1.17 1.22 1.32 1.52 1.93 10 102.3 1.23 1.30 1.45 1.74 2.34 8 125.0 1.27 1.36 1.54 1.90 7 140.6 1.30 1.40 1.60 2.01 5 187.5 1.38 1.52 1.79 2.33 4 225.0 1.45 1.62 1.94 3 281.3 1.56 1.76 2.17 2 375.0 1.74 2.00 1 562.5 2.09 N/A N/A N/A N/A N/A N/A Table 16. Gyroscope Filter Bandwidths (Low-Power Mode) Note: Ton is the ON time for motion measurement when the gyroscope is in duty cycle mode. XG_OFFS_USRH Name: XG_OFFS_USRH Address: 3 (03h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME X_OFFS_USER[15:8] Document Number: DS-000192 Revision: 1.1 FUNCTION Upper byte of X gyro offset cancellation. Page 63 of 89 ICM-20649 XG_OFFS_USRL Name: XG_OFFS_USRL Address: 4 (04h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME X_OFFS_USER[7:0] FUNCTION Lower byte of X gyro offset cancellation. YG_OFFS_USRH Name: YG_OFFS_USRH Address: 5 (05h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME Y_OFFS_USER[15:8] FUNCTION Upper byte of Y gyro offset cancellation. YG_OFFS_USRL Name: YG_OFFS_USRL Address: 6 (06h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME Y_OFFS_USER[7:0] FUNCTION Lower byte of Y gyro offset cancellation. ZG_OFFS_USRH Name: ZG_OFFS_USRH Address: 7 (07h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME Z_OFFS_USER[15:8] FUNCTION Upper byte of Z gyro offset cancellation. ZG_OFFS_USRL Name: ZG_OFFS_USRL Address: 8 (08h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME Z_OFFS_USER[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Lower byte of Z gyro offset cancellation. Page 64 of 89 ICM-20649 ODR_ALIGN_EN Name: ODR_ALIGN_EN Address: 9 (09h) Type: USR2 Bank: 2 OTP: No Serial IF: R/W Reset Value: 0x00 BIT 7:1 0 NAME ODR_ALIGN_EN FUNCTION Reserved. 0: Disables ODR start-time alignment. 1: Enables ODR start-time alignment when any of the following registers is written (with the same value or with different values): GYRO_SMPLRT_DIV, ACCEL_SMPLRT_DIV_1, ACCEL_SMPLRT_DIV_2, I2C_MST_ODR_CONFIG ACCEL_SMPLRT_DIV_1 Name: ACCEL_SMPLRT_DIV_1 Address: 16 (10h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:4 3:0 NAME ACCEL_SMPLRT_DIV[11:8] FUNCTION Reserved. MSB for ACCEL sample rate div. ACCEL_SMPLRT_DIV_2 Name: ACCEL_SMPLRT_DIV_2 Address: 17 (11h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME ACCEL_SMPLRT_DIV[7:0] FUNCTION LSB for ACCEL sample rate div. ODR is computed as follows: 1.125 kHz/(1+ACCEL_SMPLRT_DIV[11:0]) ACCEL_INTEL_CTRL Name: ACCEL_INTEL_CTRL Address: 18 (12h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:2 1 0 NAME ACCEL_INTEL_EN ACCEL_INTEL_MODE_INT Document Number: DS-000192 Revision: 1.1 FUNCTION Reserved. Enable the WOM logic. Selects WOM algorithm. 1- Compare the current sample with the previous sample. 0 - Initial sample is stored, all future samples are compared to the initial sample Page 65 of 89 ICM-20649 ACCEL_WOM_THR Name: ACCEL_WOM_THR Address: 19 (13h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME WOM_THRESHOLD[7:0] FUNCTION This register holds the threshold value for the Wake on Motion Interrupt for ACCEL x/y/z axes. LSB = 4 mg. Range is 0 mg to 1020 mg ACCEL_CONFIG Name: ACCEL_CONFIG Address: 20 (14h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x01 BIT 7:6 5:3 2:1 NAME ACCEL_DLPFCFG[2:0] ACCEL_FS_SEL[1:0] 0 ACCEL_FCHOICE Document Number: DS-000192 Revision: 1.1 FUNCTION Reserved. Accelerometer low pass filter configuration as shown in Table 17. Accelerometer Full Scale Select: 00: ±4g 01: ±8g 10: ±16g 11: ±30g 0 - Bypass accel DLPF. 1 - Enable accel DLPF. Page 66 of 89 ICM-20649 Output ACCEL_FCHOICE ACCEL_DLPFCFG 0 x 3dB BW [Hz] 1209 NBW [Hz] Rate [Hz] 1248 1 0 246.0 265.0 1 1 246.0 265.0 1 2 111.4 136.0 1 3 50.4 68.8 1 4 23.9 34.4 1 5 11.5 17.0 1 6 5.7 8.3 1 7 473 499 4500 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 Table 17. Accelerometer Configuration The data rate out of the DLPF filter block can be further reduced by a factor of 1.125 kHz/(1+ACCEL_SMPLRT_DIV[11:0]) where ACCEL_SMPLRT_DIV is a 12-bit integer. ACCEL_CONFIG_2 Name: ACCEL_CONFIG_2 Address: 21 (15h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:5 4 3 2 1:0 NAME AX_ST_EN_REG AY_ST_EN_REG AZ_ST_EN_REG DEC3_CFG[1:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Reserved. X Accel self-test enable. Y Accel self-test enable. Z Accel self-test enable. Controls the number of samples averaged in the accelerometer decimator: 0: Average 1 or 4 samples depending on ACCEL_FCHOICE (see table below) 1 - Average 8 samples. 2 - Average 16 samples. 3 - Average 32 samples. Page 67 of 89 ICM-20649 Table 18 lists the accelerometer filter bandwidths available in the low-power mode of operation. In the low-power mode of operation, the accelerometer is duty-cycled. Averages 1x 4x 8x 16x 32x ACCEL_FCHOICE 0 1 1 1 1 ACCEL_DLPFCFG x 7 7 7 7 DEC3_CFG 0 0 1 2 3 Ton (ms) 0.821 1.488 2.377 4.154 7.71 NBW (Hz) 1237.5 496.8 264.8 136.5 69.2 RMS Noise [mg-rms] TYP (based on accelerometer noise: 285µg/Hz) 10.0 6.4 4.6 3.3 2.4 ACCEL_SMPLRT_DIV ODR [Hz] 4095 0.27 6.2 6.3 6.5 6.9 7.6 2044 0.55 6.3 6.6 7.0 7.7 9.2 1022 1.1 6.7 7.2 8.0 9.4 12.3 513 2.2 7.3 8.4 9.9 12.8 18.6 255 4.4 8.7 10.9 13.8 19.7 31.4 127 8.8 11.4 15.8 21.6 33.3 56.7 63 17.6 16.8 25.6 37.3 60.7 107.5 31 35.2 27.6 45.2 68.6 115.3 208.9 22 48.9 36.1 60.5 93.0 158.1 288.3 15 70.3 49.2 84.3 131.1 224.7 411.9 10 102.3 68.9 119.9 188.0 324.1 596.3 7 140.6 92.4 162.7 256.3 443.3 N/A 5 187.5 121.2 214.9 3 281.3 178.9 319.3 1 562.5 351.7 Current Consumption [mA] TYP N/A N/A Table 18. Accelerometer Configuration 2 Note: Ton is the ON time for motion measurement when the accelerometer is in duty cycle mode. Document Number: DS-000192 Revision: 1.1 Page 68 of 89 ICM-20649 FSYNC_CONFIG Name: FSYNC_CONFIG Address: 82 (52h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7 NAME DELAY_TIME_EN 6 5 4 WOF_DEGLITCH_EN WOF_EDGE_INT 3:0 EXT_SYNC_SET[3:0] FUNCTION 0 - Disables delay time measurement between FSYNC event and the first ODR event (after FSYNC event). 1 - Enables delay time measurement between FSYNC event and the first ODR event (after FSYNC event). Reserved. Enables digital deglitching of FSYNC input for Wake on FSYNC. 0 - FSYNC is a level interrupt for Wake on FSYNC. 1 - FSYNC is an edge interrupt for Wake on FSYNC. ACTL_FSYNC is used to set the polarity of the interrupt. Enables the FSYNC pin data to be sampled. EXT_SYNC_SET FSYNC bit location. 0 - Function disabled 1 - TEMP_OUT_L[0] 2 - GYRO_XOUT_L[0] 3 - GYRO_YOUT_L[0] 4 - GYRO_ZOUT_L[0] 5 - ACCEL_XOUT_L[0] 6 - ACCEL_YOUT_L[0] 7 - ACCEL_ZOUT_L[0] TEMP_CONFIG Name: TEMP_CONFIG Address: 83 (53h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME FUNCTION 2:0 TEMP_DLPFCFG[2:0] Low pass filter configuration for temperature sensor as shown in the table below: TEMP_DLPCFG Temp Sensor NBW (Hz) 0 1 2 3 4 5 6 7 Document Number: DS-000192 Revision: 1.1 7932.0 217.9 123.5 65.9 34.1 17.3 8.8 7932.0 Rate (kHz) 9 1.125 1.125 1.125 1.125 1.125 Rate (kHz) 9 Page 69 of 89 ICM-20649 MOD_CTRL_USR Name: MOD_CTRL_USR Address: 84 (54h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x03 BIT 7:1 0 NAME REG_LP_DMP_EN FUNCTION Reserved. Enable turning on DMP in Low Power Accelerometer mode. REG_BANK_SEL Name: REG_BANK_SEL Address: 127 (7Fh) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT 7:6 5:4 NAME USER_BANK[1:0] 3:0 - Document Number: DS-000192 Revision: 1.1 FUNCTION Reserved. Use the following values in this bit-field to select a USER BANK. 0 - Select USER BANK 0 1 - Select USER BANK 1 2 - Select USER BANK 2 3 - Select USER BANK 3 Reserved. Page 70 of 89 ICM-20649 8.4 USR BANK 3 REGISTER MAP I2C_MST_ODR_CONFIG Name: I2C_MST_ODR_CONFIG Address: 0 (00h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7:4 3:0 NAME I2C_MST_ODR_CONFIG[3:0] FUNCTION Reserved. ODR configuration for external sensor when gyroscope and accelerometer are disabled. ODR is computed as follows: 1 -1 kHz/(2^((odr_config[3:0])) ) When gyroscope is enabled, all sensors (including I2C_MASTER) use the gyroscope ODR. If gyroscope is disabled then all sensors (including I2C_MASTER) use the accelerometer ODR. I2C_MST_CTRL Name: I2C_MST_CTRL Address: 1 (01h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7 NAME MULT_MST_EN 6:5 4 I2C_MST_P_NSR 3:0 I2C_MST_CLK[3:0] FUNCTION Enables multi-master capability. When disabled, clocking to the I2C_MST_IF can be disabled when not in use and the logic to detect lost arbitration is disabled. Reserved. This bit controls the I2C Master’s transition from one slave read to the next slave read. 0 - There is a restart between reads. 1 - There is a stop between reads. Sets I2C master clock frequency as shown in Table 19. I2C_MST_DELAY_CTRL Name: I2C_MST_DELAY_CTRL Address: 2 (02h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7 6:5 4 NAME DELAY_ES_SHADOW I2C_SLV4_DELAY_EN 3 I2C_SLV3_DELAY_EN 2 I2C_SLV2_DELAY_EN 1 I2C_SLV1_DELAY_EN 0 I2C_SLV0_DELAY_EN Document Number: DS-000192 Revision: 1.1 FUNCTION Delays shadowing of external sensor data until all data is received. Reserved. When enabled, slave 4 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG. When enabled, slave 3 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG. When enabled, slave 2 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG. When enabled, slave 1 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG. When enabled, slave 0 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG. Page 71 of 89 ICM-20649 I2C_SLV0_ADDR Name: I2C_SLV0_ADDR Address: 3 (03h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7 NAME I2C_SLV0_RNW 6:0 I2C_ID_0[6:0] FUNCTION 1 – Transfer is a read. 0 – Transfer is a write. Physical address of I2C slave 0. I2C_SLV0_REG Name: I2C_SLV0_REG Address: 4 (04h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME I2C_SLV0_REG[7:0] FUNCTION I2C slave 0 register address from where to begin data transfer. I2C_SLV0_CTRL Name: I2C_SLV0_CTRL Address: 5 (05h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7 NAME I2C_SLV0_EN 6 I2C_SLV0_BYTE_SW 5 I2C_SLV0_REG_DIS 4 I2C_SLV0_GRP 3:0 I2C_SLV0_LENG[3:0] Document Number: DS-000192 Revision: 1.1 FUNCTION 1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register, which is always EXT_SENS_DATA_00 for I2C slave 0. 0 – Function is disabled for this slave. 1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLV0_REG[0] = 1, or if the last byte read has a register address LSB = 0. For example, if I2C_SLV0_REG = 0x1, and I2C_SLV0_LENG = 0x4: 1) The first byte read from address 0x1 will be stored at EXT_SENS_DATA_00, 2) The second and third bytes will be read and swapped, so the data read from address 0x2 will be stored at EXT_SENS_DATA_02, and the data read from address 0x3 will be stored at EXT_SENS_DATA_01, 3) The last byte read from address 0x4 will be stored at EXT_SENS_DATA_03 0 – No swapping occurs; bytes are written in order read. When set, the transaction does not write a register value, it will only read data, or write data External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave’s register address 0 and 1, 2 and 3, etc.., or if the groups are address 1 and 2, 3 and 4, etc. 0 indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address. Number of bytes to be read from I2C slave 0. Page 72 of 89 ICM-20649 I2C_SLV0_DO Name: I2C_SLV0_DO Address: 6 (06h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME I2C_SLV0_DO[7:0] FUNCTION Data out when slave 0 is set to write. I2C_SLV1_ADDR Name: I2C_SLV1_ADDR Address: 7 (07h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7 NAME I2C_SLV1_RNW 6:0 I2C_ID_1[6:0] FUNCTION 1 – Transfer is a read. 0 – Transfer is a write. Physical address of I2C slave 1. I2C_SLV1_REG Name: I2C_SLV1_REG Address: 8 (08h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME I2C_SLV1_REG[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION I2C slave 1 register address from where to begin data transfer. Page 73 of 89 ICM-20649 I2C_SLV1_CTRL Name: I2C_SLV1_CTRL Address: 9 (09h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7 NAME I2C_SLV1_EN 6 I2C_SLV1_BYTE_SW 5 I2C_SLV1_REG_DIS 4 I2C_SLV1_GRP 3:0 I2C_SLV1_LENG[3:0] FUNCTION 1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register as determined by I2C_SLV0_EN and I2C_SLV0_LENG. 0 – Function is disabled for this slave. 1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLV1_REG[0] = 1, or if the last byte read has a register address LSB = 0. For example, if I2C_SLV0_EN = 0x1, and I2C_SLV0_LENG = 0x3 (to show swap has to do with I2C slave address not EXT_SENS_DATA address), and if I2C_SLV1_REG = 0x1, and I2C_SLV1_LENG = 0x4: 1) The first byte read from address 0x1 will be stored at EXT_SENS_DATA_03 (slave 0’s data will be in EXT_SENS_DATA_00, EXT_SENS_DATA_01, and EXT_SENS_DATA_02), 2) The second and third bytes will be read and swapped, so the data read from address 0x2 will be stored at EXT_SENS_DATA_04, and the data read from address 0x3 will be stored at EXT_SENS_DATA_05, 3) The last byte read from address 0x4 will be stored at EXT_SENS_DATA_06 0 – No swapping occurs; bytes are written in order read. When set, the transaction does not write a register value, it will only read data, or write data External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave’s register address 0 and 1, 2 and 3, etc., or if the groups are address 1 and 2, 3 and 4, etc. 0 indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address. Number of bytes to be read from I2C slave 1. SLV1_DO Name: I2C_SLV1_DO Address: 10 (0Ah) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME I2C_SLV1_DO[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Data out when slave 1 is set to write. Page 74 of 89 ICM-20649 I2C_SLV2_ADDR Name: I2C_SLV2_ADDR Address: 11 (0Bh) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7 NAME I2C_SLV2_RNW 6:0 I2C_ID_2[6:0] FUNCTION 1 – Transfer is a read. 0 – Transfer is a write. Physical address of I2C slave 2. I2C_SLV2_REG Name: I2C_SLV2_REG Address: 12 (0Ch) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME I2C_SLV2_REG[7:0] FUNCTION I2C slave 2 register address from where to begin data transfer. I2C_SLV2_CTRL Name: I2C_SLV2_CTRL Address: 13 (0Dh) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7 NAME I2C_SLV2_EN 6 I2C_SLV2_BYTE_SW 5 I2C_SLV2_REG_DIS 4 I2C_SLV2_GRP 3:0 I2C_SLV2_LENG[3:0] Document Number: DS-000192 Revision: 1.1 FUNCTION 1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register as determined by I2C_SLV0_EN, I2C_SLV0_LENG, I2C_SLV1_EN and I2C_SLV1_LENG. 0 – Function is disabled for this slave. 1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLV2_REG[0] = 1, or if the last byte read has a register address LSB = 0. See I2C_SLV1_CTRL for an example. 0 – No swapping occurs; bytes are written in order read. When set, the transaction does not write a register value, it will only read data, or write data External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave’s register address 0 and 1, 2 and 3, etc.., or if the groups are address 1 and 2, 3 and 4, etc. 0 indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address. Number of bytes to be read from I2C slave 2. Page 75 of 89 ICM-20649 I2C_SLV2_DO Name: I2C_SLV2_DO Address: 14 (0Eh) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME I2C_SLV2_DO[7:0] FUNCTION Data out when slave 2 is set to write. I2C_SLV3_ADDR Name: I2C_SLV3_ADDR Address: 15 (0Fh) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7 NAME I2C_SLV3_RNW 6:0 I2C_ID_3[6:0] FUNCTION 1 – Transfer is a read. 0 – Transfer is a write. Physical address of I2C slave 3. I2C_SLV3_REG Name: I2C_SLV3_REG Address: 16 (10h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME I2C_SLV3_REG[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION I2C slave 3 register address from where to begin data transfer. Page 76 of 89 ICM-20649 I2C_SLV3_CTRL Name: I2C_SLV3_CTRL Address: 17 (11h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7 NAME I2C_SLV3_EN 6 I2C_SLV3_BYTE_SW 5 I2C_SLV3_REG_DIS 4 I2C_SLV3_GRP 3:0 I2C_SLV3_LENG[3:0] FUNCTION 1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register as determined by I2C_SLV0_EN, I2C_SLV0_LENG, I2C_SLV1_EN, I2C_SLV1_LENG, I2C_SLV2_EN and I2C_SLV2_LENG. 0 – Function is disabled for this slave. 1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLV3_REG[0] = 1, or if the last byte read has a register address LSB = 0. See I2C_SLV1_CTRL for an example. 0 – No swapping occurs, bytes are written in order read. When set, the transaction does not write a register value, it will only read data, or write data External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave’s register address 0 and 1, 2 and 3, etc., or if the groups are address 1 and 2, 3 and 4, etc. 0 indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address. Number of bytes to be read from I2C slave 3. I2C_SLV3_DO Name: I2C_SLV3_DO Address: 18 (12h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME I2C_SLV3_DO[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Data out when slave 3 is set to write. Page 77 of 89 ICM-20649 I2C_SLV4_ADDR Name: I2C_SLV4_ADDR Address: 19 (13h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7 NAME I2C_SLV4_RNW 6:0 I2C_ID_4[6:0] FUNCTION 1 – Transfer is a read. 0 – Transfer is a write. Physical address of I2C slave 4. Note: The I2C Slave 4 interface can be used to perform only single byte read and write transactions. I2C_SLV4_REG Name: I2C_SLV4_REG Address: 20 (14h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME I2C_SLV4_REG[7:0] FUNCTION I2C slave 4 register address from where to begin data transfer. I2C_SLV4_CTRL Name: I2C_SLV4_CTRL Address: 21 (15h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7 NAME I2C_SLV4_EN 6 I2C_SLV4_INT_EN 5 I2C_SLV4_REG_DIS 4:0 I2C_SLV4_DLY[4:0] FUNCTION 1 – Enable data transfer with this slave at the sample rate. If read command, store data in I2C_SLV4_DI register, if write command, write data stored in I2C_SLV4_DO register. Bit is cleared when a single transfer is complete. Be sure to write I2C_SLV4_DO first 0 – Function is disabled for this slave. 1 – Enables the completion of the I2C slave 4 data transfer to cause an interrupt. 0 – Completion of the I2C slave 4 data transfer will not cause an interrupt. When set, the transaction does not write a register value, it will only read data, or write data. When enabled via the I2C_MST_DELAY_CTRL, those slaves will only be enabled every1/(1+I2C_SLV4_DLY) samples as determined by I2C_MST_ODR_CONFIG I2C_SLV4_DO Name: I2C_SLV4_DO Address: 22 (16h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7:0 NAME I2C_SLV4_DO[7:0] Document Number: DS-000192 Revision: 1.1 FUNCTION Data out when slave 4 is set to write. Page 78 of 89 ICM-20649 I2C_SLV4_DI Name: I2C_SLV4_DI Address: 23 (17h) Type: USR3 Bank: 3 Serial IF: R Reset Value: 0x00 BIT 7:0 NAME I2C_SLV4_DI[7:0] FUNCTION Data read from I2C Slave 4. REG_BANK_SEL Name: REG_BANK_SEL Address: 127 (7Fh) Type: Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT 7:6 5:4 NAME USER_BANK[1:0] 3:0 - Document Number: DS-000192 Revision: 1.1 FUNCTION Reserved. Use the following values in this bit-field to select a USER BANK: 0 - Select USER BANK 0 1 - Select USER BANK 1 2 - Select USER BANK 2 3 - Select USER BANK 3 Reserved. Page 79 of 89 ICM-20649 9 USE NOTES 9.1 GYROSCOPE MODE TRANSITION When gyroscope is transitioning from standard to low-noise mode, several unsettled output samples will be observed at the gyroscope output due to filter switching and settling. The number of unsettled gyroscope output samples depends on the filter and ODR settings. 9.2 POWER MANAGEMENT 1 REGISTER SETTING CLKSEL[2:0] has to be set to 001 to achieve the datasheet performance. 9.3 DMP MEMORY ACCESS Reading/writing DMP memory and FIFO through I2C in a multithreaded environment can cause wrong data being read. To avoid the issue, one may use SPI instead of I2C, or use I2C with mutexes. 9.4 TIME BASE CORRECTION The system clock frequency at room temperature in gyroscope mode and 6-Axis mode varies from part to part, and the clock rates specified in datasheet are the nominal values. The percentage of frequency deviation from the nominal values for each part is logged in register TIMEBASE_CORRECTION_PLL, and the range of the code is ±10% with each LSB representing a step of 0.079%. For example, if on one part TIMEBASE_CORRECTION_PLL = 0x0C = d’12, it means the clock frequency in gyroscope mode and 6-Axis mode is ~0.94% faster than the nominal value. When operating in accelerometer-only mode, the system clock frequency at room temperature is the nominal frequency over parts, and it is independent of the value stored in TIMEBASE_CORRECTION_PLL register. Document Number: DS-000192 Revision: 1.1 Page 80 of 89 ICM-20649 9.5 I2C MASTER CLOCK FREQUENCY I2C master clock frequency can be set by register I2C_MST_CLK as shown in the table below. Due to temperature variation and part to part variation of system clock frequency in different power modes, I2C_MST_CLK should be set such that in all conditions the clock frequency will not exceed what a slave device can support. To achieve a targeted clock frequency of 400 kHz, MAX, it is recommended to set I2C_MST_CLK = 7 (345.6 kHz / 46.67% duty cycle). I2C_MST_CLK Nominal CLK Frequency [kHz] Duty Cycle 0 370.29 50.00% 1 - - 2 370.29 50.00% 3 432.00 50.00% 4 370.29 42.86% 5 370.29 50.00% 6 345.60 40.00% 7 345.60 46.67% 8 304.94 47.06% 9 432.00 50.00% 10 432.00 41.67% 11 432.00 41.67% 12 471.27 45.45% 13 432.00 50.00% 14 345.60 46.67% 15 345.60 46.67% Table 19. I2C Master Clock Frequency 9.6 CLOCKING The internal system clock sources include: (1) an internal relaxation oscillator, and (2) a PLL with MEMS gyroscope oscillator as the reference clock. With the recommended clock selection setting (CLKSEL = 1), the best clock source for optimum sensor performance and power consumption will be automatically selected based on the power mode. Specifically, the internal relaxation oscillator will be selected when operating in accelerometer only mode, while the PLL will be selected whenever gyroscope is on, which includes gyroscope and 6-axis modes. As clock accuracy is critical to the preciseness of distance and angle calculations performed by DMP, it should be noted that the internal relaxation oscillator and PLL show different performances in some aspects. The internal relaxation oscillator is trimmed to have a consistent operating frequency at room temperature, while the PLL clock frequency varies from part to part. The PLL frequency deviation from the nominal value in percentage is captured in register TIMEBASE_CORRECTION_PLL, and users can factor it in during distance and angle calculations to not sacrifice accuracy. Other than that, PLL has better frequency stability and lower frequency variation over temperature than the internal relaxation oscillator. Document Number: DS-000192 Revision: 1.1 Page 81 of 89 ICM-20649 9.7 LP_EN BIT-FIELD USAGE The LP_EN bit-field (User Bank 0, PWR_MGMT_1 register, bit [5] helps to reduce the digital current. The recommended setting for this bit-field is 1 to achieve the lowest possible current. However, when LP_EN is set to 1, user may not be able to write to the following registers. If it is desired to write to registers in this list, it is recommended to first set LP_EN=0, write the desired register(s), then set LP_EN=1 again: • • • • 9.8 USER BANK 0: All registers except LP_CONFIG, PWR_MGMT_1, PWR_MGMT_2, INT_PIN_CFG, INT_ENABLE, FIFO_COUNTH, FIFO_COUNTL, FIFO_R_W, FIFO_CFG, REG_BANK_SEL USER BANK 1: All registers except REG_BANK_SEL USER BANK 2: All registers except REG_BANK_SEL USER BANK 3: All registers except REG_BANK_SEL REGISTER ACCESS USING SPI INTERFACE Using the SPI interface, when the AP/user disables the gyroscope sensor (User Bank 0, PWR_MGMT_2 register, bits [2:0]=111) as part of a sequence of register read or write commands, the AP/user will be required to subsequently wait 22µs prior to any of the following operations: (1) Writing to any of the following registers: • • • • USER BANK 0: All registers except LP_CONFIG, PWR_MGMT_1, PWR_MGMT_2, INT_PIN_CFG, INT_ENABLE, FIFO_COUNTH, FIFO_COUNTL, FIFO_R_W, FIFO_CFG, REG_BANK_SEL USER BANK 1: All registers except REG_BANK_SEL USER BANK 2: All registers except REG_BANK_SEL USER BANK 3: All registers except REG_BANK_SEL (2) Reading data from FIFO (3) Reading from memory Document Number: DS-000192 Revision: 1.1 Page 82 of 89 ICM-20649 10 ORIENTATION OF AXES Figure 12 shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier (•) in the figure. +Z +Y +Z IC M20 +Y 64 9 +X +X Figure 12. Orientation of Axes of Sensitivity and Polarity of Rotation Document Number: DS-000192 Revision: 1.1 Page 83 of 89 ICM-20649 11 PACKAGE DIMENSIONS This section provides package dimensions for the device. Information for the 24 Lead QFN 3.0x3.0x0.9 package is below. Figure 13. Package Dimensions Document Number: DS-000192 Revision: 1.1 Page 84 of 89 ICM-20649 Total Thickness Stand Off Mold Thickness L/F Thickness Lead Width Body Size Lead Pitch EP Size Lead Length Mold Flatness Coplanarity Lead Offset Exposed Pad Offset SYMBOL A A1 A2 A3 b D E e J K L S R H P bbb ccc ddd eee MIN. 0.85 0.00 --0.203 REF 0.15 2.90 2.90 0.40 BSC 1.65 1.49 0.25 0.25 REF 0.075 0.12 REF 0.22 REF 0.10 0.075 0.10 0.10 NOM. 0.90 0.02 0.70 MAX. 0.95 0.05 --- 0.20 3.00 3.00 0.25 3.10 3.10 1.70 1.54 0.30 1.75 1.59 0.35 --- --- Table 20. Package Dimensions Document Number: DS-000192 Revision: 1.1 Page 85 of 89 ICM-20649 12 PART NUMBER PART MARKINGS The part number part markings for ICM-20649 devices are summarized below: PART NUMBER ICM-20649 PART NUMBER PART MARKING IC2649 Table 21. Part Number Package Markings TOP VIEW Part Number Lot Traceability Code IC2649 XXXXXX YYWW Y Y = Year Code W W = Work Week Figure 14. Part Number Package Markings Document Number: DS-000192 Revision: 1.1 Page 86 of 89 ICM-20649 13 REFERENCES Please refer to “InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)” for the following information: • • Manufacturing Recommendations o Assembly Guidelines and Recommendations o PCB Design Guidelines and Recommendations o MEMS Handling Instructions o ESD Considerations o Reflow Specification o Storage Specifications o Package Marking Specification o Tape & Reel Specification o Reel & Pizza Box Label o Packaging o Representative Shipping Carton Label Compliance o Environmental Compliance o DRC Compliance o Compliance Declaration Disclaimer Document Number: DS-000192 Revision: 1.1 Page 87 of 89 ICM-20649 14 REVISION HISTORY Revision Date Revision Description 03/25/2016 0.1 Initial Release 06/13/2016 0.2 Updated Section 3 07/22/2016 0.3 Updated Sections 3, 12 12/13/2016 1.0 Updated Sections 3, 6, 12 07/01/2021 1.1 Updated FIFO size information (Cover Page, Sections 1.2, 4.15) Document Number: DS-000192 Revision: 1.1 Page 88 of 89 ICM-20649 This information furnished by InvenSense or its affiliates (“TDK InvenSense”) is believed to be accurate and reliable. However, no responsibility is assumed by TDK InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. TDK InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. TDK InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. TDK InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights. Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. TDK InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment. ©2020—2021 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. ©2020—2021 InvenSense. All rights reserved. Document Number: DS-000192 Revision: 1.1 Page 89 of 89
ICM-20649 价格&库存

很抱歉,暂时无法提供与“ICM-20649”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ICM-20649
  •  国内价格 香港价格
  • 5000+44.463055000+5.40218

库存:3389