0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ICM-20948

ICM-20948

  • 厂商:

    TDK(东电化)

  • 封装:

    QFN24_3X3MM_EP

  • 描述:

    IMU运动传感器,QFN24加速度计,陀螺仪,磁强计,9轴,1.71V~3.6V,QFN24

  • 数据手册
  • 价格&库存
ICM-20948 数据手册
ICM-20948 World’s Lowest Power 9-Axis MEMS MotionTracking™ Device GENERAL DESCRIPTION APPLICATIONS The ICM-20948 is the world’s lowest power 9-axis MotionTracking device that is ideally suited for Smartphones, Tablets, Wearable Sensors, and IoT applications. ICM-20948 supports an auxiliary I2C interface to external sensors, on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and programmable interrupts. The device features an operating voltage range down to 1.71V. Communication ports include I2C and high speed SPI at 7 MHz. Note: ICM-20948 VDDIO range is 1.71V to 1.95V, different than the MPU-9250 9-axis device. ORDERING INFORMATION • • • • • • • • • • TYPICAL OPERATING CIRCUIT RESV RESV 19 20 21 24 BLOCK DIAGRAM AUX_DA nCS SCLK SDI 22 GND NC 1 18 NC 2 17 NC 16 NC NC 3 NC 4 NC 5 14 NC NC 6 13 VDD ICM-20948 1.71 – 1.95VDC C3, 0.1 µ F 12 11 1.71 – 3.6VDC C2, 0.1 µF INT1 AUX_CL 7 15 NC FSYNC 24-Pin QFN 9 −40°C to +85°C REGOUT 10 ICM-20948† SDO / AD0 PACKAGE SCL / SCLK TEMP RANGE nCS PART †Denotes RoHS and Green-Compliant Package • Lowest Power 9-Axis Device at 2.5 mW 3-Axis Gyroscope with Programmable FSR of ±250 dps, ±500 dps, ±1000 dps, and ±2000 dps 3-Axis Accelerometer with Programmable FSR of ±2g, ±4g, ±8g, and ±16g 3-Axis Compass with a wide range to ±4900 µT Onboard Digital Motion Processor (DMP) Android support Auxiliary I2C interface for external sensors On-Chip 16-bit ADCs and Programmable Filters 7 MHz SPI or 400 kHz Fast Mode I²C Digital-output temperature sensor VDD operating range of 1.71V to 3.6V MEMS structure hermetically sealed and bonded at wafer level RoHS and Green compliant 8 • • • SDA / SDI • FEATURES 23 • 3-axis gyroscope, 3-axis accelerometer, 3-axis compass, and a Digital Motion Processor™ (DMPTM) in a 3 mm x 3 mm x 1 mm (24-pin QFN) package DMP offloads computation of motion processing algorithms from the host processor, improving system power performance Software drivers are fully compliant with Google’s latest Android release EIS FSYNC support Smartphones and Tablets Wearable Sensors IoT Applications VDDIO • • • • C1, 0.1 µF SDO InvenSense reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. TDK Corporation 1745 Technology Drive, San Jose, CA 95110 U.S.A +1(408) 988–7339 www.invensense.com Document Number: DS-000189 Revision: 1.3 Release Date: 06/02/2017 ICM-20948 TABLE OF CONTENTS GENERAL DESCRIPTION ......................................................................................................................................................... 1 ORDERING INFORMATION ..................................................................................................................................................... 1 BLOCK DIAGRAM ................................................................................................................................................................. 1 APPLICATIONS..................................................................................................................................................................... 1 FEATURES .......................................................................................................................................................................... 1 TYPICAL OPERATING CIRCUIT ................................................................................................................................................. 1 1 GENERAL DESCRIPTION ........................................................................................................................................ 9 1.1 1.2 1.3 2 FEATURES .......................................................................................................................................................... 10 2.1 2.2 2.3 2.4 2.5 3 PURPOSE AND SCOPE ............................................................................................................................................... 9 PRODUCT OVERVIEW ............................................................................................................................................... 9 APPLICATIONS ......................................................................................................................................................... 9 GYROSCOPE FEATURES ........................................................................................................................................... 10 ACCELEROMETER FEATURES..................................................................................................................................... 10 MAGNETOMETER FEATURES .................................................................................................................................... 10 DMP FEATURES .................................................................................................................................................... 10 ADDITIONAL FEATURES ........................................................................................................................................... 10 ELECTRICAL CHARACTERISTICS ........................................................................................................................... 11 3.1 GYROSCOPE SPECIFICATIONS.................................................................................................................................... 11 3.2 ACCELEROMETER SPECIFICATIONS ............................................................................................................................. 12 3.3 MAGNETOMETER SPECIFICATIONS ............................................................................................................................ 13 3.4 ELECTRICAL SPECIFICATIONS..................................................................................................................................... 13 D.C. Electrical Characteristics ................................................................................................................................... 13 A.C. Electrical Characteristics ................................................................................................................................... 14 Other Electrical Specifications .................................................................................................................................. 15 3.5 I2C TIMING CHARACTERIZATION ............................................................................................................................... 16 3.6 SPI TIMING CHARACTERIZATION ............................................................................................................................... 17 3.7 ABSOLUTE MAXIMUM RATINGS ............................................................................................................................... 18 4 APPLICATIONS INFORMATION ........................................................................................................................... 19 4.1 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION ............................................................................................................ 19 4.2 TYPICAL OPERATING CIRCUIT ................................................................................................................................... 20 4.3 BILL OF MATERIALS FOR EXTERNAL COMPONENTS ....................................................................................................... 20 4.4 EXPOSED DIE PAD PRECAUTIONS .............................................................................................................................. 20 4.5 BLOCK DIAGRAM ................................................................................................................................................... 21 4.6 OVERVIEW ........................................................................................................................................................... 21 4.7 THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING ............................................................ 22 4.8 THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING...................................................... 22 4.9 THREE-AXIS MEMS MAGNETOMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING ..................................................... 22 4.10 DIGITAL MOTION PROCESSOR .................................................................................................................................. 22 4.11 PRIMARY I2C AND SPI SERIAL COMMUNICATIONS INTERFACES ....................................................................................... 22 ICM-20948 Solution Using I2C Interface.................................................................................................................... 22 ICM-20948 Solution Using SPI Interface ................................................................................................................... 23 4.12 AUXILIARY I2C SERIAL INTERFACE .............................................................................................................................. 24 4.13 SELF-TEST ............................................................................................................................................................ 24 4.14 CLOCKING ............................................................................................................................................................ 25 4.15 SENSOR DATA REGISTERS ........................................................................................................................................ 25 Document Number: DS-000189 Revision: 1.3 Page 2 of 89 ICM-20948 4.16 4.17 4.18 4.19 4.20 4.21 4.22 FIFO ................................................................................................................................................................... 25 FSYNC ................................................................................................................................................................ 25 INTERRUPTS.......................................................................................................................................................... 25 DIGITAL-OUTPUT TEMPERATURE SENSOR................................................................................................................... 26 BIAS AND LDOS .................................................................................................................................................... 26 CHARGE PUMP...................................................................................................................................................... 26 POWER MODES..................................................................................................................................................... 26 5 PROGRAMMABLE INTERRUPTS .......................................................................................................................... 27 6 DIGITAL INTERFACE ............................................................................................................................................ 28 6.1 6.2 6.3 6.4 6.5 7 REGISTER MAP FOR GYROSCOPE AND ACCELEROMETER ................................................................................... 32 7.1 7.2 7.3 7.4 8 I2C AND SPI SERIAL INTERFACES ............................................................................................................................... 28 I2C INTERFACE ...................................................................................................................................................... 28 I2C COMMUNICATIONS PROTOCOL ........................................................................................................................... 28 I2C TERMS ........................................................................................................................................................... 30 SPI INTERFACE ...................................................................................................................................................... 31 USER BANK 0 REGISTER MAP .................................................................................................................................. 32 USER BANK 1 REGISTER MAP .................................................................................................................................. 33 USER BANK 2 REGISTER MAP .................................................................................................................................. 34 USER BANK 3 REGISTER MAP .................................................................................................................................. 34 USER BANK 0 REGISTER DESCRIPTIONS .............................................................................................................. 36 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 8.20 8.21 8.22 8.23 8.24 8.25 8.26 8.27 8.28 WHO_AM_I ....................................................................................................................................................... 36 USER_CTRL ........................................................................................................................................................ 36 LP_CONFIG ........................................................................................................................................................ 37 PWR_MGMT_1 ................................................................................................................................................. 37 PWR_MGMT_2 ................................................................................................................................................. 38 INT_PIN_CFG .................................................................................................................................................... 38 INT_ENABLE ...................................................................................................................................................... 39 INT_ENABLE_1 .................................................................................................................................................. 39 INT_ENABLE_2 .................................................................................................................................................. 39 INT_ENABLE_3 .................................................................................................................................................. 40 I2C_MST_STATUS ............................................................................................................................................. 40 INT_STATUS ...................................................................................................................................................... 40 INT_STATUS_1 .................................................................................................................................................. 41 INT_STATUS_2 .................................................................................................................................................. 41 INT_STATUS_3 .................................................................................................................................................. 41 DELAY_TIMEH ................................................................................................................................................... 41 DELAY_TIMEL .................................................................................................................................................... 42 ACCEL_XOUT_H ................................................................................................................................................ 42 ACCEL_XOUT_L ................................................................................................................................................. 42 ACCEL_YOUT_H ................................................................................................................................................ 42 ACCEL_YOUT_L ................................................................................................................................................. 43 ACCEL_ZOUT_H ................................................................................................................................................ 43 ACCEL_ZOUT_L ................................................................................................................................................. 43 GYRO_XOUT_H ................................................................................................................................................. 43 GYRO_XOUT_L .................................................................................................................................................. 44 GYRO_YOUT_H ................................................................................................................................................. 44 GYRO_YOUT_L .................................................................................................................................................. 44 GYRO_ZOUT_H ................................................................................................................................................. 44 Document Number: DS-000189 Revision: 1.3 Page 3 of 89 ICM-20948 8.29 8.30 8.31 8.32 8.33 8.34 8.35 8.36 8.37 8.38 8.39 8.40 8.41 8.42 8.43 8.44 8.45 8.46 8.47 8.48 8.49 8.50 8.51 8.52 8.53 8.54 8.55 8.56 8.57 8.58 8.59 8.60 8.61 8.62 8.63 8.64 8.65 9 GYRO_ZOUT_L .................................................................................................................................................. 45 TEMP_OUT_H ................................................................................................................................................... 45 TEMP_OUT_L .................................................................................................................................................... 45 EXT_SLV_SENS_DATA_00 ................................................................................................................................. 45 EXT_SLV_SENS_DATA_01 ................................................................................................................................. 46 EXT_SLV_SENS_DATA_02 ................................................................................................................................. 46 EXT_SLV_SENS_DATA_03 ................................................................................................................................. 46 EXT_SLV_SENS_DATA_04 ................................................................................................................................. 46 EXT_SLV_SENS_DATA_05 ................................................................................................................................. 47 EXT_SLV_SENS_DATA_06 ................................................................................................................................. 47 EXT_SLV_SENS_DATA_07 ................................................................................................................................. 47 EXT_SLV_SENS_DATA_08 ................................................................................................................................. 47 EXT_SLV_SENS_DATA_09 ................................................................................................................................. 48 EXT_SLV_SENS_DATA_10 ................................................................................................................................. 48 EXT_SLV_SENS_DATA_11 ................................................................................................................................. 48 EXT_SLV_SENS_DATA_12 ................................................................................................................................. 48 EXT_SLV_SENS_DATA_13 ................................................................................................................................. 49 EXT_SLV_SENS_DATA_14 ................................................................................................................................. 49 EXT_SLV_SENS_DATA_15 ................................................................................................................................. 49 EXT_SLV_SENS_DATA_16 ................................................................................................................................. 49 EXT_SLV_SENS_DATA_17 ................................................................................................................................. 50 EXT_SLV_SENS_DATA_18 ................................................................................................................................. 50 EXT_SLV_SENS_DATA_19 ................................................................................................................................. 50 EXT_SLV_SENS_DATA_20 ................................................................................................................................. 50 EXT_SLV_SENS_DATA_21 ................................................................................................................................. 51 EXT_SLV_SENS_DATA_22 ................................................................................................................................. 51 EXT_SLV_SENS_DATA_23 ................................................................................................................................. 51 FIFO_EN_1 ........................................................................................................................................................ 52 FIFO_EN_2 ........................................................................................................................................................ 52 FIFO_RST ........................................................................................................................................................... 53 FIFO_MODE ...................................................................................................................................................... 53 FIFO_COUNTH .................................................................................................................................................. 53 FIFO_COUNTL ................................................................................................................................................... 53 FIFO_R_W ......................................................................................................................................................... 54 DATA_RDY_STATUS .......................................................................................................................................... 54 FIFO_CFG .......................................................................................................................................................... 54 REG_BANK_SEL ................................................................................................................................................. 54 USR BANK 1 REGISTER DESCRIPTIONS ................................................................................................................ 55 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 SELF_TEST_X_GYRO .......................................................................................................................................... 55 SELF_TEST_Y_GYRO .......................................................................................................................................... 55 SELF_TEST_Z_GYRO .......................................................................................................................................... 55 SELF_TEST_X_ACCEL ......................................................................................................................................... 55 SELF_TEST_Y_ACCEL ......................................................................................................................................... 56 SELF_TEST_Z_ACCEL ......................................................................................................................................... 56 XA_OFFS_H ....................................................................................................................................................... 56 XA_OFFS_L ........................................................................................................................................................ 56 YA_OFFS_H ....................................................................................................................................................... 56 YA_OFFS_L ........................................................................................................................................................ 57 ZA_OFFS_H ....................................................................................................................................................... 57 ZA_OFFS_L ........................................................................................................................................................ 57 Document Number: DS-000189 Revision: 1.3 Page 4 of 89 ICM-20948 9.13 9.14 10 TIMEBASE_CORRECTION_PLL ........................................................................................................................... 57 REG_BANK_SEL ................................................................................................................................................. 58 USR BANK 2 REGISTER MAP ........................................................................................................................... 59 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 10.13 10.14 10.15 10.16 10.17 10.18 10.19 10.20 11 GYRO_SMPLRT_DIV .......................................................................................................................................... 59 GYRO_CONFIG_1 .............................................................................................................................................. 59 GYRO_CONFIG_2 .............................................................................................................................................. 60 XG_OFFS_USRH ................................................................................................................................................ 61 XG_OFFS_USRL ................................................................................................................................................. 62 YG_OFFS_USRH ................................................................................................................................................ 62 YG_OFFS_USRL ................................................................................................................................................. 62 ZG_OFFS_USRH................................................................................................................................................. 62 ZG_OFFS_USRL ................................................................................................................................................. 62 ODR_ALIGN_EN ............................................................................................................................................ 63 ACCEL_SMPLRT_DIV_1 ................................................................................................................................. 63 ACCEL_SMPLRT_DIV_2 ................................................................................................................................. 63 ACCEL_INTEL_CTRL ....................................................................................................................................... 63 ACCEL_WOM_THR ........................................................................................................................................ 64 ACCEL_CONFIG ............................................................................................................................................. 64 ACCEL_CONFIG_2 ......................................................................................................................................... 65 FSYNC_CONFIG ............................................................................................................................................. 66 TEMP_CONFIG .............................................................................................................................................. 67 MOD_CTRL_USR ........................................................................................................................................... 67 REG_BANK_SEL ............................................................................................................................................. 67 USR BANK 3 REGISTER MAP ........................................................................................................................... 68 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 I2C_MST_ODR_CONFIG .................................................................................................................................... 68 I2C_MST_CTRL .................................................................................................................................................. 68 I2C_MST_DELAY_CTRL...................................................................................................................................... 69 I2C_SLV0_ADDR ................................................................................................................................................ 69 I2C_SLV0_REG................................................................................................................................................... 69 I2C_SLV0_CTRL ................................................................................................................................................. 70 I2C_SLV0_DO .................................................................................................................................................... 70 I2C_SLV1_ADDR ................................................................................................................................................ 70 I2C_SLV1_REG................................................................................................................................................... 71 I2C_SLV1_CTRL ............................................................................................................................................. 71 I2C_SLV1_DO ................................................................................................................................................ 72 I2C_SLV2_ADDR ............................................................................................................................................ 72 I2C_SLV2_REG............................................................................................................................................... 72 I2C_SLV2_CTRL ............................................................................................................................................. 73 I2C_SLV2_DO ................................................................................................................................................ 73 I2C_SLV3_ADDR ............................................................................................................................................ 73 I2C_SLV3_REG............................................................................................................................................... 74 I2C_SLV3_CTRL ............................................................................................................................................. 74 I2C_SLV3_DO ................................................................................................................................................ 74 I2C_SLV4_ADDR ............................................................................................................................................ 75 I2C_SLV4_REG............................................................................................................................................... 75 I2C_SLV4_CTRL ............................................................................................................................................. 75 I2C_SLV4_DO ................................................................................................................................................ 75 I2C_SLV4_DI .................................................................................................................................................. 76 REG_BANK_SEL ............................................................................................................................................. 76 Document Number: DS-000189 Revision: 1.3 Page 5 of 89 ICM-20948 12 12.1 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 14 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 REGISTER MAP FOR MAGNETOMETER ........................................................................................................... 77 REGISTER MAP DESCRIPTION ................................................................................................................................... 77 DETAILED DESCRIPTIONS FOR MAGNETOMETER REGISTERS .......................................................................... 78 WIA: DEVICE ID ................................................................................................................................................... 78 ST1: STATUS 1 ..................................................................................................................................................... 78 HXL TO HZH: MEASUREMENT DATA ........................................................................................................................ 78 ST2: STATUS 2 ..................................................................................................................................................... 79 CNTL2: CONTROL 2 .............................................................................................................................................. 79 CNTL3: CONTROL 3 .............................................................................................................................................. 80 TS1, TS2: TEST 1, 2 .............................................................................................................................................. 80 USE NOTES ..................................................................................................................................................... 81 GYROSCOPE MODE TRANSITION ............................................................................................................................... 81 POWER MANAGEMENT 1 REGISTER SETTING .............................................................................................................. 81 DMP MEMORY ACCESS ......................................................................................................................................... 81 TIME BASE CORRECTION ......................................................................................................................................... 81 I2C MASTER CLOCK FREQUENCY ............................................................................................................................... 81 CLOCKING ............................................................................................................................................................ 82 LP_EN BIT-FIELD USAGE ........................................................................................................................................ 82 REGISTER ACCESS USING SPI INTERFACE .................................................................................................................... 82 15 ORIENTATION OF AXES .................................................................................................................................. 83 16 PACKAGE DIMENSIONS .................................................................................................................................. 84 17 PART NUMBER PART MARKINGS.................................................................................................................... 86 18 REFERENCES ................................................................................................................................................... 87 19 DOCUMENT INFORMATION ........................................................................................................................... 88 19.1 REVISION HISTORY ................................................................................................................................................. 88 COMPLIANCE DECLARATION DISCLAIMER ............................................................................................................................... 89 Document Number: DS-000189 Revision: 1.3 Page 6 of 89 ICM-20948 LIST OF FIGURES Figure 1. I2C Bus Timing Diagram...................................................................................................................................... 16 Figure 2. SPI Bus Timing Diagram ..................................................................................................................................... 17 Figure 3. Pin out Diagram for ICM-20948 3 mm x 3 mm x 1 mm QFN ............................................................................. 19 Figure 4. ICM-20948 Application Schematic (a) I2C operation (b) SPI operation ............................................................. 20 Figure 5. ICM-20948 Block Diagram ................................................................................................................................. 21 Figure 6. ICM-20948 Solution Using I2C Interface ............................................................................................................ 23 Figure 7. ICM-20948 Solution Using SPI Interface ............................................................................................................ 24 Figure 8. START and STOP Conditions .............................................................................................................................. 28 Figure 9. Acknowledge on the I2C Bus .............................................................................................................................. 29 Figure 10. Complete I2C Data Transfer ............................................................................................................................. 29 Figure 11. Typical SPI Master / Slave Configuration ......................................................................................................... 31 Figure 12. Orientation of Axes of Sensitivity and Polarity of Rotation ............................................................................. 83 Figure 13. Orientation of Axes of Sensitivity for Magnetometer ..................................................................................... 83 Figure 14. Package Dimensions ........................................................................................................................................ 84 Figure 15. Part Number Part Markings ............................................................................................................................. 86 Document Number: DS-000189 Revision: 1.3 Page 7 of 89 ICM-20948 LIST OF TABLES Table 1. Gyroscope Specifications .................................................................................................................................... 11 Table 2. Accelerometer Specifications ............................................................................................................................. 12 Table 3. Magnetometer Specifications ............................................................................................................................. 13 Table 4. D.C. Electrical Characteristics.............................................................................................................................. 13 Table 5. A.C. Electrical Characteristics .............................................................................................................................. 15 Table 6. Other Electrical Specifications ............................................................................................................................ 15 Table 7. I2C Timing Characteristics ................................................................................................................................... 16 Table 8. SPI Timing Characteristics (7 MHz) ..................................................................................................................... 17 Table 9. Absolute Maximum Ratings ................................................................................................................................ 18 Table 10. Signal Descriptions ............................................................................................................................................ 19 Table 11. Bill of Materials ................................................................................................................................................. 20 Table 12. Power Modes for ICM-20948............................................................................................................................ 26 Table 13. Interrupt Sources .............................................................................................................................................. 27 Table 14. Serial Interface .................................................................................................................................................. 28 Table 15. I2C Terms ........................................................................................................................................................... 30 Table 16. Gyroscope Configuration 1 ............................................................................................................................... 60 Table 17. Gyroscope Configuration 2 ............................................................................................................................... 61 Table 18. Accelerator Configuration................................................................................................................................. 64 Table 19. Accelerator Configuration 2 .............................................................................................................................. 66 Table 20. Register Table for Magnetometer .................................................................................................................... 77 Table 21. Register Map for Magnetometer ...................................................................................................................... 77 Table 22. Magnetometer Measurement Data Format ..................................................................................................... 79 Table 23. I2C Master Clock Frequency .............................................................................................................................. 82 Table 24. Package Dimensions ......................................................................................................................................... 85 Table 26. Part Number Part Markings .............................................................................................................................. 86 Document Number: DS-000189 Revision: 1.3 Page 8 of 89 ICM-20948 1 GENERAL DESCRIPTION 1.1 PURPOSE AND SCOPE This document is a preliminary data sheet, providing a description, specifications, and design related information on the ICM-20948 MotionTracking device. For references to register map and descriptions of individual registers, please refer to the ICM-20948 Register Map and Register Descriptions document. 1.2 PRODUCT OVERVIEW The ICM-20948 is a multi-chip module (MCM) consisting of two dies integrated into a single QFN package. One die houses a 3-axis gyroscope, a 3-axis accelerometer, and a Digital Motion Processor™ (DMP). The other die houses the AK09916 3-axis magnetometer from Asahi Kasei Microdevices Corporation. The ICM-20948 is a 9-axis MotionTracking device all in a small 3x3x1mm QFN package. The device supports the following features: • • • FIFO of size 512 bytes (FIFO size will vary depending on DMP feature-set) Runtime Calibration Enhanced FSYNC functionality to improve timing for applications like EIS ICM-20948 devices, with their 9-axis integration, on-chip DMP, and run-time calibration firmware, enable manufacturers to eliminate the costly and complex selection, qualification, and system level integration of discrete devices, guaranteeing optimal motion performance for consumers. The gyroscope has a programmable full-scale range of ±250 dps, ±500 dps, ±1000 dps, and ±2000 dps. The accelerometer has a user-programmable accelerometer full-scale range of ±2g, ±4g, ±8g, and ±16g. Factory-calibrated initial sensitivity of both sensors reduces production-line calibration requirements. Other key features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and programmable interrupts. The device features I2C and SPI serial interfaces, a VDD operating range of 1.71V to 3.6V, and a separate digital IO supply, VDDIO from 1.71V to 1.95V. Communication with all registers of the device is performed using I2C at up to 100 kHz (standard-mode) or up to 400 kHz (fast-mode), or SPI at up to 7 MHz. By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the package size down to a footprint and thickness of 3 mm x 3 mm x 1 mm (24-pin QFN), to provide a very small yet high-performance, low-cost package. The device provides high robustness by supporting 20,000g shock reliability. 1.3 APPLICATIONS • • • • Smartphones and Tablets Wearable Sensors IoT Applications Drones Document Number: DS-000189 Revision: 1.3 Page 9 of 89 ICM-20948 2 FEATURES 2.1 GYROSCOPE FEATURES The triple-axis MEMS gyroscope in the ICM-20948 includes the following features: • • • 2.2 Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a user-programmable full-scale range of ±250 dps, ±500 dps, ±1000 dps, and ±2000 dps, and integrated 16-bit ADCs User-selectable ODR; User-selectable low pass filters Self-test ACCELEROMETER FEATURES The triple-axis MEMS accelerometer in ICM-20948 includes the following features: • • • • 2.3 Digital-output X-, Y-, and Z-axis accelerometer with a programmable full scale range of ±2g, ±4g, ±8g, and ±16g, and integrated 16-bit ADCs User-selectable ODR; User-selectable low pass filters Wake-on-motion interrupt for low power operation of applications processor Self-test MAGNETOMETER FEATURES The triple-axis MEMS magnetometer in ICM-20948 includes a wide range of features: • • • • • 2.4 3-axis silicon monolithic Hall-effect magnetic sensor with magnetic concentrator Wide dynamic measurement range and high resolution with lower current consumption. Output data resolution of 16-bits Full scale measurement range is ±4900 µT Self-test function with internal magnetic source to confirm magnetic sensor operation on end products DMP FEATURES The DMP in ICM-20948 includes the following capabilities: • • • • 2.5 Offloads computation of motion processing algorithms from the host processor. The DMP can be used to minimize power, simplify timing, simplify the software architecture, and save valuable MIPS on the host processor for use in applications. The DMP enables ultra-low power run-time and background calibration of the accelerometer, gyroscope, and compass, maintaining optimal performance of the sensor data for both physical and virtual sensors generated through sensor fusion. This enables the best user experience for all sensor enabled applications for the lifetime of the device. DMP features simplify the software architecture resulting in quicker time to market. DMP features are OS, Platform, and Architecture independent, supporting virtually any AP, MCU, or other embedded architecture. ADDITIONAL FEATURES The ICM-20948 includes the following additional features: • • • • • • I2C at up to 100 kHz (standard-mode) or up to 400 kHz (fast-mode) or SPI at up to 7 MHz for communication with registers Auxiliary master I2C bus for reading data from external sensors (e.g. magnetometer) Digital-output temperature sensor 20,000g shock tolerant MEMS structure hermetically sealed and bonded at wafer level RoHS and Green compliant Document Number: DS-000189 Revision: 1.3 Page 10 of 89 ICM-20948 3 ELECTRICAL CHARACTERISTICS 3.1 GYROSCOPE SPECIFICATIONS Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted. NOTE: All specifications apply to Low-Power Mode and Low-Noise Mode, unless noted otherwise PARAMETER Full-Scale Range Gyroscope ADC Word Length Sensitivity Scale Factor Sensitivity Scale Factor Tolerance Sensitivity Scale Factor Variation Over Temperature Nonlinearity Cross-Axis Sensitivity CONDITIONS GYROSCOPE SENSITIVITY GYRO_FS_SEL=0 GYRO_FS_SEL=1 GYRO_FS_SEL=2 GYRO_FS_SEL=3 GYRO_FS_SEL=0 GYRO_FS_SEL=1 GYRO_FS_SEL=2 GYRO_FS_SEL=3 25°C -40°C to +85°C Best fit straight line; 25°C MIN TYP UNITS NOTES ±250 ±500 ±1000 ±2000 16 131 65.5 32.8 16.4 ±1.5 ±3 dps dps dps dps bits LSB/(dps) LSB/(dps) LSB/(dps) LSB/(dps) % % 1 1 1 1 1 1 1 1 1 2 2 ±0.1 ±2 % % 2, 3 2, 3 dps dps/°C 2 2 dps/√Hz 2 2 1, 3 2, 3 562.5 kHz Hz ms Hz 1.125k Hz 9k Hz ZERO-RATE OUTPUT (ZRO) 25°C (Component-level) ±5 -40°C to +85°C ±0.05 GYROSCOPE NOISE PERFORMANCE (GYRO_FS_SEL=0) Noise Spectral Density Based on Noise Bandwidth = 0.015 10 Hz GYROSCOPE MECHANICAL FREQUENCIES 25 27 LOW PASS FILTER RESPONSE Programmable Range 5.7 GYROSCOPE START-UP TIME From Full-Chip Sleep mode 35 Low-Power Mode 4.4 Low-Noise Mode GYRO_FCHOICE=1; 4.4 OUTPUT DATA RATE GYRO_DLPFCFG=x Low-Noise Mode GYRO_FCHOICE=0; GYRO_DLPFCFG=x MAX Initial ZRO Tolerance ZRO Variation Over Temperature Table 1. Gyroscope Specifications NOTES: 1. 2. 3. Guaranteed by design. Derived from validation or characterization of parts, not guaranteed in production. Low-noise mode specification. Document Number: DS-000189 Revision: 1.3 Page 11 of 89 29 197 1 ICM-20948 3.2 ACCELEROMETER SPECIFICATIONS Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted. NOTES: All specifications apply to Low-Power Mode and Low-Noise Mode, unless noted otherwise PARAMETER Full-Scale Range ADC Word Length Sensitivity Scale Factor Initial Tolerance Sensitivity Change vs. Temperature Nonlinearity Cross-Axis Sensitivity Initial Tolerance Initial Tolerance Zero-G Level Change vs. Temperature Noise Spectral Density LOW PASS FILTER RESPONSE ACCELEROMETER STARTUP TIME OUTPUT DATA RATE CONDITIONS ACCELEROMETER SENSITIVITY ACCEL_FS=0 ACCEL_FS=1 ACCEL_FS=2 ACCEL_FS=3 Output in two’s complement format ACCEL_FS=0 ACCEL_FS=1 ACCEL_FS=2 ACCEL_FS=3 Component-level -40°C to +85°C ACCEL_FS=0 Best Fit Straight Line MIN ZERO-G OUTPUT Component-level, all axes Board-level, all axes 0°C to +85°C ACCELEROMETER NOISE PERFORMANCE Based on Noise Bandwidth = 10 Hz Programmable Range 5.7 From Sleep mode From Cold Start, 1 ms VDD ramp Low-Power Mode 0.27 Low-Noise Mode ACCEL_FCHOICE=1; 4.5 ACCEL_DLPFCFG=x Low-Noise Mode ACCEL_FCHOICE=0; ACCEL_DLPFCFG=x Table 2. Accelerometer Specifications NOTES: 1. 2. 3. Guaranteed by design. Derived from validation or characterization of parts, not guaranteed in production. Low-noise mode specification. Document Number: DS-000189 Revision: 1.3 Page 12 of 89 TYP MAX UNITS NOTES ±2 ±4 ±8 ±16 16 16,384 8,192 4,096 2,048 ±0.5 ±0.026 ±0.5 ±2 G G G G Bits LSB/g LSB/g LSB/g LSB/g % %/ºC % % 1 1 1 1 1 1 1 1 1 2 2 2, 3 2, 3 ±25 ±50 ±0.80 mg mg mg/°C 2 2 2 2 1, 3 2, 3 2, 3 562.5 µg/√Hz Hz ms ms Hz 1.125k Hz 4.5k Hz 230 246 20 30 1 ICM-20948 3.3 MAGNETOMETER SPECIFICATIONS Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted. PARAMETER CONDITIONS MIN TYP MAX UNITS NOTES MAGNETOMETER SENSITIVITY Full-Scale Range Output Resolution Sensitivity Scale Factor ±4900 16 0.15 µT bits µT / LSB 1 1 1 LSB 2 ZERO-FIELD OUTPUT Initial Calibration Tolerance -2000 +2000 OTHER Output Data Rate 100 Hz 1 Table 3. Magnetometer Specifications NOTES: 1. 2. 3.4 Guaranteed by design. Derived from validation or characterization of parts, not guaranteed in production. ELECTRICAL SPECIFICATIONS D.C. Electrical Characteristics Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted. PARAMETER CONDITIONS SUPPLY VOLTAGES MIN TYP MAX UNITS NOTES 1.71 1.71 1.8 1.8 3.6 1.95 V V 1 1 3.11 mA 2 Low-Power Mode, 102.3 Hz update rate, 1x averaging filter 1.23 mA 2 Low-Power Mode, 102.3 Hz update rate, 1x averaging filter 68.9 µA 2 90 µA 2 8 µA 2 °C 1 VDD VDDIO 9-Axis (DMP disabled) Gyroscope Only (DMP, Barometer & Accelerometer disabled) Accelerometer Only (DMP, Barometer & Gyroscope disabled) Magnetometer Only (DMP, Accelerometer & Gyroscope disabled) Full-Chip Sleep Mode Specified Temperature Range SUPPLY CURRENTS Low-Noise Mode; Compass in Continuous Mode 8 Hz update rate TEMPERATURE RANGE Performance parameters are not applicable beyond Specified Temperature Range -40 Table 4. D.C. Electrical Characteristics NOTES: 1. 2. Guaranteed by design. Derived from validation or characterization of parts, not guaranteed in production. Document Number: DS-000189 Revision: 1.3 Page 13 of 89 +85 ICM-20948 A.C. Electrical Characteristics Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted. PARAMETER CONDITIONS MIN TYP MAX UNITS NOTES 100 ms 1 85 °C LSB/°C LSB 1 100 100 ms ms 1 1 0.3*VDDIO V V pF 1 SUPPLIES Supply Ramp Time (TRAMP) Operating Range Sensitivity Room Temp Offset Supply Ramp Time (TRAMP) Start-up time for register read/write I2C ADDRESS VIH, High Level Input Voltage VIL, Low Level Input Voltage CI, Input Capacitance VOH, High Level Output Voltage VOL1, LOW-Level Output Voltage VOL.INT1, INT Low-Level Output Voltage Output Leakage Current tINT, INT Pulse Width VIL, LOW Level Input Voltage VIH, HIGH-Level Input Voltage Vhys, Hysteresis VOL, LOW-Level Output Voltage IOL, LOW-Level Output Current Output Leakage Current tof, Output Fall Time from VIHmax to VILmax VIL, LOW-Level Input Voltage VIH, HIGH-Level Input Voltage Vhys, Hysteresis VOL1, LOW-Level Output Voltage VOL3, LOW-Level Output Voltage IOL, LOW-Level Output Current Output Leakage Current tof, Output Fall Time from VIHmax to VILmax Document Number: DS-000189 Revision: 1.3 Monotonic ramp. Ramp 0.01 20 rate is 10% to 90% of the final value. TEMPERATURE SENSOR Ambient -40 Untrimmed 333.87 21°C 0 POWER-ON RESET Valid power-on RESET 0.01 20 From power-up 11 AD0 = 0 1101000 AD0 = 1 1101001 DIGITAL INPUTS (FSYNC, AD0, SCLK, SDI, CS) 0.7*VDDIO < 10 DIGITAL OUTPUT (SDO, INT) RLOAD=1 MΩ; 0.9*VDDIO RLOAD=1 MΩ; OPEN=1, 0.3 mA sink Current OPEN=1 LATCH_INT_EN=0 I2C I/O (SCL, SDA) -0.5V 0.7*VDDIO 0.1*VDDIO 0.1 100 50 0.3*VDDIO VDDIO + 0.5V Cb bus capacitance in pf 0 3 6 100 20+0.1Cb AUXILLIARY I/O (AUX_CL, AUX_DA) -0.5V 0.7* VDDIO 0.4 Cb bus capacitance in pF Page 14 of 89 V V V V mA mA nA 250 ns 0.3*VDDIO VDDIO + 0.5V V V 0.1* VDDIO VDDIO > 2V; 1 mA sink current VDDIO < 2V; 1 mA sink current VOL = 0.4V VOL = 0.6V 0 0.4 V V 0 0.2* VDDIO V 250 mA mA nA ns 20+0.1Cb 3 6 100 1 nA µs 0.1*VDDIO 3 mA sink current VOL=0.4V VOL=0.6V V V V 1 1 ICM-20948 PARAMETER Clock Frequency Initial Tolerance Frequency Variation over Temperature CONDITIONS MIN TYP INTERNAL CLOCK SOURCE Accelerometer Only Mode -5 Gyroscope or 6-Axis Mode WITHOUT Timebase -9 Correction Gyroscope or 6-Axis Mode -1 WITH Timebase Correction Accelerometer Only Mode -10 Gyroscope or 6-Axis Mode MAX UNITS NOTES +5 % +9 % 1 1 +1 +10 % % ±1 1 1 Table 5. A.C. Electrical Characteristics NOTES: 1. Derived from validation or characterization of parts, not guaranteed in production. Other Electrical Specifications Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted. PARAMETER SPI Operating Frequency, All Registers Read/Write I2C Operating Frequency CONDITIONS SERIAL INTERFACE MIN Low Speed Characterization High Speed Characterization All registers, Fast-mode All registers, Standard-mode Table 6. Other Electrical Specifications NOTES: 1. Derived from validation or characterization of parts, not guaranteed in production. Document Number: DS-000189 Revision: 1.3 Page 15 of 89 TYP 100 ±10% 7 ±10% MAX UNITS kHz 400 100 MHz kHz kHz NOTES ICM-20948 I2C TIMING CHARACTERIZATION 3.5 Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted. PARAMETERS CONDITIONS I2C TIMING fSCL, SCL Clock Frequency tHD.STA, (Repeated) START Condition Hold Time tLOW, SCL Low Period tHIGH, SCL High Period tSU.STA, Repeated START Condition Setup Time tHD.DAT, SDA Data Hold Time tSU.DAT, SDA Data Setup Time tr, SDA and SCL Rise Time tf, SDA and SCL Fall Time tSU.STO, STOP Condition Setup Time MIN TYPICAL MAX UNITS NOTES 400 0.6 kHz µs 1, 2 1, 2 1.3 0.6 0.6 µs µs µs 1, 2 1, 2 1, 2 0 100 20+0.1Cb 20+0.1Cb 0.6 µs ns ns ns µs 1, 2 1, 2 1, 2 1, 2 1, 2 µs 1, 2 pF µs µs 1, 2 1, 2 1, 2 I2C FAST-MODE Cb bus cap. from 10 to 400 pF Cb bus cap. from 10 to 400 pF tBUF, Bus Free Time Between STOP and START Condition Cb, Capacitive Load for each Bus Line tVD.DAT, Data Valid Time tVD.ACK, Data Valid Acknowledge Time 300 300 1.3 < 400 0.9 0.9 Table 7. I2C Timing Characteristics NOTES: 1. 2. Timing Characteristics apply to both Primary and Auxiliary I2C Bus. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets. tf SDA tSU.DAT tr 70% 30% 70% 30% continued below at tf SCL tr 70% 30% S tHD.STA tVD.DAT 70% 30% tHD.DAT 1/fSCL tLOW 1st clock cycle 9th clock cycle tHIGH tBUF SDA 70% 30% A tHD.STA tSU.STA SCL 70% 30% Sr tSU.STO tVD.ACK 9th clock cycle Figure 1. I2C Bus Timing Diagram Document Number: DS-000189 Revision: 1.3 Page 16 of 89 P S A ICM-20948 3.6 SPI TIMING CHARACTERIZATION Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted. PARAMETERS CONDITIONS MIN TYPICAL MAX UNITS 7 MHz NOTES SPI TIMING fSCLK, SCLK Clock Frequency tLOW, SCLK Low Period 64 ns tHIGH, SCLK High Period 64 ns tSU.CS, CS Setup Time 8 ns tHD.CS, CS Hold Time 500 ns tSU.SDI, SDI Setup Time 5 ns tHD.SDI, SDI Hold Time 7 ns tVD.SDO, SDO Valid Time Cload = 20 pF tHD.SDO, SDO Hold Time tDIS.SDO, SDO Output Disable Time Cload = 20 pF 59 ns 50 ns ns 6 Table 8. SPI Timing Characteristics (7 MHz) NOTES: 1. CS Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets 70% 30% tSU;CS SCLK tHIGH 70% 30% tSU;SDI SDI 70% 30% tHD;SDI tLOW LSB IN MSB IN tVD;SDO SDO tHD;CS 1/fCLK MSB OUT 70% 30% Figure 2. SPI Bus Timing Diagram Document Number: DS-000189 Revision: 1.3 Page 17 of 89 tDIS;SDO tHD;SDO LSB OUT ICM-20948 3.7 ABSOLUTE MAXIMUM RATINGS Stress above those listed as “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability. PARAMETER Supply Voltage, VDD Supply Voltage, VDDIO REGOUT Input Voltage Level (AUX_DA, AD0, FSYNC, INT, SCL, SDA) Acceleration (Any Axis, unpowered) Operating Temperature Range Storage Temperature Range Electrostatic Discharge (ESD) Protection Latch-up Table 9. Absolute Maximum Ratings Document Number: DS-000189 Revision: 1.3 Page 18 of 89 RATING -0.5V to +4V -0.3V to +2.5V -0.5V to 2V -0.5V to VDD + 0.5V 20,000g for 0.2 ms -40°C to +105°C -40°C to +125°C 2kV (HBM); 200V (MM) JEDEC Class II (2),125°C ±100 mA ICM-20948 4 APPLICATIONS INFORMATION 4.1 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION PIN NUMBER 7 8 9 10 11 12 13 18 19 20 21 22 23 24 1 – 6, 14 - 17 PIN NAME AUX_CL VDDIO AD0 / SDO REGOUT FSYNC INT1 VDD GND RESV RESV AUX_DA nCS SCL / SCLK SDA / SDI NC PIN DESCRIPTION I2C Master serial clock, for connecting to external sensors Digital I/O supply voltage I2C Slave Address LSB (AD0); SPI serial data output (SDO) Regulator filter capacitor connection Frame synchronization digital input. Connect to GND if unused Interrupt 1 Power supply voltage Power supply ground Reserved. Do not connect. Reserved. Connect to GND. I2C master serial data, for connecting to external sensors Chip select (SPI mode only) I2C serial clock (SCL); SPI serial clock (SCLK) I2C serial data (SDA); SPI serial data input (SDI) Do not connect Table 10. Signal Descriptions SDA / SDI SCL / SCLK nCS AUX_DA RESV RESV 24 23 22 21 20 19 NOTE: Power up with SCL/SCLK and nCS pins held low is not a supported use case. In case this power up approach is used, software reset is required using the PWR_MGMT_1 register, prior to initialization. NC 1 18 GND NC 2 17 NC NC 3 NC 4 15 NC NC 5 14 NC NC 6 13 VDD 16 NC 7 8 9 10 11 12 AUX_CL VDDIO SDO / AD0 REGOUT FSYNC INT1 ICM-20948 Figure 3. Pin out Diagram for ICM-20948 3 mm x 3 mm x 1 mm QFN Document Number: DS-000189 Revision: 1.3 Page 19 of 89 ICM-20948 TYPICAL OPERATING CIRCUIT GND NC 1 18 NC 2 17 NC RESV 19 RESV 20 AUX_DA 21 SCL / SCLK 23 22 SDA / SDI 24 RESV RESV 20 19 AUX_DA 22 21 SCL / SCLK SDA / SDI nCS 23 24 SCLK SDI nCS nCS VDDIO SCL SDA GND NC 1 18 NC 2 17 NC 16 NC NC 3 16 NC NC 3 NC 4 15 NC NC 4 15 NC NC 5 14 NC NC 5 14 NC NC 6 13 VDD NC 6 13 VDD 12 11 1.71 – 3.6VDC C2, 0.1 µF INT1 FSYNC 9 8 REGOUT 10 1.71 – 1.95VDC SDO / AD0 7 C2, 0.1 µF C1, 0.1 µF C3, 0.1 µ F ICM-20948 AUX_CL 11 12 1.71 – 3.6VDC INT1 FSYNC 9 7 REGOUT 10 SDO / AD0 VDDIO AUX_CL 1.71 – 1.95VDC 8 ICM-20948 VDDIO 4.2 C1, 0.1 µF C3, 0.1 µ F SDO AD0 (a) (b) Figure 4. ICM-20948 Application Schematic (a) I2C operation (b) SPI operation Note that the INT pin should be connected to a GPIO pin on the system processor that is capable of waking the system processor from suspend mode. I2C lines are open drain and pullup resistors (e.g. 10 kΩ) are required. 4.3 BILL OF MATERIALS FOR EXTERNAL COMPONENTS COMPONENT LABEL SPECIFICATION QUANTITY Regulator Filter Capacitor C1 Ceramic, X7R, 0.1 µF ±10%, 2V 1 VDD Bypass Capacitor C2 Ceramic, X7R, 0.1 µF ±10%, 4V 1 VDDIO Bypass Capacitor C3 Ceramic, X7R, 0.1 µF ±10%, 4V 1 Table 11. Bill of Materials 4.4 EXPOSED DIE PAD PRECAUTIONS InvenSense products have very low active and standby current consumption. The exposed die pad is not required for heat sinking, and should not be soldered to the PCB. Failure to adhere to this rule can induce performance changes due to package thermo-mechanical stress. There is no electrical connection between the pad and the CMOS. Document Number: DS-000189 Revision: 1.3 Page 20 of 89 ICM-20948 4.5 BLOCK DIAGRAM ICM-20948 Self test X Accel ADC Self test Y Accel ADC INT1 Interrupt Status Register nCS Slave I2C and SPI Serial Interface FIFO AD0 / SDO SCL / SCLK SDA / SDI Z Accel Self test X Gyro Self test Y Gyro Self test Z Gyro ADC ADC Signal Conditioning Self test User & Config Registers Serial Interface Bypass Mux Master I2C Serial Interface Sensor Registers Digital Motion Processor (DMP) ADC ADC ADC ADC ADC X Compass Y Compass Z Compass Bias & LDOs Charge Pump VDD GND REGOUT Figure 5. ICM-20948 Block Diagram 4.6 OVERVIEW The ICM-20948 is comprised of the following key blocks and functions: • • • • • • • • • • • • • • • • Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning Three-axis MEMS magnetometer sensor with 16-bit ADCs and signal conditioning Digital Motion Processor (DMP) engine Primary I2C and SPI serial communications interfaces Auxiliary I2C serial interface Gyroscope, Accelerometer, and Magnetometer Self-Test Clocking Sensor Data Registers FIFO FSYNC Interrupts Digital-Output Temperature Sensor Bias and LDOs Charge Pump Power Modes Document Number: DS-000189 Revision: 1.3 AUX_DA FSYNC ADC Signal Conditioning Temp Sensor AUX_CL Page 21 of 89 ICM-20948 4.7 THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING The ICM-20948 consists of three independent vibratory MEMS rate gyroscopes, which detect rotation about the X-, Y-, and Z-Axes. When the gyros are rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage is digitized using individual on-chip 16-bit Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro sensors may be digitally programmed to ±250, ±500, ±1000, or ±2000 degrees per second (dps). 4.8 THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING The ICM-20948’s 3-Axis accelerometer uses separate proof masses for each axis. Acceleration along a particular axis induces displacement on the corresponding proof mass, and capacitive sensors detect the displacement differentially. The ICM-20948’s architecture reduces the accelerometers’ susceptibility to fabrication variations as well as to thermal drift. When the device is placed on a flat surface, it will measure 0g on the X- and Y-axes and +1g on the Z-axis. The accelerometers’ scale factor is calibrated at the factory and is nominally independent of supply voltage. Each sensor has a dedicated sigma-delta ADC for providing digital outputs. The full scale range of the digital output can be adjusted to ±2g, ±4g, ±8g, or ±16g. 4.9 THREE-AXIS MEMS MAGNETOMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING The 3-axis magnetometer uses highly sensitive Hall sensor technology. The magnetometer portion of the IC incorporates magnetic sensors for detecting terrestrial magnetism in the X-, Y-, and Z-Axes, a sensor driving circuit, a signal amplifier chain, and an arithmetic circuit for processing the signal from each sensor. Each ADC has a 16-bit resolution and a full scale range of ±4900 µT. 4.10 DIGITAL MOTION PROCESSOR The embedded Digital Motion Processor (DMP) within the ICM-20948 offloads computation of motion processing algorithms from the host processor. The DMP acquires data from accelerometers, gyroscopes, and additional third party sensors such as magnetometers, and processes the data. The resulting data can be read from the FIFO. The DMP has access to the external pins, which can be used for generating interrupts. The purpose of the DMP is to offload both timing requirements and processing power from the host processor. Typically, motion processing algorithms should be run at a high rate, often around 200 Hz, in order to provide accurate results with low latency. This is required even if the application updates at a much lower rate; for example, a low power user interface may update as slowly as 5 Hz, but the motion processing should still run at 200 Hz. The DMP can be used to minimize power, simplify timing, simplify the software architecture, and save valuable MIPS on the host processor for use in applications. 4.11 PRIMARY I2C AND SPI SERIAL COMMUNICATIONS INTERFACES The ICM-20948 communicates to a system processor using either a SPI or an I2C serial interface. The ICM-20948 always acts as a slave when communicating to the system processor. The LSB of the of the I2C slave address is set by pin 1 (AD0). ICM-20948 Solution Using I2C Interface In Figure 6, the system processor is an I2C master to the ICM-20948. In addition, the ICM-20948 is an I2C master to the optional external sensor. The ICM-20948 has limited capabilities as an I2C Master, and depends on the system processor to manage the initial configuration of any auxiliary sensors. The ICM-20948 has an interface bypass multiplexer, which connects the system processor I2C bus pins 23 and 24 (SCL and SDA) directly to the auxiliary sensor I2C bus pins 7 and 21 (AUX_CL and AUX_DA). Document Number: DS-000189 Revision: 1.3 Page 22 of 89 ICM-20948 Once the auxiliary sensors have been configured by the system processor, the interface bypass multiplexer should be disabled so that the ICM-20948 auxiliary I2C master can take control of the sensor I2C bus and gather data from the auxiliary sensors. Interrupt Status Register I2C Processor Bus: for reading all sensor data from MPU and for configuring external sensors (i.e. compass in this example) INT1 ICM-20948 AD0 Slave I2C or SPI Serial Interface VDD or GND SCL SCL SDA/SDI SDA System Processor FIFO Sensor I2C Bus: for configuring and reading from external sensors User & Config Registers Optional Sensor Master I2C Serial Interface Sensor Register Interface Bypass Mux AUX_CL SCL AUX_DA SDA External Sensor Factory Calibration Digital Motion Processor (DMP) Interface bypass mux allows direct configuration of compass by system processor Bias & LDOs VDD GND REGOUT Figure 6. ICM-20948 Solution Using I2C Interface ICM-20948 Solution Using SPI Interface In Figure 7, the system processor is an SPI master to the ICM-20948. Pins 9, 22, 23, and 24 are used to support the SDO, nCS, SCLK, and SDI signals for SPI communications. Because these SPI pins are shared with the I2C slave pins (9, 23 and 24), the system processor cannot access the auxiliary I2C bus through the interface bypass multiplexer, which connects the processor I2C interface pins to the sensor I2C interface pins. Since the ICM-20948 has limited capabilities as an I2C Master, and depends on the system processor to manage the initial configuration of any auxiliary sensors, another method must be used for programming the sensors on the auxiliary sensor I2C bus pins 7 and 21 (AUX_CL and AUX_DA). When using SPI communications between the ICM-20948 and the system processor, configuration of devices on the auxiliary I2C sensor bus can be achieved by using I2C Slaves 0-4 to perform read and write transactions on any device and register on the auxiliary I2C bus. The I2C Slave 4 interface can be used to perform only single byte read and write transactions. Once the external sensors have been configured, the ICM-20948 can perform single or multi-byte reads using the sensor I2C bus. The read results from the Slave 0-3 controllers can be written to the FIFO buffer as well as to the external sensor registers. Document Number: DS-000189 Revision: 1.3 Page 23 of 89 ICM-20948 Processor SPI Bus: for reading all data from MPU and for configuring MPU and external sensors Interrupt Status Register INT1 nCS nCS ICM-20948 SDO 2 Slave I C or SPI Serial Interface SDI SCLK SCLK SDI System Processor SDO FIFO Sensor I2C Bus: for configuring and reading data from external sensors Config Register Optional Sensor Master I2C Serial Interface Sensor Register Interface Bypass Mux AUX_CL SCL AUX_DA SDA External Sensor Factory Calibration Digital Motion Processor (DMP) I2C Master performs read and write transactions on Sensor I2C bus. Bias & LDOs VDD GND REGOUT Figure 7. ICM-20948 Solution Using SPI Interface 4.12 AUXILIARY I2C SERIAL INTERFACE The ICM-20948 has an auxiliary I2C bus for communicating to external sensors. This bus has two operating modes: • • I2C Master Mode: The ICM-20948 acts as a master to any external sensors connected to the auxiliary I2C bus Pass-Through Mode: The ICM-20948 directly connects the primary and auxiliary I2C buses together, allowing the system processor to directly communicate with any external sensors. Auxiliary I2C Bus Modes of Operation: • • I2C Master Mode: Allows the ICM-20948 to directly access the data registers of external sensors. In this mode, the ICM-20948 directly obtains data from auxiliary sensors without intervention from the system applications processor. The I2C Master can be configured to read up to 24 bytes from up to 4 auxiliary sensors. A fifth sensor can be configured to work single byte read/write mode. Pass-Through Mode: Allows an external system processor to act as master and directly communicate to the external sensors connected to the auxiliary I2C bus pins (AUX_DA and AUX_CL). In this mode, the auxiliary I2C bus control logic of the ICM-20948 is disabled, and the auxiliary I2C pins AUX_CL and AUX_DA (pins 7 and 21) are connected to the main I2C bus (Pins 23 and 24) through analog switches internally. Pass-Through mode is useful for configuring the external sensors. 4.13 SELF-TEST Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can be activated by means of the gyroscope and accelerometer self-test registers. When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is used to observe the self-test response. The self-test response is defined as follows: SELF-TEST RESPONSE = SENSOR OUTPUT WITH SELF-TEST ENABLED – SENSOR OUTPUT WITHOUT SELF-TEST ENABLED Document Number: DS-000189 Revision: 1.3 Page 24 of 89 ICM-20948 The self-test response for each gyroscope axis is defined in the gyroscope specification table, while that for each accelerometer axis is defined in the accelerometer specification table. When the value of the self-test response is within the specified min/max limits, the part has passed self-test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test. It is recommended to use InvenSense MotionApps software for executing self-test. 4.14 CLOCKING The internal system clock sources include: (1) an internal relaxation oscillator, and (2) a PLL with MEMS gyroscope oscillator as the reference clock. With the recommended clock selection setting (CLKSEL = 1), the best clock source for optimum sensor performance and power consumption will be automatically selected based on the power mode. Specifically, the internal relaxation oscillator will be selected when operating in accelerometer only mode, while the PLL will be selected whenever gyroscope is on, which includes gyroscope and 6-axis modes. As clock accuracy is critical to the preciseness of distance and angle calculations performed by DMP, it should be noted that the internal relaxation oscillator and PLL show different performances in some aspects. The internal relaxation oscillator is trimmed to have a consistent operating frequency at room temperature, while the PLL clock frequency varies from part to part. The PLL frequency deviation from the nominal value in percentage is captured in register TIMEBASE_CORRECTION_PLL (detailed in section 12.5), and users can factor it in during distance and angle calculations to not sacrifice accuracy. Other than that, PLL has better frequency stability and lower frequency variation over temperature than the internal relaxation oscillator. 4.15 SENSOR DATA REGISTERS The sensor data registers contain the latest gyro, accelerometer, auxiliary sensor, and temperature measurement data. They are read-only registers, and are accessed via the serial interface. Data from these registers may be read anytime. 4.16 FIFO The ICM-20948 contains a FIFO of size 512 bytes (FIFO size will vary depending on DMP feature-set) that is accessible via the Serial Interface. The FIFO configuration register determines which data is written into the FIFO. Possible choices include gyro data, accelerometer data, temperature readings, auxiliary sensor readings, and FSYNC input. A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO. The FIFO register supports burst reads. The interrupt function may be used to determine when new data is available. For further information regarding the FIFO, please refer to the Section 7. 4.17 FSYNC The FSYNC pin can be used from an external interrupt source to wake up the device from sleep. It is particularly useful in EIS applications to synchronize the gyroscope ODR with external inputs from an imaging sensor. Connecting the VSYNC or HSYNC pin of the image sensor subsystem to FSYNC on ICM-20948 allows timing synchronization between the two otherwise unconnected subsystems. An FSYNC_ODR delay time register is used to capture the delay between an FSYNC pulse and the very next gyroscope data ready pulse. 4.18 INTERRUPTS Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the INT pin configuration, the interrupt latching and clearing method, and triggers for the interrupt. Section 5 provides a summary of interrupt sources. The interrupt status can be read from the Interrupt Status register. For further information regarding interrupts, please refer to Section 7. Document Number: DS-000189 Revision: 1.3 Page 25 of 89 ICM-20948 4.19 DIGITAL-OUTPUT TEMPERATURE SENSOR An on-chip temperature sensor and ADC are used to measure the ICM-20948 die temperature. The readings from the ADC can be read from the FIFO or the Sensor Data registers. 4.20 BIAS AND LDOS The bias and LDO section generates the internal supply and the reference voltages and currents required by the ICM20948. Its two inputs are an unregulated VDD and a VDDIO logic reference supply voltage. The LDO output is bypassed by a capacitor at REGOUT. For further details on the capacitor, please refer to the Bill of Materials for External Components. 4.21 CHARGE PUMP An on-chip charge pump generates the high voltage required for the MEMS oscillators. 4.22 POWER MODES Table 12 lists the user-accessible power modes for ICM-20948. MODE 1 2 3 4 5 6 7 8 NAME Sleep Mode Low-Power Accelerometer Mode Low-Noise Accelerometer Mode Gyroscope Mode Magnetometer Mode Accel + Gyro Mode Accel + Magnetometer Mode 9-Axis Mode GYRO Off Off Off On Off On Off On ACCEL Off Duty-Cycled On Off Off On On On Table 12. Power Modes for ICM-20948 Document Number: DS-000189 Revision: 1.3 Page 26 of 89 MAGNETOMETER Off Off Off Off On Off On On DMP Off On or Off On or Off On or Off On or Off On or Off On or Off On or Off ICM-20948 5 PROGRAMMABLE INTERRUPTS The ICM-20948 has a programmable interrupt system which can generate an interrupt signal on the INT pin. Status flags indicate the source of an interrupt. Interrupt sources may be enabled and disabled individually. Table 13 lists the interrupt sources. INTERRUPT SOURCE DMP Interrupt Wake on Motion Interrupt PLL RDY Interrupt I2C Master Interrupt Raw Data Ready Interrupt FIFO Overflow Interrupt FIFO Watermark Interrupt Table 13. Interrupt Sources Document Number: DS-000189 Revision: 1.3 Page 27 of 89 ICM-20948 6 DIGITAL INTERFACE 6.1 I2C AND SPI SERIAL INTERFACES The internal registers and memory of the ICM-20948 can be accessed using either I2C at 400 kHz or SPI at 7 MHz. SPI operates in four-wire mode. PIN NUMBER PIN NAME 9 AD0 / SDO I2C Slave Address LSB (AD0); SPI serial data output (SDO) PIN DESCRIPTION 22 23 24 nCS SCL / SCLK SDA / SDI Chip select (SPI mode only) I2C serial clock (SCL); SPI serial clock (SCLK) I2C serial data (SDA); SPI serial data input (SDI) Table 14. Serial Interface NOTE: To prevent switching into mode when using SPI, the I2C interface should be disabled by setting the I2C_IF_DIS configuration bit. Setting this bit should be performed immediately after waiting for the time specified by the “Start-Up Time for Register Read/Write” in Section 6.3. I2C For further information regarding the I2C_IF_DIS bit, please refer to Section 7. 6.2 I2C INTERFACE I2C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bi-directional. In a generalized I2C interface implementation, attached devices can be a master or a slave. The master device puts the slave address on the bus, and the slave device with the matching address acknowledges the master. The ICM-20948 always operates as a slave device when communicating to the system processor, which thus acts as the master. SDA and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is 400 kHz. The slave address of the ICM-20948 is b110100X which is 7 bits long. The LSB bit of the 7-bit address is determined by the logic level on pin AD0. This allows two ICM-20948s to be connected to the same I2C bus. When used in this configuration, the address of the one of the devices should be b1101000 (pin AD0 is logic low) and the address of the other should be b1101001 (pin AD0 is logic high). 6.3 I2C COMMUNICATIONS PROTOCOL START (S) and STOP (P) Conditions Communication on the I2C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see figure below). Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition. SDA SCL S P START condition STOP condition Figure 8. START and STOP Conditions Document Number: DS-000189 Revision: 1.3 Page 28 of 89 ICM-20948 Data Format / Acknowledge I2C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse. If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line (refer to the following figure). DATA OUTPUT BY TRANSMITTER (SDA) not acknowledge DATA OUTPUT BY RECEIVER (SDA) acknowledge SCL FROM MASTER 1 2 8 9 clock pulse for acknowledgement START condition Figure 9. Acknowledge on the I2C Bus Communications After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line. However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take place when SCL is low, with the exception of start and stop conditions. SDA SCL 1–7 8 9 1–7 8 9 1–7 8 9 S START ADDRESS condition P R/W ACK DATA ACK Figure 10. Complete I2C Data Transfer Document Number: DS-000189 Revision: 1.3 Page 29 of 89 DATA ACK STOP condition ICM-20948 To write the internal ICM-20948 registers, the master transmits the start condition (S), followed by the I2C address and the write bit (0). At the 9th clock cycle (when the clock is high), the ICM-20948 acknowledges the transfer. Then the master puts the register address (RA) on the bus. After the ICM-20948 acknowledges the reception of the register address, the master puts the register data onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the ICM-20948 automatically increments the register address and loads the data to the appropriate register. The following figures show single and two-byte write sequences. Single-Byte Write Sequence Master S AD+W RA Slave ACK DATA ACK P ACK Burst Write Sequence Master S AD+W RA Slave ACK DATA ACK DATA ACK P ACK To read the internal ICM-20948 registers, the master sends a start condition, followed by the I2C address and a write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the ICM-20948, the master transmits a start signal followed by the slave address and read bit. As a result, the ICM-20948 sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high at the 9th clock cycle. The following figures show single and two-byte read sequences. Single-Byte Read Sequence Master S AD+W Slave RA ACK S AD+R ACK NACK ACK P DATA Burst Read Sequence Master S AD+W Slave 6.4 RA ACK S AD+R ACK ACK ACK DATA NACK DATA I2C TERMS SIGNAL S AD W R ACK NACK RA DATA P DESCRIPTION Start Condition: SDA goes from high to low while SCL is high Slave I2C address Write bit (0) Read bit (1) Acknowledge: SDA line is low while the SCL line is high at the 9th clock cycle Not-Acknowledge: SDA line stays high at the 9th clock cycle ICM-20948 internal register address Transmit or received data Stop condition: SDA going from low to high while SCL is high Table 15. I2C Terms Document Number: DS-000189 Revision: 1.3 Page 30 of 89 P ICM-20948 6.5 SPI INTERFACE SPI is a 4-wire synchronous serial interface that uses two control lines and two data lines. The ICM-20948 always operates as a Slave device during standard Master-Slave SPI operation. With respect to the Master, the Serial Clock output (SCLK), the Serial Data Output (SDO) and the Serial Data Input (SDI) are shared among the Slave devices. Each SPI slave device requires its own Chip Select (CS) line from the master. CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line is active at a time, ensuring that only one slave is selected at any given time. The CS lines of the non-selected slave devices are held high, causing their SDO lines to remain in a high-impedance (high-z) state so that they do not interfere with any active devices. SPI Operational Features 1. 2. 3. 4. 5. Data is delivered MSB first and LSB last Data is latched on the rising edge of SCLK Data should be transitioned on the falling edge of SCLK The maximum frequency of SCLK is 7MHz SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit and indicates the Read (1) or Write (0) operation. The following 7 bits contain the Register Address. In cases of multiple-byte Read/Writes, data is two or more bytes: SPI Address format MSB R/W LSB A6 A5 A4 A3 A2 A1 A0 D5 D4 D3 D2 D1 D0 SPI Data format MSB D7 6. LSB D6 Supports Single or Burst Read/Writes. SCLK SDI SDO SPI Master /CS1 SPI Slave 1 /CS /CS2 SCLK SDI SDO /CS SPI Slave 2 Figure 11. Typical SPI Master / Slave Configuration Document Number: DS-000189 Revision: 1.3 Page 31 of 89 ICM-20948 7 REGISTER MAP FOR GYROSCOPE AND ACCELEROMETER The following table lists the register map for the ICM-20948, for user banks 0, 1, 2, 3. 7.1 ADDR (HEX) USER BANK 0 REGISTER MAP ADDR (DEC.) REGISTER NAME SERIAL I/F BIT7 BIT6 00 0 WHO_AM_I R WHO_AM_I[7:0] 03 3 USER_CTRL R/W DMP_EN BIT5 BIT4 BIT3 FIFO_EN I2C_MST_EN I2C_IF_DIS DMP_RST I2C_MST_CY CLE ACCEL_CYCLE GYRO_CYCLE - SLEEP LP_EN - TEMP_DIS 05 5 LP_CONFIG R/W 06 6 PWR_MGMT_1 R/W DEVICE_RESE T 07 7 PWR_MGMT_2 R/W - DISABLE_ACCEL INT1_LATCH_ INT_EN 0F 15 INT_PIN_CFG R/W INT1_ACTL INT1_OPEN 10 16 INT_ENABLE R/W REG_WOF_E N - 11 17 INT_ENABLE_1 R/W - 12 18 INT_ENABLE_2 R/W - 13 19 INT_ENABLE_3 R/W - SRAM_RST BIT1 BIT0 I2C_MST_RST - CLKSEL[2:0] DISABLE_GYRO INT_ANYRD_ 2CLEAR ACTL_FSYNC FSYNC_INT_ MODE_EN BYPASS_EN - WOM_INT_E N PLL_RDY_EN DMP_INT1_E N I2C_MST_INT _EN RAW_DATA_ 0_RDY_EN FIFO_OVERFLOW_EN[4:0] FIFO_WM_EN[4:0] 17 23 I2C_MST_STATUS R/C PASS_THROU GH 19 25 INT_STATUS R/C - 1A 26 INT_STATUS_1 R/C - 1B 27 INT_STATUS_2 R/C - FIFO_OVERFLOW_INT[4:0] 1C 28 INT_STATUS_3 R/C - FIFO_WM_INT[4:0] 28 40 DELAY_TIMEH R DELAY_TIMEH[7:0] 29 41 DELAY_TIMEL R DELAY_TIMEL[7:0] 2D 45 ACCEL_XOUT_H R ACCEL_XOUT_H[7:0] 2E 46 ACCEL_XOUT_L R ACCEL_XOUT_L[7:0] 2F 47 ACCEL_YOUT_H R ACCEL_YOUT_H[7:0] 30 48 ACCEL_YOUT_L R ACCEL_YOUT_L[7:0] 31 49 ACCEL_ZOUT_H R ACCEL_ZOUT_H[7:0] 32 50 ACCEL_ZOUT_L R ACCEL_ZOUT_L[7:0] 33 51 GYRO_XOUT_H R GYRO_XOUT_H[7:0] 34 52 GYRO_XOUT_L R GYRO_XOUT_L[7:0] 35 53 GYRO_YOUT_H R GYRO_YOUT_H[7:0] 36 54 GYRO_YOUT_L R GYRO_YOUT_L[7:0] 37 55 GYRO_ZOUT_H R GYRO_ZOUT_H[7:0] 38 56 GYRO_ZOUT_L R GYRO_ZOUT_L[7:0] 39 57 TEMP_OUT_H R TEMP_OUT_H[7:0] 3A 58 TEMP_OUT_L R TEMP_OUT_L[7:0] 3B 59 EXT_SLV_SENS_DATA_00 R EXT_SLV_SENS_DATA_00[7:0] 3C 60 EXT_SLV_SENS_DATA_01 R EXT_SLV_SENS_DATA_01[7:0] 3D 61 EXT_SLV_SENS_DATA_02 R EXT_SLV_SENS_DATA_02[7:0] 3E 62 EXT_SLV_SENS_DATA_03 R EXT_SLV_SENS_DATA_03[7:0] 3F 63 EXT_SLV_SENS_DATA_04 R EXT_SLV_SENS_DATA_04[7:0] 40 64 EXT_SLV_SENS_DATA_05 R EXT_SLV_SENS_DATA_05[7:0] 41 65 EXT_SLV_SENS_DATA_06 R EXT_SLV_SENS_DATA_06[7:0] 42 66 EXT_SLV_SENS_DATA_07 R EXT_SLV_SENS_DATA_07[7:0] 43 67 EXT_SLV_SENS_DATA_08 R EXT_SLV_SENS_DATA_08[7:0] Document Number: DS-000189 Revision: 1.3 BIT2 I2C_SLV4_DO NE I2C_LOST_AR B I2C_SLV4_NA CK I2C_SLV3_NA CK I2C_SLV2_NA CK I2C_SLV1_NA CK I2C_SLV0_NA CK WOM_INT PLL_RDY_INT DMP_INT1 I2C_MST_INT RAW_DATA_ 0_RDY_INT Page 32 of 89 ICM-20948 ADDR (HEX) ADDR (DEC.) REGISTER NAME SERIAL I/F BIT7 BIT6 BIT5 BIT4 44 68 EXT_SLV_SENS_DATA_09 R EXT_SLV_SENS_DATA_09[7:0] 45 69 EXT_SLV_SENS_DATA_10 R EXT_SLV_SENS_DATA_10[7:0] 46 70 EXT_SLV_SENS_DATA_11 R EXT_SLV_SENS_DATA_11[7:0] 47 71 EXT_SLV_SENS_DATA_12 R EXT_SLV_SENS_DATA_12[7:0] 48 72 EXT_SLV_SENS_DATA_13 R EXT_SLV_SENS_DATA_13[7:0] 49 73 EXT_SLV_SENS_DATA_14 R EXT_SLV_SENS_DATA_14[7:0] 4A 74 EXT_SLV_SENS_DATA_15 R EXT_SLV_SENS_DATA_15[7:0] 4B 75 EXT_SLV_SENS_DATA_16 R EXT_SLV_SENS_DATA_16[7:0] 4C 76 EXT_SLV_SENS_DATA_17 R EXT_SLV_SENS_DATA_17[7:0] 4D 77 EXT_SLV_SENS_DATA_18 R EXT_SLV_SENS_DATA_18[7:0] 4E 78 EXT_SLV_SENS_DATA_19 R EXT_SLV_SENS_DATA_19[7:0] 4F 79 EXT_SLV_SENS_DATA_20 R EXT_SLV_SENS_DATA_20[7:0] 50 80 EXT_SLV_SENS_DATA_21 R EXT_SLV_SENS_DATA_21[7:0] 51 81 EXT_SLV_SENS_DATA_22 R EXT_SLV_SENS_DATA_22[7:0] 52 82 EXT_SLV_SENS_DATA_23 R EXT_SLV_SENS_DATA_23[7:0] 66 102 FIFO_EN_1 R/W - 67 103 FIFO_EN_2 R/W - ACCEL_FIFO_ EN 68 104 FIFO_RST R/W - FIFO_RESET[4:0] 69 105 FIFO_MODE R/W - FIFO_MODE[4:0] 70 112 FIFO_COUNTH R - FIFO_CNT[12:8] 71 113 FIFO_COUNTL R FIFO_CNT[7:0] 72 114 FIFO_R_W R/W FIFO_R_W[7:0] 74 116 DATA_RDY_STATUS R/C WOF_STATU S 76 118 FIFO_CFG R/W - 7F 127 REG_BANK_SEL R/W - 7.2 - BIT3 BIT2 BIT1 BIT0 SLV_3_FIFO_ EN SLV_2_FIFO_ EN SLV_1_FIFO_ EN SLV_0_FIFO_ EN GYRO_Z_FIF O_EN GYRO_Y_FIF O_EN GYRO_X_FIF O_EN TEMP_FIFO_ EN RAW_DATA_RDY[3:0] FIFO_CFG USER_BANK[1:0] - USER BANK 1 REGISTER MAP Addr (Hex) Addr (Dec.) Register Name Serial I/F 02 2 SELF_TEST_X_GYRO R/W XG_ST_DATA[7:0] 03 3 SELF_TEST_Y_GYRO R/W YG_ST_DATA[7:0] 04 4 SELF_TEST_Z_GYRO R/W ZG_ST_DATA[7:0] 0E 14 SELF_TEST_X_ACCEL R/W XA_ST_DATA[7:0] 0F 15 SELF_TEST_Y_ACCEL R/W YA_ST_DATA[7:0] 10 16 SELF_TEST_Z_ACCEL R/W ZA_ST_DATA[7:0] 14 20 XA_OFFS_H R/W XA_OFFS[14:7] 15 21 XA_OFFS_L R/W 17 23 YA_OFFS_H R/W 18 24 YA_OFFS_L R/W 1A 26 ZA_OFFS_H R/W 1B 27 ZA_OFFS_L R/W Document Number: DS-000189 Revision: 1.3 Bit7 Bit6 Bit5 Bit4 Bit3 XA_OFFS[6:0] Bit2 Bit1 Bit0 - YA_OFFS[14:7] YA_OFFS[6:0] - ZA_OFFS[14:7] ZA_OFFS[6:0] Page 33 of 89 - ICM-20948 Addr (Hex) Addr (Dec.) Register Name Serial I/F 28 40 TIMEBASE_CORRECTIO N_PLL R/W 7F 127 REG_BANK_SEL R/W 7.3 ADDR (HEX) Bit7 Bit6 Bit5 Bit4 - USER_BANK[1:0] Bit1 Bit0 BIT1 BIT0 - USER BANK 2 REGISTER MAP ADDR (DEC.) REGISTER NAME SERIAL I/F BIT7 BIT6 BIT5 BIT4 0 GYRO_SMPLRT_DIV R/W GYRO_SMPLRT_DIV[7:0] 01 1 GYRO_CONFIG_1 R/W - GYRO_DLPFCFG[2:0] 02 2 GYRO_CONFIG_2 R/W - XGYRO_CTEN 03 3 XG_OFFS_USRH R/W X_OFFS_USER[15:8] 04 4 XG_OFFS_USRL R/W X_OFFS_USER[7:0] 05 5 YG_OFFS_USRH R/W Y_OFFS_USER[15:8] 06 6 YG_OFFS_USRL R/W Y_OFFS_USER[7:0] 07 7 ZG_OFFS_USRH R/W Z_OFFS_USER[15:8] 08 8 ZG_OFFS_USRL R/W Z_OFFS_USER[7:0] 09 9 ODR_ALIGN_EN R/W - 10 16 ACCEL_SMPLRT_DIV_1 R/W - 11 17 ACCEL_SMPLRT_DIV_2 R/W ACCEL_SMPLRT_DIV[7:0] 12 18 ACCEL_INTEL_CTRL R/W - 13 19 ACCEL_WOM_THR R/W WOM_THRESHOLD[7:0] 14 20 ACCEL_CONFIG R/W - 15 21 ACCEL_CONFIG_2 R/W - BIT2 GYRO_FCHOI CE GYRO_FS_SEL[1:0] YGYRO_CTEN ZGYRO_CTEN GYRO_AVGCFG[2:0] ACCEL_SMPLRT_DIV[11:8] ACCEL_INTEL _EN ACCEL_DLPFCFG[2:0] 52 82 FSYNC_CONFIG R/W 53 83 TEMP_CONFIG R/W - 54 84 MOD_CTRL_USR R/W - 7F 127 REG_BANK_SEL R/W - 7.4 BIT3 ODR_ALIGN_ EN DELAY_TIME _EN 00 Bit2 TBC_PLL[7:0] 00 ADDR (HEX) Bit3 WOF_DEGLIT CH_EN - ACCEL_FCHOI CE ACCEL_FS_SEL[1:0] AX_ST_EN_R EG AY_ST_EN_R EG AZ_ST_EN_R EG WOF_EDGE_I NT EXT_SYNC_SET[3:0] ACCEL_INTEL _MODE_INT DEC3_CFG[1:0] TEMP_DLPFCFG[2:0] REG_LP_DMP _EN USER_BANK[1:0] - USER BANK 3 REGISTER MAP ADDR (DEC.) 0 REGISTER NAME I2C_MST_ODR_CONFIG SERIAL I/F BIT7 R/W - BIT6 BIT4 BIT3 BIT2 BIT1 BIT0 I2C_SLV1_DE LAY_EN I2C_SLV0_DE LAY_EN I2C_MST_ODR_CONFIG[3:0] 01 1 I2C_MST_CTRL R/W MULT_MST_ EN 02 2 I2C_MST_DELAY_CTRL R/W DELAY_ES_S HADOW - 03 3 I2C_SLV0_ADDR R/W I2C_SLV0_RN W I2C_ID_0[6:0] 04 4 I2C_SLV0_REG R/W I2C_SLV0_REG[7:0] 05 5 I2C_SLV0_CTRL R/W I2C_SLV0_EN 06 6 I2C_SLV0_DO R/W I2C_SLV0_DO[7:0] 07 7 I2C_SLV1_ADDR R/W I2C_SLV1_RN W 08 8 I2C_SLV1_REG R/W I2C_SLV1_REG[7:0] 09 9 I2C_SLV1_CTRL R/W I2C_SLV1_EN Document Number: DS-000189 Revision: 1.3 BIT5 - I2C_MST_P_ NSR I2C_MST_CLK[3:0] I2C_SLV4_DE LAY_EN I2C_SLV3_DE LAY_EN I2C_SLV0_RE G_DIS I2C_SLV0_GR P I2C_SLV0_LENG[3:0] I2C_SLV1_RE G_DIS I2C_SLV1_GR P I2C_SLV1_LENG[3:0] I2C_SLV0_BY TE_SW I2C_SLV2_DE LAY_EN I2C_ID_1[6:0] I2C_SLV1_BY TE_SW Page 34 of 89 ICM-20948 ADDR (HEX) ADDR (DEC.) REGISTER NAME SERIAL I/F BIT7 BIT6 0A 10 I2C_SLV1_DO R/W I2C_SLV1_DO[7:0] 0B 11 I2C_SLV2_ADDR R/W I2C_SLV2_RN W 0C 12 I2C_SLV2_REG R/W I2C_SLV2_REG[7:0] 0D 13 I2C_SLV2_CTRL R/W I2C_SLV2_EN 0E 14 I2C_SLV2_DO R/W I2C_SLV2_DO[7:0] 0F 15 I2C_SLV3_ADDR R/W I2C_SLV3_RN W 10 16 I2C_SLV3_REG R/W I2C_SLV3_REG[7:0] 11 17 I2C_SLV3_CTRL R/W I2C_SLV3_EN 12 18 I2C_SLV3_DO R/W I2C_SLV3_DO[7:0] 13 19 I2C_SLV4_ADDR R/W I2C_SLV4_RN W 14 20 I2C_SLV4_REG R/W I2C_SLV4_REG[7:0] 15 21 I2C_SLV4_CTRL R/W I2C_SLV4_EN 16 22 I2C_SLV4_DO R/W I2C_SLV4_DO[7:0] 17 23 I2C_SLV4_DI R I2C_SLV4_DI[7:0] 7F 127 REG_BANK_SEL R/W - Document Number: DS-000189 Revision: 1.3 BIT5 BIT4 BIT3 I2C_SLV2_RE G_DIS I2C_SLV2_GR P I2C_SLV2_LENG[3:0] I2C_SLV3_RE G_DIS I2C_SLV3_GR P I2C_SLV3_LENG[3:0] I2C_SLV4_RE G_DIS I2C_SLV4_DLY[4:0] I2C_ID_2[6:0] I2C_SLV2_BY TE_SW I2C_ID_3[6:0] I2C_SLV3_BY TE_SW I2C_ID_4[6:0] I2C_SLV4_BY TE_SW USER_BANK[1:0] Page 35 of 89 - BIT2 BIT1 BIT0 ICM-20948 8 USER BANK 0 REGISTER DESCRIPTIONS This section describes the function and contents of the User Bank 0 Register Map within the ICM-20948. NOTE: The device will come up in sleep mode upon power-up. 8.1 WHO_AM_I Name: WHO_AM_I Address: 0 (00h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0xEA BIT NAME 7:0 WHO_AM_I[7:0] 8.2 FUNCTION Register to indicate to user which device is being accessed. The value for ICM-20948 is 0xEA. USER_CTRL Name: USER_CTRL Address: 3 (03h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 DMP_EN 6 FIFO_EN 5 I2C_MST_EN 4 3 I2C_IF_DIS DMP_RST 2 SRAM_RST 1 I2C_MST_RST FUNCTION 1 – Enables DMP features. 0 – DMP features are disabled after the current processing round has completed. 1 – Enable FIFO operation mode. 0 – Disable FIFO access from serial interface. To disable FIFO writes by DMA, use FIFO_EN register. To disable possible FIFO writes from DMP, disable the DMP. 1 – Enable the I2C Master I/F module; pins ES_DA and ES_SCL are isolated from pins SDA/SDI and SCL/ SCLK. 0 – Disable I2C Master I/F module; pins ES_DA and ES_SCL are logically driven by pins SDA/SDI and SCL/ SCLK. 1 – Reset I2C Slave module and put the serial interface in SPI mode only. 1 – Reset DMP module. Reset is asynchronous. This bit auto clears after one clock cycle of the internal 20 MHz clock. 1 – Reset SRAM module. Reset is asynchronous. This bit auto clears after one clock cycle of the internal 20 MHz clock. 1 – Reset I2C Master module. Reset is asynchronous. This bit auto clears after one clock cycle of the internal 20 MHz clock. NOTE: This bit should only be set when the I2C master has hung. If this bit is set during an active I2C master transaction, the I2C slave will hang, which will require the host to reset the slave. 0 - Document Number: DS-000189 Revision: 1.3 Reserved. Page 36 of 89 ICM-20948 8.3 LP_CONFIG Name: LP_CONFIG Address: 5 (05h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x40 BIT NAME 7 6 I2C_MST_CYCLE 5 ACCEL_CYCLE 4 GYRO_CYCLE 3:0 - 8.4 FUNCTION Reserved. 1 - Operate I2C master in duty cycled mode. ODR is determined by I2C_MST_ODR_CONFIG register. 0 – Disable I2C master duty cycled mode. 1 – Operate ACCEL in duty cycled mode. ODR is determined by ACCEL_SMPLRT_DIV register. 0 – Disable ACCEL duty cycled mode. 1 – Operate GYRO in duty cycled mode. ODR is determined by GYRO_SMPLRT_DIV register. 0 – Disable GYRO duty cycled mode. Reserved. PWR_MGMT_1 Name: PWR_MGMT_1 Address: 6 (06h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x41 BIT NAME 7 DEVICE_RESET 6 SLEEP 5 LP_EN 4 3 2:0 TEMP_DIS CLKSEL[2:0] Document Number: DS-000189 Revision: 1.3 FUNCTION 1 – Reset the internal registers and restores the default settings. Write a 1 to set the reset, the bit will auto clear. When set, the chip is set to sleep mode (in sleep mode all analog is powered off). Clearing the bit wakes the chip from sleep mode. The LP_EN only affects the digital circuitry, it helps to reduce the digital current when sensors are in LP mode. Please note that the sensors themselves are set in LP mode by the LP_CONFIG register settings. Sensors in LP mode, and use of LP_EN bit together help to reduce overall current. The bit settings are: 1: Turn on low power feature. 0: Turn off low power feature. LP_EN has no effect when the sensors are in low-noise mode. Reserved. When set to 1, this bit disables the temperature sensor. Code: Clock Source 0: Internal 20 MHz oscillator 1-5: Auto selects the best available clock source – PLL if ready, else use the Internal oscillator 6: Internal 20 MHz oscillator 7: Stops the clock and keeps timing generator in reset NOTE: CLKSEL[2:0] should be set to 1~5 to achieve full gyroscope performance. Page 37 of 89 ICM-20948 8.5 PWR_MGMT_2 Name: PWR_MGMT_2 Address: 7 (07h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:6 5:3 DISABLE_ACCEL 2:0 8.6 DISABLE_GYRO FUNCTION Reserved. Only the following values are applicable: 111 – Accelerometer (all axes) disabled. 000 – Accelerometer (all axes) on. Only the following values are applicable: 111 – Gyroscope (all axes) disabled. 000 – Gyroscope (all axes) on. INT_PIN_CFG Name: INT_PIN_CFG Address: 15 (0Fh) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 INT1_ACTL 6 INT1_OPEN 5 INT1_LATCH__EN 4 INT_ANYRD_2CLEAR 3 ACTL_FSYNC 2 FSYNC_INT_MODE_EN 1 BYPASS_EN 0 - Document Number: DS-000189 Revision: 1.3 FUNCTION 1 – The logic level for INT1 pin is active low. 0 – The logic level for INT1 pin is active high. 1 – INT1 pin is configured as open drain. 0 – INT1 pin is configured as push-pull. 1 – INT1 pin level held until interrupt status is cleared. 0 – INT1 pin indicates interrupt pulse is width 50 µs. 1 – Interrupt status in INT_STATUS is cleared (set to 0) if any read operation is performed. 0 – Interrupt status in INT_STATUS is cleared (set to 0) only by reading INT_STATUS register. This bit only affects the interrupt status bits that are contained in the register INT_STATUS, and the corresponding hardware interrupt. This bit does not affect the interrupt status bits that are contained in registers INT_STATUS_1, INT_STATUS_2, INT_STATUS_3, and the corresponding hardware interrupt. 1 – The logic level for the FSYNC pin as an interrupt to the ICM-20948 is active low. 0 – The logic level for the FSYNC pin as an interrupt to the ICM-20948 is active high. 1 – This enables the FSYNC pin to be used as an interrupt. A transition to the active level described by the ACTL_FSYNC bit will cause an interrupt. The status of the interrupt is read in the I2C Master Status register PASS_THROUGH bit. 0 – This disables the FSYNC pin from causing an interrupt. When asserted, the I2C_MASTER interface pins (ES_CL and ES_DA) will go into ‘bypass mode’ when the I2C master interface is disabled. Reserved. Page 38 of 89 ICM-20948 8.7 INT_ENABLE Name: INT_ENABLE Address: 16 (10h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 REG_WOF_EN 6:4 3 WOM_INT_EN 2 PLL_RDY_EN 1 DMP_INT1_EN 0 I2C_MST_INT_EN 8.8 INT_ENABLE_1 Name: INT_ENABLE_1 Address: 17 (11h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:1 0 RAW_DATA_0_RDY_EN FUNCTION 1 – Enable wake on FSYNC interrupt. 0 – Function is disabled. Reserved. 1 – Enable interrupt for wake on motion to propagate to interrupt pin 1. 0 – Function is disabled. 1 – Enable PLL RDY interrupt (PLL RDY means PLL is running and in use as the clock source for the system) to propagate to interrupt pin 1. 0 – Function is disabled. 1 – Enable DMP interrupt to propagate to interrupt pin 1. 0 – Function is disabled. 1 – Enable I2C master interrupt to propagate to interrupt pin 1. 0 – Function is disabled. FUNCTION Reserved. 1 – Enable raw data ready interrupt from any sensor to propagate to interrupt pin 1. 0 – Function is disabled. 8.9 INT_ENABLE_2 Name: INT_ENABLE_2 Address: 18 (12h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:5 4:0 FIFO_OVERFLOW_EN[4:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Reserved. 1 – Enable interrupt for FIFO overflow to propagate to interrupt pin 1. 0 – Function is disabled. Page 39 of 89 ICM-20948 8.10 INT_ENABLE_3 Name: INT_ENABLE_3 Address: 19 (13h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:5 4:0 FIFO_WM_EN[4:0] FUNCTION Reserved. 1 – Enable interrupt for FIFO watermark to propagate to interrupt pin 1. 0 – Function is disabled. 8.11 I2C_MST_STATUS Name: I2C_MST_STATUS Address: 23 (17h) Type: USR0 Bank: 0 Serial IF: R/C Reset Value: 0x00 BIT NAME 7 PASS_THROUGH 6 I2C_SLV4_DONE 5 I2C_LOST_ARB 4 I2C_SLV4_NACK 3 I2C_SLV3_NACK 2 I2C_SLV2_NACK 1 I2C_SLV1_NACK 0 I2C_SLV0_NACK FUNCTION Status of FSYNC interrupt – used as a way to pass an external interrupt through this chip to the host. If enabled in the INT_PIN_CFG register by asserting bit FSYNC_INT_MODE_EN, this will cause an interrupt. A read of this register clears all status bits in this register. Asserted when I2C slave 4’s transfer is complete, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted, and if the SLV4_DONE_INT_EN bit is asserted in the I2C_SLV4_CTRL register. Asserted when I2C slave loses arbitration of the I2C bus, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted. Asserted when slave 4 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted. Asserted when slave 3 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted. Asserted when slave 2 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted. Asserted when slave 1 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted. Asserted when slave 0 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted. 8.12 INT_STATUS Name: INT_STATUS Address: 25 (19h) Type: USR0 Bank: 0 Serial IF: R/C Reset Value: 0x00 BIT NAME 7:4 3 WOM_INT 2 PLL_RDY_INT 1 DMP_INT1 0 I2C_MST_INT Document Number: DS-000189 Revision: 1.3 FUNCTION Reserved. 1 – Wake on motion interrupt occurred. 1 – Indicates that the PLL has been enabled and is ready (delay of 4 ms ensures lock). 1 – Indicates the DMP has generated INT1 interrupt. 1 – Indicates I2C master has generated an interrupt. Page 40 of 89 ICM-20948 8.13 INT_STATUS_1 Name: INT_STATUS_1 Address: 26 (1Ah) Type: USR0 Bank: 0 Serial IF: R/C Reset Value: 0x00 BIT NAME 7:1 0 RAW_DATA_0_RDY_INT FUNCTION Reserved. 1 – Sensor Register Raw Data, from all sensors, is updated and ready to be read. 8.14 INT_STATUS_2 Name: INT_STATUS_2 Address: 27 (1Bh) Type: USR0 Bank: 0 Serial IF: R/C Reset Value: 0x00 BIT NAME 7:5 4:0 FIFO_OVERFLOW_INT[4:0] FUNCTION Reserved. 1 – FIFO Overflow interrupt occurred. 8.15 INT_STATUS_3 Name: INT_STATUS_3 Address: 28 (1Ch) Type: USR0 Bank: 0 Serial IF: R/C Reset Value: 0x00 BIT NAME 7:5 4:0 FIFO_WM_INT[4:0] FUNCTION Reserved. 1 – Watermark interrupt for FIFO occurred. 8.16 DELAY_TIMEH Name: DELAY_TIMEH Address: 40 (28h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 DELAY_TIMEH[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION High-byte of delay time between FSYNC event and the 1st gyro ODR event (after the FSYNC event). Reading DELAY_TIMEH will lock DELAY_TIMEH and DELAY_TIMEL from the next update. Reading DELAY_TIMEL will unlock DELAY_TIMEH and DELAY_TIMEL to take the next update due to an FSYNC event. Page 41 of 89 ICM-20948 8.17 DELAY_TIMEL Name: DELAY_TIMEL Address: 41 (29h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 DELAY_TIMEL[7:0] FUNCTION Low-byte of delay time between FSYNC event and the 1st gyro ODR event (after the FSYNC event). Reading DELAY_TIMEH will lock DELAY_TIMEH and DELAY_TIMEL from the next update. Reading DELAY_TIMEL will unlock DELAY_TIMEH and DELAY_TIMEL to take the next update due to an FSYNC event. Delay time in µs = (DELAY_TIMEH * 256 + DELAY_TIMEL) * 0.9645 8.18 ACCEL_XOUT_H Name: ACCEL_XOUT_H Address: 45 (2Dh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 ACCEL_XOUT_H[7:0] FUNCTION High Byte of Accelerometer X-axis data. 8.19 ACCEL_XOUT_L Name: ACCEL_XOUT_L Address: 46 (2Eh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 ACCEL_XOUT_L[7:0] FUNCTION Low Byte of Accelerometer X-axis data. To convert the output of the accelerometer to acceleration measurement use the formula below: X_acceleration = ACCEL_XOUT/Accel_Sensitivity 8.20 ACCEL_YOUT_H Name: ACCEL_YOUT_H Address: 47 (2Fh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 ACCEL_YOUT_H[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION High Byte of Accelerometer Y-axis data. Page 42 of 89 ICM-20948 8.21 ACCEL_YOUT_L Name: ACCEL_YOUT_L Address: 48 (30h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 ACCEL_YOUT_L[7:0] FUNCTION Low Byte of Accelerometer Y-axis data. To convert the output of the accelerometer to acceleration measurement use the formula below: Y_acceleration = ACCEL_YOUT/Accel_Sensitivity 8.22 ACCEL_ZOUT_H Name: ACCEL_ZOUT_H Address: 49 (31h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 ACCEL_ZOUT_H[7:0] FUNCTION High Byte of Accelerometer Z-axis data. 8.23 ACCEL_ZOUT_L Name: ACCEL_ZOUT_L Address: 50 (32h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 ACCEL_ZOUT_L[7:0] FUNCTION Low Byte of Accelerometer Z-axis data. To convert the output of the accelerometer to acceleration measurement use the formula below: Z_acceleration = ACCEL_ZOUT/Accel_Sensitivity 8.24 GYRO_XOUT_H Name: GYRO_XOUT_H Address: 51 (33h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 GYRO_XOUT_H[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION High Byte of Gyroscope X-axis data. Page 43 of 89 ICM-20948 8.25 GYRO_XOUT_L Name: GYRO_XOUT_L Address: 52 (34h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 GYRO_XOUT_L[7:0] FUNCTION Low Byte of Gyroscope X-axis data. To convert the output of the gyroscope to angular rate measurement use the formula below: X_angular_rate = GYRO_XOUT/Gyro_Sensitivity 8.26 GYRO_YOUT_H Name: GYRO_YOUT_H Address: 53 (35h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 GYRO_YOUT_H[7:0] FUNCTION High Byte of Gyroscope Y-axis data. 8.27 GYRO_YOUT_L Name: GYRO_YOUT_L Address: 54 (36h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 GYRO_YOUT_L[7:0] FUNCTION Low Byte of Gyroscope Y-axis data. To convert the output of the gyroscope to angular rate measurement use the formula below: Y_angular_rate = GYRO_YOUT/Gyro_Sensitivity 8.28 GYRO_ZOUT_H Name: GYRO_ZOUT_H Address: 55 (37h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 GYRO_ZOUT_H[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION High Byte of Gyroscope Z-axis data. Page 44 of 89 ICM-20948 8.29 GYRO_ZOUT_L Name: GYRO_ZOUT_L Address: 56 (38h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 GYRO_ZOUT_L[7:0] FUNCTION Low Byte of Gyroscope Z-axis data. To convert the output of the gyroscope to angular rate measurement use the formula below: Z_angular_rate = GYRO_ZOUT/Gyro_Sensitivity 8.30 TEMP_OUT_H Name: TEMP_OUT_H Address: 57 (39h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 TEMP_OUT_H[7:0] FUNCTION High Byte of Temp sensor data. 8.31 TEMP_OUT_L Name: TEMP_OUT_L Address: 58 (3Ah) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 TEMP_OUT_L[7:0] FUNCTION Low Byte of Temp sensor data. To convert the output of the temperature sensor to degrees C use the following formula: TEMP_degC = ((TEMP_OUT – RoomTemp_Offset)/Temp_Sensitivity) + 21degC 8.32 EXT_SLV_SENS_DATA_00 Name: EXT_SLV_SENS_DATA_00 Address: 59 (3Bh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_00[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. Page 45 of 89 ICM-20948 8.33 EXT_SLV_SENS_DATA_01 Name: EXT_SLV_SENS_DATA_01 Address: 60 (3Ch) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_01[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.34 EXT_SLV_SENS_DATA_02 Name: EXT_SLV_SENS_DATA_02 Address: 61 (3Dh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_02[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.35 EXT_SLV_SENS_DATA_03 Name: EXT_SLV_SENS_DATA_03 Address: 62 (3Eh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_03[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.36 EXT_SLV_SENS_DATA_04 Name: EXT_SLV_SENS_DATA_04 Address: 63 (3Fh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_04[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. Page 46 of 89 ICM-20948 8.37 EXT_SLV_SENS_DATA_05 Name: EXT_SLV_SENS_DATA_05 Address: 64 (40h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_05[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.38 EXT_SLV_SENS_DATA_06 Name: EXT_SLV_SENS_DATA_06 Address: 65 (41h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_06[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.39 EXT_SLV_SENS_DATA_07 Name: EXT_SLV_SENS_DATA_07 Address: 66 (42h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_07[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.40 EXT_SLV_SENS_DATA_08 Name: EXT_SLV_SENS_DATA_08 Address: 67 (43h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_08[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. Page 47 of 89 ICM-20948 8.41 EXT_SLV_SENS_DATA_09 Name: EXT_SLV_SENS_DATA_09 Address: 68 (44h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_09[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.42 EXT_SLV_SENS_DATA_10 Name: EXT_SLV_SENS_DATA_10 Address: 69 (45h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_10[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.43 EXT_SLV_SENS_DATA_11 Name: EXT_SLV_SENS_DATA_11 Address: 70 (46h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_11[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.44 EXT_SLV_SENS_DATA_12 Name: EXT_SLV_SENS_DATA_12 Address: 71 (47h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_12[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. Page 48 of 89 ICM-20948 8.45 EXT_SLV_SENS_DATA_13 Name: EXT_SLV_SENS_DATA_13 Address: 72 (48h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_13[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.46 EXT_SLV_SENS_DATA_14 Name: EXT_SLV_SENS_DATA_14 Address: 73 (49h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_14[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.47 EXT_SLV_SENS_DATA_15 Name: EXT_SLV_SENS_DATA_15 Address: 74 (4Ah) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_15[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.48 EXT_SLV_SENS_DATA_16 Name: EXT_SLV_SENS_DATA_16 Address: 75 (4Bh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_16[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. Page 49 of 89 ICM-20948 8.49 EXT_SLV_SENS_DATA_17 Name: EXT_SLV_SENS_DATA_17 Address: 76 (4Ch) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_17[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.50 EXT_SLV_SENS_DATA_18 Name: EXT_SLV_SENS_DATA_18 Address: 77 (4Dh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_18[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.51 EXT_SLV_SENS_DATA_19 Name: EXT_SLV_SENS_DATA_19 Address: 78 (4Eh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_19[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.52 EXT_SLV_SENS_DATA_20 Name: EXT_SLV_SENS_DATA_20 Address: 79 (4Fh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_20[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. Page 50 of 89 ICM-20948 8.53 EXT_SLV_SENS_DATA_21 Name: EXT_SLV_SENS_DATA_21 Address: 80 (50h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_21[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.54 EXT_SLV_SENS_DATA_22 Name: EXT_SLV_SENS_DATA_22 Address: 81 (51h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_22[7:0] FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. 8.55 EXT_SLV_SENS_DATA_23 Name: EXT_SLV_SENS_DATA_23 Address: 82 (52h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 EXT_SLV_SENS_DATA_23[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(04)_CTRL registers. Page 51 of 89 ICM-20948 8.56 FIFO_EN_1 Name: FIFO_EN_1 Address: 102 (66h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:4 3 SLV_3_FIFO_EN 2 SLV_2_FIFO_EN 1 SLV_1_FIFO_EN 0 SLV_0_FIFO_EN FUNCTION Reserved. 1 – Write EXT_SENS_DATA registers associated to SLV_3 (as determined by I2C_SLV2_CTRL, I2C_SLV1_CTRL, and I2C_SL20_CTRL) to the FIFO at the sample rate; 0 – Function is disabled. 1 – Write EXT_SENS_DATA registers associated to SLV_2 (as determined by I2C_SLV0_CTRL, I2C_SLV1_CTRL, and I2C_SL20_CTRL) to the FIFO at the sample rate; 0 – Function is disabled. 1 – Write EXT_SENS_DATA registers associated to SLV_1 (as determined by I2C_SLV0_CTRL and I2C_SLV1_CTRL) to the FIFO at the sample rate; 0 – Function is disabled. 1 – Write EXT_SENS_DATA registers associated to SLV_0 (as determined by I2C_SLV0_CTRL) to the FIFO at the sample rate; 0 – Function is disabled. 8.57 FIFO_EN_2 Name: FIFO_EN_2 Address: 103 (67h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:5 4 ACCEL_FIFO_EN 3 GYRO_Z_FIFO_EN 2 GYRO_Y_FIFO_EN 1 GYRO_X_FIFO_EN 0 TEMP_FIFO_EN Document Number: DS-000189 Revision: 1.3 FUNCTION Reserved. 1 – Write ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L to the FIFO at the sample rate; 0 – Function is disabled. 1 – Write GYRO_ZOUT_H and GYRO_ZOUT_L to the FIFO at the sample rate. 0 – Function is disabled. 1 – Write GYRO_YOUT_H and GYRO_YOUT_L to the FIFO at the sample rate. 0 – Function is disabled. 1 – Write GYRO_XOUT_H and GYRO_XOUT_L to the FIFO at the sample rate. 0 – Function is disabled. 1 – Write TEMP_OUT_H and TEMP_OUT_L to the FIFO at the sample rate. 0 – Function is disabled. Page 52 of 89 ICM-20948 8.58 FIFO_RST Name: FIFO_RST Address: 104 (68h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:5 4:0 FIFO_RESET[4:0] FUNCTION Reserved. S/W FIFO reset. Assert and hold to set FIFO size to 0. Assert and de-assert to reset FIFO. 8.59 FIFO_MODE Name: FIFO_MODE Address: 105 (69h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:5 4:0 FIFO_MODE[4:0] FUNCTION Reserved. 0 – Stream. 1 – Snapshot. When set to ‘1’, when the FIFO is full, additional writes will not be written to FIFO. When set to ‘0’, when the FIFO is full, additional writes will be written to the FIFO, replacing the oldest data. 8.60 FIFO_COUNTH Name: FIFO_COUNTH Address: 112 (70h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:5 4:0 FIFO_CNT[12:8] FUNCTION Reserved. High Bits, count indicates the number of written bytes in the FIFO. Reading this byte latches the data for both FIFO_COUNTH, and FIFO_COUNTL. 8.61 FIFO_COUNTL Name: FIFO_COUNTL Address: 113 (71h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 FIFO_CNT[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Low bits, count indicates the number of written bytes in the FIFO. Page 53 of 89 ICM-20948 8.62 FIFO_R_W Name: FIFO_R_W Address: 114 (72h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 FIFO_R_W[7:0] FUNCTION Reading from or writing to this register actually reads/writes the FIFO. For example, to write a byte to the FIFO, write the desired byte value to FIFO_R_W[7:0]. To read a byte from the FIFO, perform a register read operation and access the result in FIFO_R_W[7:0]. 8.63 DATA_RDY_STATUS Name: DATA_RDY_STATUS Address: 116 (74h) Type: USR0 Bank: 0 Serial IF: R/C Reset Value: 0x00 BIT NAME 7 WOF_STATUS 6:4 3:0 RAW_DATA_RDY[3:0] FUNCTION Wake on FSYNC interrupt status. Cleared on read. Reserved. Data from sensors is copied to FIFO or SRAM. Set when sequence controller kicks off on a sensor data load. Only bit 0 is relevant in a single FIFO configuration. Cleared on read. 8.64 FIFO_CFG Name: FIFO_CFG Address: 118 (76h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:1 0 FIFO_CFG FUNCTION Reserved. This bit should be set to 1 if interrupt status for each sensor is required. 8.65 REG_BANK_SEL Name: REG_BANK_SEL Address: 127 (7Fh) Type: ALL Bank: 0 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:6 5:4 USER_BANK[1:0] 3:0 - Document Number: DS-000189 Revision: 1.3 FUNCTION Reserved. Use the following values in this bit-field to select a USER BANK. 0: Select USER BANK 0. 1: Select USER BANK 1. 2: Select USER BANK 2. 3: Select USER BANK 3. Reserved. Page 54 of 89 ICM-20948 9 USR BANK 1 REGISTER DESCRIPTIONS This section describes the function and contents of the User Bank 1 Register Map within the ICM-20948. NOTE: The device will come up in sleep mode upon power-up. 9.1 SELF_TEST_X_GYRO Name: SELF_TEST_X_GYRO Address: 2 (02h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 XG_ST_DATA[7:0] 9.2 SELF_TEST_Y_GYRO Name: SELF_TEST_Y_GYRO Address: 3 (03h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 YG_ST_DATA[7:0] 9.3 FUNCTION The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user. SELF_TEST_Z_GYRO Name: SELF_TEST_Z_GYRO Address: 4 (04h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 ZG_ST_DATA[7:0] 9.4 FUNCTION The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user. FUNCTION The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user. SELF_TEST_X_ACCEL Name: SELF_TEST_X_ACCEL Address: 14 (0Eh) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 XA_ST_DATA[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Contains self-test data for the X Accelerometer. Page 55 of 89 ICM-20948 9.5 SELF_TEST_Y_ACCEL Name: SELF_TEST_Y_ACCEL Address: 15 (0Fh) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 YA_ST_DATA[7:0] 9.6 SELF_TEST_Z_ACCEL Name: SELF_TEST_Z_ACCEL Address: 16 (10h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 ZA_ST_DATA[7:0] 9.7 FUNCTION Contains self-test data for the Y Accelerometer. FUNCTION Contains self-test data for the Z Accelerometer. XA_OFFS_H Name: XA_OFFS_H Address: 20 (14h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: Trimmed on a per-part basis for optimal performance BIT NAME FUNCTION 7:0 XA_OFFS[14:7] Upper bits of the X accelerometer offset cancellation. 9.8 XA_OFFS_L Name: XA_OFFS_L Address: 21 (15h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: Trimmed on a per-part basis for optimal performance BIT NAME FUNCTION 7:1 XA_OFFS[6:0] Lower bits of the X accelerometer offset cancellation. 0 Reserved. 9.9 YA_OFFS_H Name: YA_OFFS_H Address: 23 (17h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: Trimmed on a per-part basis for optimal performance BIT NAME FUNCTION 7:0 YA_OFFS[14:7] Upper bits of the Y accelerometer offset cancellation. Document Number: DS-000189 Revision: 1.3 Page 56 of 89 ICM-20948 9.10 YA_OFFS_L Name: YA_OFFS_L Address: 24 (18h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: Trimmed on a per-part basis for optimal performance BIT NAME FUNCTION 7:1 YA_OFFS[6:0] Lower bits of the Y accelerometer offset cancellation. 0 Reserved . 9.11 ZA_OFFS_H Name: ZA_OFFS_H Address: 26 (1Ah) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: Trimmed on a per-part basis for optimal performance BIT NAME FUNCTION 7:0 ZA_OFFS[14:7] Upper bits of the Z accelerometer offset cancellation. 9.12 ZA_OFFS_L Name: ZA_OFFS_L Address: 27 (1Bh) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: Trimmed on a per-part basis for optimal performance BIT NAME FUNCTION 7:1 ZA_OFFS[6:0] Lower bits of the Z accelerometer offset cancellation. 0 Reserved. 9.13 TIMEBASE_CORRECTION_PLL Name: TIMEBASE_CORRECTION_PLL Address: 40 (28h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 TBC_PLL[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION System PLL clock period error (signed, [-10%, +10%]). Page 57 of 89 ICM-20948 9.14 REG_BANK_SEL Name: REG_BANK_SEL Address: 127 (7Fh) Type: Bank: 1 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:6 5:4 USER_BANK[1:0] 3:0 - Document Number: DS-000189 Revision: 1.3 FUNCTION Reserved. Use the following values in this bit-field to select a USER BANK. 0: Select USER BANK 0. 1: Select USER BANK 1. 2: Select USER BANK 2. 3: Select USER BANK 3. Reserved. Page 58 of 89 ICM-20948 10 USR BANK 2 REGISTER MAP This section describes the function and contents of the User Bank 2 Register Map within the ICM-20948. NOTE: The device will come up in sleep mode upon power-up. 10.1 GYRO_SMPLRT_DIV Name: GYRO_SMPLRT_DIV Address: 0 (00h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 GYRO_SMPLRT_DIV[7:0] FUNCTION Gyro sample rate divider. Divides the internal sample rate to generate the sample rate that controls sensor data output rate, FIFO sample rate, and DMP sequence rate. NOTE: This register is only effective when FCHOICE = 1’b1 (FCHOICE_B register bit is 1’b0), and (0 < DLPF_CFG < 7). ODR is computed as follows: 1.1 kHz/(1+GYRO_SMPLRT_DIV[7:0]) 10.2 GYRO_CONFIG_1 Name: GYRO_CONFIG_1 Address: 1 (01h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x01 BIT NAME 7:6 5:3 GYRO_DLPFCFG[2:0] 2:1 GYRO_FS_SEL[1:0] 0 GYRO_FCHOICE FUNCTION Reserved. Gyro low pass filter configuration as shown in Table 16. Gyro Full Scale Select: 00 = ±250 dps 01= ±500 dps 10 = ±1000 dps 11 = ±2000 dps 0 – Bypass gyro DLPF. 1 – Enable gyro DLPF. The gyroscope DLPF is configured by GYRO_DLPFCFG, when GYRO_FCHOICE = 1. The gyroscope data is filtered according to the value of GYRO_DLPFCFG and GYRO_FCHOICE as shown in Table 16. Document Number: DS-000189 Revision: 1.3 Page 59 of 89 ICM-20948 OUTPUT GYRO_FCHOICE GYRO_DLPFCFG 3DB BW [HZ] NBW [HZ] 0 x 12106 12316 1 0 196.6 229.8 1 1 151.8 187.6 1 2 119.5 154.3 1 3 51.2 73.3 1 4 23.9 35.9 1 5 11.6 17.8 1 6 5.7 8.9 1 7 361.4 376.5 RATE [HZ] 9000 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,…255 Table 16. Gyroscope Configuration 1 10.3 GYRO_CONFIG_2 Name: GYRO_CONFIG_2 Address: 2 (02h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:6 5 XGYRO_CTEN 4 YGYRO_CTEN 3 ZGYRO_CTEN 2:0 GYRO_AVGCFG[2:0] FUNCTION Reserved. X Gyro self-test enable. Y Gyro self-test enable. Z Gyro self-test enable. Averaging filter configuration settings for low-power mode. 0: 1x averaging. 1: 2x averaging. 2: 4x averaging. 3: 8x averaging. 4: 16x averaging. 5: 32x averaging. 6: 64x averaging. 7: 128x averaging. Table 17 lists the gyroscope filter bandwidths available in the low-power mode of operation. In the low-power mode of operation, the gyroscope is duty-cycled. Document Number: DS-000189 Revision: 1.3 Page 60 of 89 ICM-20948 AVERAGES 1X 2X 4X 8X 16X 32X 64X 128X GYRO_FCHOICE 1 1 1 1 1 1 1 1 GYRO_AVGCFG 0 1 2 3 4 5 6 7 TON [MS] 1.15 1.59 2.48 4.26 7.82 14.93 29.15 57.59 NBW [HZ] 773.5 469.8 257.8 134.8 68.9 34.8 17.5 8.8 RMS NOISE [DPS-RMS] TYP (BASED ON GYROSCOPE NOISE: 0.011 DPS/√HZ) 0.31 0.24 0.18 0.13 0.09 0.06 0.05 0.03 GYRO_SMPLRT_DIV ODR [HZ] CURRENT CONSUMPTION [MA] TYP 255 4.4 1.04 1.05 1.05 1.06 1.09 1.14 1.24 1.45 64 17.3 1.07 1.08 1.10 1.15 1.25 1.45 1.85 N/A 63 17.6 1.07 1.08 1.11 1.16 1.26 1.46 1.87 32 34.1 1.10 1.12 1.17 1.27 1.47 1.86 31 35.2 1.10 1.13 1.18 1.28 1.48 1.89 22 48.9 1.13 1.16 1.23 1.37 1.66 2.22 16 66.2 1.16 1.21 1.30 1.49 1.88 15 70.3 1.17 1.22 1.32 1.52 1.93 10 102.3 1.23 1.30 1.45 1.74 2.34 8 125.0 1.27 1.36 1.54 1.90 7 140.6 1.30 1.40 1.60 2.01 5 187.5 1.38 1.52 1.79 2.33 4 225.0 1.45 1.62 1.94 3 281.3 1.56 1.76 2.17 2 375.0 1.74 2.00 1 562.5 2.09 Table 17. Gyroscope Configuration 2 NOTE: Ton is the ON time for motion measurement when the gyroscope is in duty cycle mode. 10.4 XG_OFFS_USRH Name: XG_OFFS_USRH Address: 3 (03h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 X_OFFS_USER[15:8] Document Number: DS-000189 Revision: 1.3 FUNCTION Upper byte of X gyro offset cancellation. Page 61 of 89 N/A N/A N/A N/A N/A N/A ICM-20948 10.5 XG_OFFS_USRL Name: XG_OFFS_USRL Address: 4 (04h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 X_OFFS_USER[7:0] FUNCTION Lower byte of X gyro offset cancellation. 10.6 YG_OFFS_USRH Name: YG_OFFS_USRH Address: 5 (05h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 Y_OFFS_USER[15:8] FUNCTION Upper byte of Y gyro offset cancellation. 10.7 YG_OFFS_USRL Name: YG_OFFS_USRL Address: 6 (06h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 Y_OFFS_USER[7:0] FUNCTION Lower byte of Y gyro offset cancellation. 10.8 ZG_OFFS_USRH Name: ZG_OFFS_USRH Address: 7 (07h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 Z_OFFS_USER[15:8] FUNCTION Upper byte of Z gyro offset cancellation. 10.9 ZG_OFFS_USRL Name: ZG_OFFS_USRL Address: 8 (08h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 Z_OFFS_USER[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Lower byte of Z gyro offset cancellation. Page 62 of 89 ICM-20948 10.10 ODR_ALIGN_EN Name: ODR_ALIGN_EN Address: 9 (09h) Type: USR2 Bank: 2 OTP: No Serial IF: R/W Reset Value: 0x00 BIT NAME 7:1 0 ODR_ALIGN_EN FUNCTION Reserved. 0: Disables ODR start-time alignment. 1: Enables ODR start-time alignment when any of the following registers is written (with the same value or with different values): GYRO_SMPLRT_DIV, ACCEL_SMPLRT_DIV_1, ACCEL_SMPLRT_DIV_2, I2C_MST_ODR_CONFIG. 10.11 ACCEL_SMPLRT_DIV_1 Name: ACCEL_SMPLRT_DIV_1 Address: 16 (10h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:4 3:0 ACCEL_SMPLRT_DIV[11:8] FUNCTION Reserved. MSB for ACCEL sample rate div. 10.12 ACCEL_SMPLRT_DIV_2 Name: ACCEL_SMPLRT_DIV_2 Address: 17 (11h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 ACCEL_SMPLRT_DIV[7:0] FUNCTION LSB for ACCEL sample rate div. ODR is computed as follows: 1.125 kHz/(1+ACCEL_SMPLRT_DIV[11:0]) 10.13 ACCEL_INTEL_CTRL Name: ACCEL_INTEL_CTRL Address: 18 (12h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:2 1 ACCEL_INTEL_EN 0 ACCEL_INTEL_MODE_INT Document Number: DS-000189 Revision: 1.3 FUNCTION Reserved. Enable the WOM logic. Selects WOM algorithm. 1 = Compare the current sample with the previous sample. 0 = Initial sample is stored, all future samples are compared to the initial sample. Page 63 of 89 ICM-20948 10.14 ACCEL_WOM_THR Name: ACCEL_WOM_THR Address: 19 (13h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 WOM_THRESHOLD[7:0] FUNCTION This register holds the threshold value for the Wake on Motion Interrupt for ACCEL x/y/z axes. LSB = 4 mg. Range is 0 mg to 1020 mg. 10.15 ACCEL_CONFIG Name: ACCEL_CONFIG Address: 20 (14h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x01 BIT NAME 7:6 5:3 ACCEL_DLPFCFG[2:0] 2:1 ACCEL_FS_SEL[1:0] 0 FUNCTION Reserved. Accelerometer low pass filter configuration as shown in Table 18. Accelerometer Full Scale Select: 00: ±2g 01: ±4g 10: ±8g 11: ±16g 0: Bypass accel DLPF. 1: Enable accel DLPF. ACCEL_FCHOICE OUTPUT ACCEL_FCHOICE ACCEL_DLPFCFG 3DB BW [HZ] NBW [HZ] 0 x 1209 1248 1 0 246.0 265.0 1 1 246.0 265.0 1 2 111.4 136.0 1 3 50.4 68.8 1 4 23.9 34.4 1 5 11.5 17.0 1 6 5.7 8.3 1 7 473 499 RATE [HZ] 4500 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,…4095 Table 18. Accelerator Configuration The data rate out of the DLPF filter block can be further reduced by a factor of 1.125 kHz/(1+ACCEL_SMPLRT_DIV[11:0]) where ACCEL_SMPLRT_DIV is a 12-bit integer. Document Number: DS-000189 Revision: 1.3 Page 64 of 89 ICM-20948 10.16 ACCEL_CONFIG_2 Name: ACCEL_CONFIG_2 Address: 21 (15h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:5 4 AX_ST_EN_REG 3 AY_ST_EN_REG 2 AZ_ST_EN_REG 1:0 DEC3_CFG[1:0] FUNCTION Reserved. X Accel self-test enable. Y Accel self-test enable. Z Accel self-test enable. Controls the number of samples averaged in the accelerometer decimator: 0: Average 1 or 4 samples depending on ACCEL_FCHOICE (see Table 19). 1: Average 8 samples. 2: Average 16 samples. 3: Average 32 samples. Table 19 lists the accelerometer filter bandwidths available in the low-power mode of operation. In the low-power mode of operation, the accelerometer is duty-cycled. AVERAGES 1X 4X 8X 16X 32X ACCEL_FCHOICE 0 1 1 1 1 ACCEL_DLPFCFG x 7 7 7 7 DEC3_CFG 0 0 1 2 3 TON (MS) 0.821 1.488 2.377 4.154 7.71 NBW (HZ) 1237.5 496.8 264.8 136.5 69.2 RMS NOISE [MG-RMS] TYP (BASED ON ACCELEROMETER NOISE: 190µG/√HZ) 6.7 4.2 3.1 2.2 1.6 ACCEL_SMPLRT_DIV ODR [HZ] 4095 0.27 6.2 6.3 6.5 6.9 7.6 2044 0.55 6.3 6.6 7.0 7.7 9.2 1022 1.1 6.7 7.2 8.0 9.4 12.3 513 2.2 7.3 8.4 9.9 12.8 18.6 255 4.4 8.7 10.9 13.8 19.7 31.4 127 8.8 11.4 15.8 21.6 33.3 56.7 63 17.6 16.8 25.6 37.3 60.7 107.5 31 35.2 27.6 45.2 68.6 115.3 208.9 22 48.9 36.1 60.5 93.0 158.1 288.3 15 10 70.3 102.3 49.2 84.3 131.1 224.7 411.9 68.9 119.9 188.0 324.1 596.3 7 140.6 92.4 162.7 256.3 443.3 N/A Document Number: DS-000189 Revision: 1.3 Page 65 of 89 CURRENT CONSUMPTION [µA] TYP ICM-20948 5 187.5 121.2 214.9 3 281.3 178.9 319.3 1 562.5 351.7 N/A N/A Table 19. Accelerator Configuration 2 NOTE: Ton is the ON time for motion measurement when the accelerometer is in duty cycle mode. 10.17 FSYNC_CONFIG Name: FSYNC_CONFIG Address: 82 (52h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 DELAY_TIME_EN 6 5 4 WOF_DEGLITCH_EN WOF_EDGE_INT 3:0 EXT_SYNC_SET[3:0] Document Number: DS-000189 Revision: 1.3 FUNCTION 0: Disables delay time measurement between FSYNC event and the first ODR event (after FSYNC event). 1: Enables delay time measurement between FSYNC event and the first ODR event (after FSYNC event). Reserved. Enable digital deglitching of FSYNC input for Wake on FSYNC. 0: FSYNC is a level interrupt for Wake on FSYNC. 1: FSYNC is an edge interrupt for Wake on FSYNC. ACTL_FSYNC is used to set the polarity of the interrupt. Enables the FSYNC pin data to be sampled. EXT_SYNC_SET FSYNC bit location. 0: Function disabled. 1: TEMP_OUT_L[0]. 2: GYRO_XOUT_L[0]. 3: GYRO_YOUT_L[0]. 4: GYRO_ZOUT_L[0]. 5: ACCEL_XOUT_L[0]. 6: ACCEL_YOUT_L[0]. 7: ACCEL_ZOUT_L[0]. Page 66 of 89 ICM-20948 10.18 TEMP_CONFIG Name: TEMP_CONFIG Address: 83 (53h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 2:0 TEMP_DLPFCFG[2:0] FUNCTION Low pass filter configuration for temperature sensor as shown in the table below: TEMP_DLPCFG 0 1 2 3 4 5 6 7 TEMP SENSOR NBW (HZ) 7932.0 217.9 123.5 65.9 34.1 17.3 8.8 7932.0 10.19 MOD_CTRL_USR Name: MOD_CTRL_USR Address: 84 (54h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x03 BIT NAME 7:1 0 REG_LP_DMP_EN FUNCTION Reserved. Enable turning on DMP in Low Power Accelerometer mode. 10.20 REG_BANK_SEL Name: REG_BANK_SEL Address: 127 (7Fh) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:6 5:4 USER_BANK[1:0] 3:0 - Document Number: DS-000189 Revision: 1.3 FUNCTION Reserved. Use the following values in this bit-field to select a USER BANK. 0: Select USER BANK 0. 1: Select USER BANK 1. 2: Select USER BANK 2. 3: Select USER BANK 3. Reserved. Page 67 of 89 RATE (KHZ) 9 1.125 1.125 1.125 1.125 1.125 Rate (kHz) 9 ICM-20948 11 USR BANK 3 REGISTER MAP This section describes the function and contents of the User Bank 3 Register Map within the ICM-20948. NOTE: The device will come up in sleep mode upon power-up. 11.1 I2C_MST_ODR_CONFIG Name: I2C_MST_ODR_CONFIG Address: 0 (00h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:4 3:0 I2C_MST_ODR_CONFIG[3:0] FUNCTION Reserved ODR configuration for external sensor when gyroscope and accelerometer are disabled. ODR is computed as follows: 1.1 kHz/(2^((odr_config[3:0])) ) When gyroscope is enabled, all sensors (including I2C_MASTER) use the gyroscope ODR. If gyroscope is disabled, then all sensors (including I2C_MASTER) use the accelerometer ODR. 11.2 I2C_MST_CTRL Name: I2C_MST_CTRL Address: 1 (01h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 MULT_MST_EN 6:5 4 I2C_MST_P_NSR 3:0 I2C_MST_CLK[3:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Enables multi-master capability. When disabled, clocking to the I2C_MST_IF can be disabled when not in use and the logic to detect lost arbitration is disabled. Reserved. This bit controls the I2C Master’s transition from one slave read to the next slave read. 0 - There is a restart between reads. 1 - There is a stop between reads. Sets I2C master clock frequency as shown in Table 23. Page 68 of 89 ICM-20948 11.3 I2C_MST_DELAY_CTRL Name: I2C_MST_DELAY_CTRL Address: 2 (02h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 DELAY_ES_SHADOW 6:5 4 I2C_SLV4_DELAY_EN 3 I2C_SLV3_DELAY_EN 2 I2C_SLV2_DELAY_EN 1 I2C_SLV1_DELAY_EN 0 I2C_SLV0_DELAY_EN FUNCTION Delays shadowing of external sensor data until all data is received. Reserved. When enabled, slave 4 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG. When enabled, slave 3 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG. When enabled, slave 2 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG. When enabled, slave 1 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG. When enabled, slave 0 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG. 11.4 I2C_SLV0_ADDR Name: I2C_SLV0_ADDR Address: 3 (03h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 I2C_SLV0_RNW 6:0 I2C_ID_0[6:0] FUNCTION 1 – Transfer is a read. 0 – Transfer is a write. Physical address of I2C slave 0. 11.5 I2C_SLV0_REG Name: I2C_SLV0_REG Address: 4 (04h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 I2C_SLV0_REG[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION I2C slave 0 register address from where to begin data transfer. Page 69 of 89 ICM-20948 11.6 I2C_SLV0_CTRL Name: I2C_SLV0_CTRL Address: 5 (05h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 I2C_SLV0_EN 6 I2C_SLV0_BYTE_SW 5 I2C_SLV0_REG_DIS 4 I2C_SLV0_GRP 3:0 I2C_SLV0_LENG[3:0] FUNCTION 1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register, which is always EXT_SENS_DATA_00 for I2C slave 0. 0 – Function is disabled for this slave. 1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLV0_REG[0] = 1, or if the last byte read has a register address lsb = 0. For example, if I2C_SLV0_REG = 0x1, and I2C_SLV0_LENG = 0x4: 1) The first byte read from address 0x1 will be stored at EXT_SENS_DATA_00, 2) the second and third bytes will be read and swapped, so the data read from address 0x2 will be stored at EXT_SENS_DATA_02, and the data read from address 0x3 will be stored at EXT_SENS_DATA_01, 3) The last byte read from address 0x4 will be stored at EXT_SENS_DATA_03. 0 – No swapping occurs; bytes are written in order read. When set, the transaction does not write a register value, it will only read data, or write data. External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave’s register address 0 and 1, 2 and 3, etc.., or if the groups are address 1 and 2, 3 and 4, etc. 0 indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address. Number of bytes to be read from I2C slave 0. 11.7 I2C_SLV0_DO Name: I2C_SLV0_DO Address: 6 (06h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 I2C_SLV0_DO[7:0] FUNCTION Data out when slave 0 is set to write. 11.8 I2C_SLV1_ADDR Name: I2C_SLV1_ADDR Address: 7 (07h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 I2C_SLV1_RNW 6:0 I2C_ID_1[6:0] Document Number: DS-000189 Revision: 1.3 FUNCTION 1 – Transfer is a read. 0 – Transfer is a write. Physical address of I2C slave 1. Page 70 of 89 ICM-20948 11.9 I2C_SLV1_REG Name: I2C_SLV1_REG Address: 8 (08h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 I2C_SLV1_REG[7:0] FUNCTION I2C slave 1 register address from where to begin data transfer. 11.10 I2C_SLV1_CTRL Name: I2C_SLV1_CTRL Address: 9 (09h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 I2C_SLV1_EN 6 I2C_SLV1_BYTE_SW FUNCTION 1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register as determined by I2C_SLV0_EN and I2C_SLV0_LENG. 0 – Function is disabled for this slave. 1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLV1_REG[0] = 1, or if the last byte read has a register address lsb = 0. For example, if I2C_SLV0_EN = 0x1, and I2C_SLV0_LENG = 0x3 (to show swap has to do with I2C slave address not EXT_SENS_DATA address), and if I2C_SLV1_REG = 0x1, and I2C_SLV1_LENG = 0x4: 1) The first byte read from address 0x1 will be stored at EXT_SENS_DATA_03 (slave 0’s data will be in EXT_SENS_DATA_00, EXT_SENS_DATA_01, and EXT_SENS_DATA_02), 2) the second and third bytes will be read and swapped, so the data read from address 0x2 will be stored at EXT_SENS_DATA_04, and the data read from address 0x3 will be stored at EXT_SENS_DATA_05, 3) The last byte read from address 0x4 will be stored at EXT_SENS_DATA_06. 5 I2C_SLV1_REG_DIS 4 I2C_SLV1_GRP 3:0 I2C_SLV1_LENG[3:0] Document Number: DS-000189 Revision: 1.3 0 – No swapping occurs, bytes are written in order read. When set, the transaction does not write a register value, it will only read data, or write data. External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave’s register address 0 and 1, 2 and 3, etc.., or if the groups are address 1 and 2, 3 and 4, etc. 0 indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address. Number of bytes to be read from I2C slave 1. Page 71 of 89 ICM-20948 11.11 I2C_SLV1_DO Name: I2C_SLV1_DO Address: 10 (0Ah) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 I2C_SLV1_DO[7:0] FUNCTION Data out when slave 1 is set to write. 11.12 I2C_SLV2_ADDR Name: I2C_SLV2_ADDR Address: 11 (0Bh) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 I2C_SLV2_RNW 6:0 I2C_ID_2[6:0] FUNCTION 1 – Transfer is a read. 0 – Transfer is a write. Physical address of I2C slave 2. 11.13 I2C_SLV2_REG Name: I2C_SLV2_REG Address: 12 (0Ch) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 I2C_SLV2_REG[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION I2C slave 2 register address from where to begin data transfer. Page 72 of 89 ICM-20948 11.14 I2C_SLV2_CTRL Name: I2C_SLV2_CTRL Address: 13 (0Dh) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 I2C_SLV2_EN 6 I2C_SLV2_BYTE_SW 5 I2C_SLV2_REG_DIS 4 I2C_SLV2_GRP 3:0 I2C_SLV2_LENG[3:0] FUNCTION 1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register as determined by I2C_SLV0_EN, I2C_SLV0_LENG, I2C_SLV1_EN and I2C_SLV1_LENG. 0 – Function is disabled for this slave. 1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLV2_REG[0] = 1, or if the last byte read has a register address lsb = 0. See I2C_SLV1_CTRL for an example. 0 – No swapping occurs, bytes are written in order read. When set, the transaction does not write a register value, it will only read data, or write data. External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave’s register address 0 and 1, 2 and 3, etc.., or if the groups are address 1 and 2, 3 and 4, etc. 0 indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address. Number of bytes to be read from I2C slave 2. 11.15 I2C_SLV2_DO Name: I2C_SLV2_DO Address: 14 (0Eh) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 I2C_SLV2_DO[7:0] FUNCTION Data out when slave 2 is set to write. 11.16 I2C_SLV3_ADDR Name: I2C_SLV3_ADDR Address: 15 (0Fh) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 I2C_SLV3_RNW 6:0 I2C_ID_3[6:0] Document Number: DS-000189 Revision: 1.3 FUNCTION 1 – Transfer is a read. 0 – Transfer is a write. Physical address of I2C slave 3. Page 73 of 89 ICM-20948 11.17 I2C_SLV3_REG Name: I2C_SLV3_REG Address: 16 (10h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 I2C_SLV3_REG[7:0] FUNCTION I2C slave 3 register address from where to begin data transfer. 11.18 I2C_SLV3_CTRL Name: I2C_SLV3_CTRL Address: 17 (11h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 I2C_SLV3_EN 6 I2C_SLV3_BYTE_SW 5 I2C_SLV3_REG_DIS 4 I2C_SLV3_GRP 3:0 I2C_SLV3_LENG[3:0] FUNCTION 1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register as determined by I2C_SLV0_EN, I2C_SLV0_LENG, I2C_SLV1_EN, I2C_SLV1_LENG, I2C_SLV2_EN and I2C_SLV2_LENG. 0 – Function is disabled for this slave. 1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLV3_REG[0] = 1, or if the last byte read has a register address lsb = 0. See I2C_SLV1_CTRL for an example. 0 – No swapping occurs, bytes are written in order read. When set, the transaction does not write a register value, it will only read data, or write data. External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave’s register address 0 and 1, 2 and 3, etc.., or if the groups are address 1 and 2, 3 and 4, etc. 0 indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address. Number of bytes to be read from I2C slave 3. 11.19 I2C_SLV3_DO Name: I2C_SLV3_DO Address: 18 (12h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 I2C_SLV3_DO[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Data out when slave 3 is set to write. Page 74 of 89 ICM-20948 11.20 I2C_SLV4_ADDR Name: I2C_SLV4_ADDR Address: 19 (13h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 I2C_SLV4_RNW 6:0 I2C_ID_4[6:0] FUNCTION 1 – Transfer is a read. 0 – Transfer is a write. Physical address of I2C slave 4. NOTE: The I2C Slave 4 interface can be used to perform only single byte read and write transactions. 11.21 I2C_SLV4_REG Name: I2C_SLV4_REG Address: 20 (14h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 I2C_SLV4_REG[7:0] FUNCTION I2C slave 4 register address from where to begin data transfer. 11.22 I2C_SLV4_CTRL Name: I2C_SLV4_CTRL Address: 21 (15h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7 I2C_SLV4_EN 6 I2C_SLV4_INT_EN 5 I2C_SLV4_REG_DIS 4:0 I2C_SLV4_DLY[4:0] FUNCTION 1 – Enable data transfer with this slave at the sample rate. If read command, store data in I2C_SLV4_DI register, if write command, write data stored in I2C_SLV4_DO register. Bit is cleared when a single transfer is complete. Be sure to write I2C_SLV4_DO first. 0 – Function is disabled for this slave. 1 – Enables the completion of the I2C slave 4 data transfer to cause an interrupt. 0 – Completion of the I2C slave 4 data transfer will not cause an interrupt. When set, the transaction does not write a register value, it will only read data, or write data. When enabled via the I2C_MST_DELAY_CTRL, those slaves will only be enabled every1/(1+I2C_SLV4_DLY) samples as determined by I2C_MST_ODR_CONFIG. 11.23 I2C_SLV4_DO Name: I2C_SLV4_DO Address: 22 (16h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:0 I2C_SLV4_DO[7:0] Document Number: DS-000189 Revision: 1.3 FUNCTION Data out when slave 4 is set to write. Page 75 of 89 ICM-20948 11.24 I2C_SLV4_DI Name: I2C_SLV4_DI Address: 23 (17h) Type: USR3 Bank: 3 Serial IF: R Reset Value: 0x00 BIT NAME 7:0 I2C_SLV4_DI[7:0] FUNCTION Data read from I2C Slave 4. 11.25 REG_BANK_SEL Name: REG_BANK_SEL Address: 127 (7Fh) Type: Bank: 3 Serial IF: R/W Reset Value: 0x00 BIT NAME 7:6 5:4 USER_BANK[1:0] 3:0 - Document Number: DS-000189 Revision: 1.3 FUNCTION Reserved. Use the following values in this bit-field to select a USER BANK. 0: Select USER BANK 0. 1: Select USER BANK 1. 2: Select USER BANK 2. 3: Select USER BANK 3. Reserved. Page 76 of 89 ICM-20948 12 REGISTER MAP FOR MAGNETOMETER The register map for the ICM-20948’s Magnetometer (AK09916) section is listed below. NAME WIA2 ST1 HXL HXH HYL HYH HZL HZH ST2 CNTL2 CNTL3 TS1 TS2 ADDRESS 01H 10H 11H 12H 13H 14H 15H 16H 18H 31H 32H 33H 34H READ/WRITE READ READ READ READ READ/ WRITE READ/ WRITE READ/ WRITE READ/ WRITE DESCRIPTION BIT WIDTH 8 8 8 8 8 8 8 8 8 8 8 8 8 Device ID Status 1 Measurement data Status 2 Control 2 Control 3 Test Test EXPLANATION Data status X-axis data Y-axis data Z-axis data Data status Control Settings Control Settings DO NOT ACCESS DO NOT ACCESS Table 20. Register Table for Magnetometer Addresses 00h to 18h, 30h to 32h are compliant with automatic increment function of serial interface respectively. In other modes, read data is not correct. When the address is in 00h to 18h, the address is incremented 00h  01h  02h  03h  10h  11h ...  18h, and the address goes back to 00h after 18h. When the address is in 30h to 32h, the address goes back to 30h after 32h. 12.1 REGISTER MAP DESCRIPTION ADDR REGISTER NAME D7 01H 10H 11H 12H 13H 14H 15H 16H 18H WIA2 ST1 HXL HXH HYL HYH HZL HZH ST2 0 0 HX7 HX15 HY7 HY15 HZ7 HZ15 0 31H 32H 33H 34H CNTL2 CNTL3 TS1 TS2 0 0 - D6 D5 D4 READ-ONLY REGISTER 0 0 0 0 0 0 HX6 HX5 HX4 HX14 HX13 HX12 HY6 HY5 HY4 HY14 HY13 HY12 HZ6 HZ5 HZ4 HZ14 HZ13 HZ12 RSV30 RSV29 RSV28 WRITE/READ REGISTER 0 0 MODE4 0 0 0 - D3 D2 D1 D0 1 0 HX3 HX11 HY3 HY11 HZ3 HZ11 HOFL 0 0 HX2 HX10 HY2 HY10 HZ2 HZ10 0 0 DOR HX1 HX9 HY1 HY9 HZ1 HZ9 0 1 DRDY HX0 HX8 HY0 HY8 HZ0 HZ8 0 MODE3 0 - MODE2 0 - MODE1 0 - MODE0 SRST - Table 21. Register Map for Magnetometer When VDD is turned ON, POR function works and all registers of AK09916 are initialized. TS1 and TS2 are test registers for shipment test. Do not access these registers. Document Number: DS-000189 Revision: 1.3 Page 77 of 89 ICM-20948 13 DETAILED DESCRIPTIONS FOR MAGNETOMETER REGISTERS This section details each register within the ICM-20948 Magnetometer section. 13.1 WIA: DEVICE ID ADDR REGISTER NAME D7 D6 01H WIA 0 0 D5 D4 READ-ONLY REGISTER 0 0 D3 D2 D1 D0 1 0 0 1 D3 D2 D1 D0 0 0 0 0 DOR 0 DRDY 0 Device ID of AK09916. It is described in one byte and fixed value. 09H: fixed 13.2 ST1: STATUS 1 ADDR REGISTER NAME D7 ST1 0 0 10H Reset D6 D5 D4 READ-ONLY REGISTER 0 0 0 0 0 0 DRDY: Data Ready “0”: Normal “1”: Data is ready DRDY bit turns to “1” when data is ready in Single measurement mode, Continuous measurement mode 1, 2, 3, 4 or Self-test mode. It returns to “0” when any one of ST2 register or measurement data register (HXL to TMPS) is read. DOR: Data Overrun “0”: Normal “1”: Data overrun DOR bit turns to “1” when data has been skipped in Continuous measurement mode 1, 2, 3, 4. It returns to “0” when any one of ST2 register or measurement data register (HXL to TMPS) is read. 13.3 HXL TO HZH: MEASUREMENT DATA ADDR REGISTER NAME 11H 12H 13H 14H 15H 16H HXL HXH HYL HYH HZL HZH Reset D7 HX7 HX15 HY7 HY15 HZ7 HZ15 0 D6 D5 Measurement data of magnetic sensor X-axis/Y-axis/Z-axis HXL[7:0]: X-axis measurement data lower 8bit HXH[15:8]: X-axis measurement data higher 8bit HYL[7:0]: Y-axis measurement data lower 8bit HYH[15:8]: Y-axis measurement data higher 8bit Document Number: DS-000189 Revision: 1.3 D4 READ-ONLY REGISTER HX6 HX5 HX4 HX14 HX13 HX12 HY6 HY5 HY4 HY14 HY13 HY12 HZ6 HZ5 HZ4 HZ14 HZ13 HZ12 0 0 0 Page 78 of 89 D3 D2 D1 D0 HX3 HX11 HY3 HY11 HZ3 HZ11 0 HX2 HX10 HY2 HY10 HZ2 HZ10 0 HX1 HX9 HY1 HY9 HZ1 HZ9 0 HX0 HX8 HY0 HY8 HZ0 HZ8 0 ICM-20948 HZL[7:0]: Z-axis measurement data lower 8bit HZH[15:8]: Z-axis measurement data higher 8bit Measurement data is stored in two’s complement and Little Endian format. Measurement range of each from --32752 to 32752 in 16-bit output. MEASUREMENT DATA (EACH AXIS) [15:0] TWO’S COMPLEMENT HEX DECIMAL MAGNETIC FLUX DENSITY [µT] 0111 1111 1111 0000 7FF0 32752 4912(max.) | | | | 0000 0000 0000 0001 0001 1 0.15 0000 0000 0000 0000 0000 0 0 1111 1111 1111 1111 FFFF -1 -0.15 | | | | 1000 0000 0001 0000 8010 -32752 -4912(min.) axis is Table 22. Magnetometer Measurement Data Format 13.4 ST2: STATUS 2 ADDR 18H REGISTER NAME D7 ST2 0 0 Reset D6 D5 D4 READ-ONLY REGISTER RSV30 RSV29 RSV28 0 0 0 D3 D2 D1 D0 HOFL 0 0 0 0 0 0 0 ST2[6:4] bits: Reserved register for AKM. HOFL: Magnetic sensor overflow “0”: Normal “1”: Magnetic sensor overflow occurred In Single measurement mode, Continuous measurement mode 1, 2, 3, 4, and Self-test mode, magnetic sensor may overflow even though measurement data register is not saturated. In this case, measurement data is not correct and HOFL bit turns to “1”. When measurement data register is updated, HOFL bit is updated. ST2 register has a role as data reading end register, also. When any of measurement data register (HXL to TMPS) is read in Continuous measurement mode 1, 2, 3, 4, it means data reading start and taken as data reading until ST2 register is read. Therefore, when any of measurement data is read, be sure to read ST2 register at the end. 13.5 CNTL2: CONTROL 2 ADDR 31H REGISTER NAME CNTL2 Reset D7 D6 0 0 0 0 D5 D4 D3 READ/WRITE REGISTER 0 MPDE4 MODE3 0 0 0 MODE[4:0] bits: Operation mode setting “00000”: Power-down mode “00001”: Single measurement mode “00010”: Continuous measurement mode 1 “00100”: Continuous measurement mode 2 Document Number: DS-000189 Revision: 1.3 Page 79 of 89 D2 D1 D0 MODE2 0 MODE1 0 MODE0 0 ICM-20948 “00110”: Continuous measurement mode 3 “01000”: Continuous measurement mode 4 “10000”: Self-test mode Other code settings are prohibited When each mode is set, AK09916 transits to the set mode. 13.6 CNTL3: CONTROL 3 ADDR 32H REGISTER NAME CNTL3 Reset D7 D6 0 0 0 0 D5 D4 READ/WRITE REGISTER 0 0 0 0 D3 D2 D1 D0 0 0 0 0 0 0 SRST 0 SRST: Soft reset "0": Normal "1": Reset When “1” is set, all registers are initialized. After reset, SRST bit turns to “0” automatically. 13.7 TS1, TS2: TEST 1, 2 ADDR REGISTER NAME D7 33H 34H TS1 TS2 0 Reset D6 D5 D4 READ/WRITE REGISTER 0 0 0 D3 D2 D1 D0 0 0 0 0 TS1 and TS2 registers are test registers for shipment test. Do not use these registers. Document Number: DS-000189 Revision: 1.3 Page 80 of 89 ICM-20948 14 USE NOTES 14.1 GYROSCOPE MODE TRANSITION When gyroscope is transitioning from low-power to low-noise mode, several unsettled output samples will be observed at the gyroscope output due to filter switching and settling. The number of unsettled gyroscope output samples depends on the filter and ODR settings. 14.2 POWER MANAGEMENT 1 REGISTER SETTING CLKSEL[2:0] has to be set to 001 to achieve the datasheet performance. 14.3 DMP MEMORY ACCESS Reading/writing DMP memory and FIFO through I2C in a multithreaded environment can cause wrong data being read. To avoid the issue, one may use SPI instead of I2C, or use I2C with mutexes. 14.4 TIME BASE CORRECTION The system clock frequency at room temperature in gyroscope mode and 6-Axis mode varies from part to part, and the clock rates specified in datasheet are the nominal values. The percentage of frequency deviation from the nominal values for each part is logged in register TIMEBASE_CORRECTION_PLL, and the range of the code is ±10% with each LSB representing a step of 0.079%. For example, if on one part TIMEBASE_CORRECTION_PLL = 0x0C = d’12, it means the clock frequency in gyroscope mode and 6-Axis mode is ~0.94% faster than the nominal value. When operating in accelerometer-only mode, the system clock frequency at room temperature is the nominal frequency over parts, and it is independent of the value stored in TIMEBASE_CORRECTION_PLL register. 14.5 I2C MASTER CLOCK FREQUENCY I2C master clock frequency can be set by register I2C_MST_CLK as shown in Table 23. Due to temperature variation and part to part variation of system clock frequency in different power modes, I2C_MST_CLK should be set such that in all conditions the clock frequency will not exceed what a slave device can support. To achieve a targeted clock frequency of 400 kHz, MAX, it is recommended to set I2C_MST_CLK = 7 (345.6 kHz / 46.67% duty cycle). Document Number: DS-000189 Revision: 1.3 I2C_MST_CLK NOMINAL CLK FREQUENCY [KHZ] DUTY CYCLE 0 370.29 50.00% 1 - - 2 370.29 50.00% 3 432.00 50.00% 4 370.29 42.86% 5 370.29 50.00% 6 345.60 40.00% 7 345.60 46.67% 8 304.94 47.06% 9 432.00 50.00% 10 432.00 41.67% 11 432.00 41.67% 12 471.27 45.45% 13 432.00 50.00% Page 81 of 89 ICM-20948 I2C_MST_CLK NOMINAL CLK FREQUENCY [KHZ] DUTY CYCLE 14 345.60 46.67% 15 345.60 46.67% Table 23. I2C Master Clock Frequency 14.6 CLOCKING The internal system clock sources include: (1) an internal relaxation oscillator, and (2) a PLL with MEMS gyroscope oscillator as the reference clock. With the recommended clock selection setting (CLKSEL = 1), the best clock source for optimum sensor performance and power consumption will be automatically selected based on the power mode. Specifically, the internal relaxation oscillator will be selected when operating in accelerometer only mode, while the PLL will be selected whenever gyroscope is on, which includes gyroscope and 6-axis modes. As clock accuracy is critical to the preciseness of distance and angle calculations performed by DMP, it should be noted that the internal relaxation oscillator and PLL show different performances in some aspects. The internal relaxation oscillator is trimmed to have a consistent operating frequency at room temperature, while the PLL clock frequency varies from part to part. The PLL frequency deviation from the nominal value in percentage is captured in register TIMEBASE_CORRECTION_PLL, and users can factor it in during distance and angle calculations to not sacrifice accuracy. Other than that, PLL has better frequency stability and lower frequency variation over temperature than the internal relaxation oscillator. 14.7 LP_EN BIT-FIELD USAGE The LP_EN bit-field (User Bank 0, PWR_MGMT_1 register, bit [5] helps to reduce the digital current. The recommended setting for this bit-field is 1 to achieve the lowest possible current. However, when LP_EN is set to 1, user may not be able to write to the following registers. If it is desired to write to registers in this list, it is recommended to first set LP_EN=0, write the desired register(s), then set LP_EN=1 again: • • • • USER BANK 0: All registers except LP_CONFIG, PWR_MGMT_1, PWR_MGMT_2, INT_PIN_CFG, INT_ENABLE, FIFO_COUNTH, FIFO_COUNTL, FIFO_R_W, FIFO_CFG, REG_BANK_SEL USER BANK 1: All registers except REG_BANK_SEL USER BANK 2: All registers except REG_BANK_SEL USER BANK 3: All registers except REG_BANK_SEL 14.8 REGISTER ACCESS USING SPI INTERFACE Using the SPI interface, when the AP/user disables the gyroscope sensor (User Bank 0, PWR_MGMT_2 register, bits [2:0]=111) as part of a sequence of register read or write commands, the AP/user will be required to subsequently wait 22 µs prior to any of the following operations: (1) Writing to any of the following registers: • • • • USER BANK 0: All registers except LP_CONFIG, PWR_MGMT_1, PWR_MGMT_2, INT_PIN_CFG, INT_ENABLE, FIFO_COUNTH, FIFO_COUNTL, FIFO_R_W, FIFO_CFG, REG_BANK_SEL USER BANK 1: All registers except REG_BANK_SEL USER BANK 2: All registers except REG_BANK_SEL USER BANK 3: All registers except REG_BANK_SEL (2) Reading data from FIFO (3) Reading from memory Document Number: DS-000189 Revision: 1.3 Page 82 of 89 ICM-20948 15 ORIENTATION OF AXES Figure 12 and Figure 13 show the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier (•) in the figures. +Z +Y +Z ICM +Y -20 94 8 +X +X Figure 12. Orientation of Axes of Sensitivity and Polarity of Rotation ICM -20 94 8 +X +Y +Z Figure 13. Orientation of Axes of Sensitivity for Magnetometer Document Number: DS-000189 Revision: 1.3 Page 83 of 89 ICM-20948 16 PACKAGE DIMENSIONS This section provides package dimensions for the device. Information for the 24 Lead QFN 3.0x3.0x0.9 package is in Figure 14 and Table 24 Figure 14. Package Dimensions Document Number: DS-000189 Revision: 1.3 Page 84 of 89 ICM-20948 SYMBOLS A A1 b c D D2 E E2 e K L R s y DIMENSIONS IN MILLIMETERS NOM. 1.00 0.02 0.20 0.15 REF. 3.00 1.70 3.00 1.54 0.40 0.35 REF. 0.30 REF. 0.25 REF. --- MIN. 0.95 0.00 0.15 --2.90 1.65 2.90 1.49 ----0.25 0.075 --0.00 Table 24. Package Dimensions Document Number: DS-000189 Revision: 1.3 Page 85 of 89 MAX. 1.05 0.05 0.25 --3.10 1.75 3.10 1.59 ----0.35 ----0.075 ICM-20948 17 PART NUMBER PART MARKINGS The part number part markings for ICM-20948 devices are summarized below: PART NUMBER ICM-20948 PART NUMBER PART MARKING I2948 Table 25. Part Number Part Markings TOP VIEW Part Number Lot Traceability Code I2948 XXXXXX YYWW Y Y = Year Code W W = Work Week Figure 15. Part Number Part Markings Document Number: DS-000189 Revision: 1.3 Page 86 of 89 ICM-20948 18 REFERENCES Please refer to “InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)” for the following information: • • Manufacturing Recommendations o Assembly Guidelines and Recommendations o PCB Design Guidelines and Recommendations o MEMS Handling Instructions o ESD Considerations o Reflow Specification o Storage Specifications o Package Marking Specification o Tape & Reel Specification o Reel & Pizza Box Label o Packaging o Representative Shipping Carton Label Compliance o Environmental Compliance o DRC Compliance o Compliance Declaration Disclaimer Document Number: DS-000189 Revision: 1.3 Page 87 of 89 ICM-20948 19 DOCUMENT INFORMATION 19.1 REVISION HISTORY REVISION DATE REVISION DESCRIPTION 12/07/2016 1.0 Initial Release 1/17/2017 1.1 Formatting fix 04/06/2017 1.2 Updated Section 4 06/02/2017 1.3 Updated Sections 3, 4 Document Number: DS-000189 Revision: 1.3 Page 88 of 89 ICM-20948 COMPLIANCE DECLARATION DISCLAIMER InvenSense believes the environmental and other compliance information given in this document to be correct but cannot guarantee accuracy or completeness. Conformity documents substantiating the specifications and component characteristics are on file. InvenSense subcontracts manufacturing and the information contained herein is based on data received from vendors and suppliers, which has not been validated by InvenSense. This information furnished by InvenSense, Inc. (“InvenSense”) is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights. Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment. ©2016—2017 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. ©2016—2017 InvenSense. All rights reserved. Document Number: DS-000189 Revision: 1.3 Page 89 of 89
ICM-20948 价格&库存

很抱歉,暂时无法提供与“ICM-20948”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ICM-20948
  •  国内价格
  • 1+55.19598
  • 10+52.94163
  • 25+50.33133
  • 50+48.42107
  • 100+46.79556
  • 250+45.81077
  • 500+44.81411

库存:0

ICM-20948
  •  国内价格
  • 100+53.02726
  • 500+51.96505
  • 1000+50.92887
  • 2500+49.91352

库存:1052

ICM-20948
  •  国内价格 香港价格
  • 1+59.446801+7.40060
  • 5+53.577605+6.66990
  • 10+51.3856010+6.39710
  • 25+48.8343025+6.07950
  • 50+47.0017050+5.85130
  • 100+45.42060100+5.65450
  • 500+43.49210500+5.41440
  • 5000+43.492105000+5.41440

库存:0

ICM-20948
  •  国内价格 香港价格
  • 5000+39.950635000+4.97144

库存:0