0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ICP-10110

ICP-10110

  • 厂商:

    TDK(东电化)

  • 封装:

    VFLGA8

  • 描述:

    ICP-10110

  • 数据手册
  • 价格&库存
ICP-10110 数据手册
ICP-10100, ICP-10101, ICP-10110, ICP-10111 High Accuracy, Low Power, Waterproof Barometric Pressure and Temperature Sensor IC GENERAL INFORMATION FEATURES The ICP-101xx pressure sensor family is based on MEMS capacitive technology which provides ultra-low noise at the lowest power, enabling industry leading relative accuracy, sensor throughput, and temperature stability. The pressure sensor can measure pressure differences with an accuracy of ±1 Pa, an accuracy enabling altitude measurement differentials as small as 8.5 cm, less than the height of a single stair step. • • • • Consuming only 1.3 µA @1 Hz, available in a small footprint 2 mm x 2 mm x 0.72 mm waterproof to 1.5m depth 10-pin LGA package (ICP-10100), the ICP-101xx is ideally suited for mobile phones, wearable fitness monitoring, drones, and battery powered IoT. • The ICP-101xx offers an industry leading temperature coefficient offset of ±0.5 Pa/°C. The combination of high accuracy, low power, temperature stability, waterproofing in a small footprint enables higher performance barometric pressure sensing for sports activity identification, mobile indoor/outdoor navigation, and altitude-hold in drones. • • • • • • Pressure operating range: 30 to 110 kPa Noise and current consumption o 0.4 Pa @ 10.4 µA (ULN mode) o 0.8 Pa @ 5.2 µA (LN mode) o 3.2 Pa @ 1.3 µA (LP mode) Pressure Sensor Relative Accuracy: ±1 Pa for any 10 hPa change over 950 hPa-1050 hPa at 25°C Pressure Sensor Absolute Accuracy: ±1 hPa over 950 hPa-1050 hPa, 0°C to 65°C Pressure Sensor Temperature Coefficient Offset: ±0.5 Pa/°C over 25°C to 45°C at 100 kPa Temperature Sensor Absolute Accuracy: ±0.4°C IPx8: Waterproof to 1.5m depth (ICP-10100 & ICP10110) Temperature operating range: -40 °C to 85 °C Host Interface: I2C at up to 400 kHz Single Supply voltage: 1.8V ±5% RoHS and Green compliant DEVICE INFORMATION PART NUMBER ICP-10100 PACKAGE LID OPENING 2x2x0.72mm LGA-10L 3-Hole, IPx8: 1.5m Waterproof 3-Hole IPx8 Lid Opening 1-Hole Lid Opening ICP-10101 2x2x0.72mm LGA-10L 1-Hole ICP-10100 & ICP-10110 ICP-10101 & ICP-10111 ICP-10110 ICP-10111 2x2.5x0.92mm LGA-8L 3-Hole, IPx8: 1.5m Waterproof 2x2.5x0.92mm LGA-8L 1-Hole TYPICAL OPERATING CIRCUIT Denotes RoHS and Green-Compliant Package BLOCK DIAGRAMS AP/HUB I2C ICP-101xx APPLICATIONS • • • • • • • Altitude Control of Drones and Flying Toys Mobile Phones Virtual Reality and Gaming Equipment Indoor/Outdoor Navigation (dead-reckoning, floor/elevator/step detection) Vertical velocity monitoring Leisure, Sports, and Fitness Activity Identification Weather Forecasting InvenSense reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. TDK Corporation 1745 Technology Drive, San Jose, CA 95110 U.S.A +1(408) 988–7339 www.invensense.com Document Number: DS-000186 Revision: 1.2 Release Date: 05/06/2019 ICP-10100, ICP-10101, ICP-10110, ICP-10111 TABLE OF CONTENTS GENERAL INFORMATION............................................................................................................................................................................... 1 DEVICE INFORMATION ................................................................................................................................................................................. 1 APPLICATIONS ............................................................................................................................................................................................ 1 FEATURES .................................................................................................................................................................................................. 1 TYPICAL OPERATING CIRCUIT......................................................................................................................................................................... 1 1 INTRODUCTION ......................................................................................................................................................................... 5 1.1 1.2 2 PRESSURE AND TEMPERATURE SENSOR SPECIFICATIONS ..........................................................................................................6 2.1 2.2 2.3 2.4 2.5 3 OPERATION RANGES ........................................................................................................................................................................ 6 OPERATION MODES ........................................................................................................................................................................ 6 PRESSURE SENSOR SPECIFICATIONS .................................................................................................................................................... 7 TEMPERATURE SENSOR SPECIFICATIONS .............................................................................................................................................. 7 RECOMMENDED OPERATION CONDITIONS ........................................................................................................................................... 7 ELECTRICAL SPECIFICATIONS ...................................................................................................................................................... 8 3.1 3.2 3.3 3.4 4 PURPOSE AND SCOPE ....................................................................................................................................................................... 5 PRODUCT OVERVIEW ....................................................................................................................................................................... 5 ELECTRICAL CHARACTERISTICS ........................................................................................................................................................... 8 ABSOLUTE MAXIMUM RATINGS ......................................................................................................................................................... 9 SENSOR SYSTEM TIMING .................................................................................................................................................................. 9 I2C TIMING CHARACTERIZATION....................................................................................................................................................... 10 APPLICATIONS INFORMATION ................................................................................................................................................. 11 4.1 4.2 INTERFACE SPECIFICATIONS ............................................................................................................................................................. 11 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION .................................................................................................................................... 11 4.3 4.4 TYPICAL OPERATING CIRCUIT........................................................................................................................................................... 13 BILL OF MATERIALS FOR EXTERNAL COMPONENTS ............................................................................................................................... 15 ICP-10100 and ICP-10101: 2x2x0.72mm 10-pin LGA ............................................................................................................................................. 11 ICP-10110 and ICP-10111: 2x2.5x0.92 mm 8-pin LGA ........................................................................................................................................... 12 5 OPERATION AND COMMUNICATION ....................................................................................................................................... 16 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 6 POWER-UP AND COMMUNICATION START ......................................................................................................................................... 16 MEASUREMENT COMMANDS .......................................................................................................................................................... 16 STARTING A MEASUREMENT ........................................................................................................................................................... 16 SENSOR BEHAVIOR DURING MEASUREMENT ...................................................................................................................................... 16 READOUT OF MEASUREMENT RESULTS.............................................................................................................................................. 16 SOFT RESET ................................................................................................................................................................................. 17 READ-OUT OF ID REGISTER ............................................................................................................................................................. 17 CHECKSUM CALCULATION ............................................................................................................................................................... 17 CONVERSION OF SIGNAL OUTPUT..................................................................................................................................................... 18 READ-OUT OF CALIBRATION PARAMETERS ......................................................................................................................................... 19 SAMPLE CODE: EXAMPLE C SYNTAX.................................................................................................................................................. 19 SAMPLE CODE: CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX) ...................................................................................................... 21 SAMPLE CODE: USING CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX) ............................................................................................. 22 COMMUNICATION DATA SEQUENCES ................................................................................................................................................ 22 ASSEMBLY................................................................................................................................................................................ 24 6.1 IMPLEMENTATION AND USAGE RECOMMENDATIONS ........................................................................................................................... 24 Soldering ................................................................................................................................................................................................................ 24 Chemical Exposure and Sensor Protection ............................................................................................................................................................ 24 Document Number: DS-000186 Revision: 1.2 Page 2 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 7 PACKAGE DIMENSIONS ............................................................................................................................................................ 25 8 PART NUMBER PART MARKINGS ............................................................................................................................................. 30 9 ORDERING GUIDE .................................................................................................................................................................... 30 10 REFERENCES ......................................................................................................................................................................... 32 11 REVISION HISTORY ............................................................................................................................................................... 33 Document Number: DS-000186 Revision: 1.2 Page 3 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 LIST OF FIGURES Figure 1. Digital I/O Pads Timing..................................................................................................................................................................................... 10 Figure 2. Pin Out Diagram for ICP-10100 & ICP10101, 2 mm x 2 mm x 0.72 mm LGA ................................................................................................... 11 Figure 3. Pin Out Diagram for ICP-10110 & ICP-10111 2 mm x 2.5 mm x 0.92 mm LGA ................................................................................................ 12 Figure 4. ICP-10100 & ICP-10101 Application Schematic ............................................................................................................................................... 13 Figure 5. Example: Typical application circuit, including pull-up resistor Rp and decoupling of VDD and VSS by capacitor (2 x 2.5 mm package) ........ 14 Figure 6. ICP-10110 & ICP-10111 Application Schematic ............................................................................................................................................... 14 Figure 7. Example: Typical application circuit, including pull-up resistor Rp and decoupling of VDD and VSS by capacitor (2 x 2.5 mm package) ........ 15 Figure 8. Communication Data Sequences ..................................................................................................................................................................... 23 Figure 9. ICP-10100 & ICP-1010 Package Diagrams ........................................................................................................................................................ 25 Figure 10. ICP-10100 & ICP-10101 recommended PCB land pattern ............................................................................................................................. 26 Figure 11. ICP-10110 & ICP-10111 Package Diagrams .................................................................................................................................................... 28 Figure 12. ICP-10110 & ICP-10111 recommended PCB land pattern ............................................................................................................................. 29 Figure 13. Part Number Part Markings ........................................................................................................................................................................... 30 LIST OF TABLES Table 1. Operation Ranges................................................................................................................................................................................................ 6 Table 2. Operation Modes ................................................................................................................................................................................................ 6 Table 3. Pressure Sensor Specifications ............................................................................................................................................................................ 7 Table 4. Temperature Sensor Specifications .................................................................................................................................................................... 7 Table 5. Electrical Specifications ....................................................................................................................................................................................... 8 Table 6. Absolute Maximum Ratings ................................................................................................................................................................................ 9 Table 7. System Timing Specifications .............................................................................................................................................................................. 9 Table 8. I2C Parameters Specification ............................................................................................................................................................................. 10 Table 9. Signal Descriptions ............................................................................................................................................................................................ 11 Table 10. Signal Descriptions .......................................................................................................................................................................................... 12 Table 11. Bill of Materials ............................................................................................................................................................................................... 15 Table 12. ICP-101xx I2C Device Address .......................................................................................................................................................................... 16 Table 13. Measurement Commands............................................................................................................................................................................... 16 Table 14. Soft Reset Command....................................................................................................................................................................................... 17 Table 15. Read-Out Command of ID Register ................................................................................................................................................................. 17 Table 16. 16-bit ID Structure .......................................................................................................................................................................................... 17 Table 17. ICP-101xx I2C CRC Properties .......................................................................................................................................................................... 18 Table 18. ICP-10100 & ICP-10101 Package Dimensions ................................................................................................................................................. 26 Table 19. ICP-10110 & ICP-10111 Package Dimensions ................................................................................................................................................. 28 Table 20. Part Number Part Markings ............................................................................................................................................................................ 30 Document Number: DS-000186 Revision: 1.2 Page 4 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 1 INTRODUCTION 1.1 PURPOSE AND SCOPE This document is a preliminary product specification, providing a description, specifications, and design related information for the ICP-101xx Pressure Sensor. Specifications are subject to change without notice. Final specifications will be updated based upon characterization of production silicon. 1.2 PRODUCT OVERVIEW The ICP-101xx is an ultra-low power, low noise, digital output barometric pressure and temperature sensor IC. It is based on an innovative MEMS capacitive pressure sensor technology that can measure pressure differences with an accuracy of ±1 Pa at the industry’s lowest power. The high accuracy MEMS capacitive pressure sensor is capable of measuring altitude differentials down to 8.5 cm without the penalty of increased power consumption or reduced sensor throughput. The capacitive pressure sensor has a ±1 hPa absolute accuracy over its full range of 300 hPa -1100 hPa. The pressure sensor has an embedded temperature sensor and 400 kHz I2C bus for communication. For power-critical applications, the ICP-101xx features a low power mode of 1.3 µA at a noise of 3.2 Pa or for high performance applications, it features a low noise mode of 0.8 Pa while only consuming 5.2 µA. The ICP-10100 and ICP-10110 has three 0.025 mm package openings, making waterproof to 1.5m for 30 minutes providing many mobile applications improved water resistance with no additional waterproofing costs. The ICP-101xx also offers industry leading temperature stability of the pressure sensor with a temperature coefficient offset of ±0.5 Pa/°C. The high accuracy, temperature stability, and market leading low power consumption of 1.3 µA @1 Hz offered by ICP101xx makes it ideally suited for applications such as mobile phones, drone flight control and stabilization, indoor/outdoor navigation (elevator, floor, and stair step detection), sports and fitness activity monitoring, and battery-powered IoT. Document Number: DS-000186 Revision: 1.2 Page 5 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 2 PRESSURE AND TEMPERATURE SENSOR SPECIFICATIONS 2.1 OPERATION RANGES The sensor shows best performance when operated within the recommended temperature and pressure range (hereafter called normal conditions) of 0°C – 45°C and 95 kPa – 105 kPa, respectively. The following ranges are defined for the device: OPERATION RANGE PRESSURE (KPA) TEMPERATURE (°C) Normal 95 to 105 0 to 45 Extended 30 to 110 -20 to 65 Maximum 25 to 115 -40 to 85 Table 1. Operation Ranges 2.2 OPERATION MODES The sensor can be operated in up to four different measurement modes to satisfy different requirements for power consumption vs. noise, accuracy and measurement frequency. An overview of the operation modes is given in Table 2. PARAMETER Conversion Time Current Consumption Pressure RMS Noise CONDITIONS Time between sending last bit of measurement command, and sensor data ready for measurement 1 Hz ODR Valid for P = 100 kPa, T = 25°C, and U = 1.8V SENSOR MODE Low Power (LP) Normal (N) TYP 1.6 5.6 MAX 1.8 6.3 UNITS NOTES 1 1 Low Noise (LN) Ultra Low Noise (ULN) Low Power (LP) Normal (N) Low Noise (LN) Ultra Low Noise (ULN) Low Power (LP) Normal Low Noise (LN) Ultra Low Noise (ULN) 20.8 23.8 ms 1 83.2 94.5 1.3 2.6 5.2 1 µA 10.4 3.2 1.6 0.8 Pa 0.4 Table 2. Operation Modes Notes: 1. Guaranteed by design. Low Power modes supports ODR greater than 500 Hz while the Low Noise mode provides industry leading RMS noise at a fast 40 Hz ODR. Further decrease in noise may be achieved by software oversampling and filtering through customer’s software implementation or custom TDK-InvenSense operation modes available upon request. Document Number: DS-000186 Revision: 1.2 Page 6 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 2.3 PRESSURE SENSOR SPECIFICATIONS Pressure sensor specifications are given in Table 3. Default conditions of 25 °C and 1.8V supply voltage apply, unless otherwise stated. PARAMETER Absolute Accuracy Relative Accuracy CONDITIONS Normal range Extended range Any step ≤ 1 kPa, 25 °C Any step ≤ 10 kPa, 25 °C TYP ±1 ±1.5 ±1 ±3 UNITS hPa Extended range ±1 hPa/y 1.5 hPa ±0.5 Pa/°C 0.01 Pa Long-term drift During 1 year Solder drift Temperature coefficient offset P = 100 kPa 25°C … 45°C Maximum range Resolution NOTES 1 Pa 1, 2 Table 3. Pressure Sensor Specifications Notes: 1. 2. Absolute accuracy may be improved through One Point Calibration Sensor accuracy post Solder reflow may be improved through One Point Calibration 2.4 TEMPERATURE SENSOR SPECIFICATIONS Specifications of the temperature sensor are shown in Table 4. PARAMETER Absolute Accuracy Repeatability Resolution Long-term drift CONDITIONS Extended range Extended range Maximum range Normal range TYP ±0.4 ±0.1 0.01 600kPa Table 6. Absolute Maximum Ratings 3.3 SENSOR SYSTEM TIMING Default conditions of 25°C and 1.8V supply voltage apply to typ. values listed in Table 7, unless otherwise stated. Max. values apply over the specified operating range of VDD and over the operating temperature range. PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS COMMENTS Power-up time tPU After hard reset, VDD ≥ VPOR - 170 - µs Time between VDD reaching VPU and sensor entering idle state Soft reset time tSR After soft reset - 170 - µs Time between ACK of soft reset command and sensor entering idle state LN Mode - 20.8 23.8 ms Duration for a pressure and temperature measurement Measurement duration tMEAS Table 7. System Timing Specifications Document Number: DS-000186 Revision: 1.2 Page 9 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 3.4 I2C TIMING CHARACTERIZATION Default conditions of 25°C and 1.8V supply voltage apply to values in Table 8, unless otherwise stated. PARAMETER SYMBOL SCL clock frequency CONDITIONS fSCL Hold time (repeated) START condition After this period, the first clock pulse is generated tHD;STA MIN TYP MAX UNITS 0 - 400 kHz 0.6 - - µs LOW period of the SCL clock tLOW 1.3 - - µs HIGH period of the SCL clock tHIGH 0.6 - - µs Set-up time for a repeated START condition tSU;STA 0.6 - - µs SDA hold time tHD;DAT 0 - - µs SDA set-up time tSU;DAT 100 - - ns SCL/SDA rise time tR 20 - 300 ns SCL/SDA fall time tF - - 300 ns SDA valid time tVD;DAT - - 0.9 µs Set-up time for STOP condition tSU;STO 0.6 - - µs CB - - 400 pF Capacitive load on bus line Table 8. I2C Parameters Specification 1/fSC tHIGH tLOW tR tF 70 SCL 30 tHD;DA tSU;D DATA IN 70 SDA 30 tVD;DAT tF DATA OUT 70 SDA 30 Figure 1. Digital I/O Pads Timing Document Number: DS-000186 Revision: 1.2 tR Page 10 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 4 APPLICATIONS INFORMATION 4.1 INTERFACE SPECIFICATIONS The ICP-101xx supports I2C fast mode, SCL clock frequency from 0 to 400 kHz. 4.2 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION ICP-10100 and ICP-10101: 2x2x0.72mm 10-pin LGA PIN NUMBER 1 2 3 4 5 6 7 8 9 10 PIN NAME RESV SCL RESV SDA RESV RESV RESV GND GND VDD DESCRIPTION No Internal Connection: Can connect to VDD/VDDIO/GND/NC I2C Serial Clock Connect to Ground I2C Serial Data Connect to VDD Connect to VDD No Internal Connection: Can connect to VDD/VDDIO/GND/NC Connect to Ground Connect to Ground Power Supply VDD Table 9. Signal Descriptions 3 RESV 4 SDA 5 RESV 2 6 SCL RESV BOTTOM VIEW 1 7 RESV RESV 10 VDD 9 GND 8 GND Figure 2. Pin Out Diagram for ICP-10100 & ICP10101, 2 mm x 2 mm x 0.72 mm LGA Document Number: DS-000186 Revision: 1.2 Page 11 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 ICP-10110 and ICP-10111: 2x2.5x0.92 mm 8-pin LGA PIN NUMBER PIN NAME DESCRIPTION 1 2 3 4 5 6 7 8 GND RESV SDA SCL RESV RESV GND VDD Connect to Ground No Internal Connection: Can connect to VDD/VDDIO/GND/NC I2C Serial Data I2C Serial Clock Connect to Ground No Internal Connection: Can connect to VDD/VDDIO/GND/NC Connect to Ground Power Supply VDD Table 10. Signal Descriptions 1 8 GND VDD 2 7 RESV GND BOTTOM VIEW 3 SDA 4 SCL 6 RESV 5 RESV Figure 3. Pin Out Diagram for ICP-10110 & ICP-10111 2 mm x 2.5 mm x 0.92 mm LGA Document Number: DS-000186 Revision: 1.2 Page 12 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 4.3 TYPICAL OPERATING CIRCUIT GND GND VDD 1.71-1.89V C1, 100nF GND 10 VDD No Internal Connection Can connect to: VDD/VDDIO/GND/NC 9 GND 8 GND 1 7 RESV RESV No Internal Connection Can connect to: VDD/VDDIO/GND/NC TOP VIEW SCL 2 6 SCL RESV 3 4 VDD 5 RESV SDA RESV GND SDA VDD Figure 4. ICP-10100 & ICP-10101 Application Schematic Power supply pins supply voltage (Vdd) and ground (Vss) must be decoupled with a 100 nF capacitor that shall be placed as close to the sensor as possible (see Figure 5). Document Number: DS-000186 Revision: 1.2 Page 13 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 Figure 5. Example: Typical application circuit, including pull-up resistor Rp and decoupling of VDD and VSS by capacitor (2 x 2.5 mm package) SCL is used to synchronize the communication between the microcontroller and the sensor. The master must keep the clock frequency within 0 to 400 kHz as specified in Table 8. The SDA pin is used to transfer data in and out of the sensor. For safe communication, the timing specifications defined in the I2C manual must be met. To avoid signal contention, the microcontroller must only drive SDA and SCL low. External pull-up resistors (i.e. 10 kΩ) are required to pull the signal high. For dimensioning resistor sizes, user should also consider bus capacity requirements. It should be noted that pull-up resistors may be included in I/O circuits of microcontrollers. 1 8 VDD GND VDD 1.71-1.89V GND C1, 100nF GND 2 7 GND GND No Internal Connection RESV Can connect to: VDD/VDDIO/GND/NC 3 SDA 4 SCL TOP No Internal Connection Can connect to: VDD/VDDIO/GND/NC 6 RESV 5 GND RESV SDA SCL Figure 6. ICP-10110 & ICP-10111 Application Schematic Document Number: DS-000186 Revision: 1.2 Page 14 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 Power supply pins supply voltage (Vdd) and ground (Vss) must be decoupled with a 100 nF capacitor that shall be placed as close to the sensor as possible (see Figure 7). The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location. Figure 7. Example: Typical application circuit, including pull-up resistor Rp and decoupling of VDD and VSS by capacitor (2 x 2.5 mm package) 4.4 BILL OF MATERIALS FOR EXTERNAL COMPONENTS COMPONENT VDD Bypass Capacitor LABEL SPECIFICATION QUANTITY C1 Ceramic, X7R, 100 nF ±10% 1 Table 11. Bill of Materials Document Number: DS-000186 Revision: 1.2 Page 15 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 5 OPERATION AND COMMUNICATION All commands and memory locations of the ICP-101xx are mapped to a 16-bit address space which can be accessed via the I2C protocol. ICP-101XX BINARY DECIMAL HEXADECIMAL I2C address 110’0011 99 0x63 Table 12. ICP-101xx I2C Device Address 5.1 POWER-UP AND COMMUNICATION START Upon VDD reaching the power-up voltage level VPOR, the ICP-101xx enters idle state after a duration of tPU. In idle state, the ICP101xx is ready to receive commands from the master (microcontroller). Each transmission sequence begins with START condition (S) and ends with an (optional) STOP condition (P) as described in the I2C-bus specification. Whenever the sensor is powered up, but not performing a measurement or communicating, it automatically enters idle state for energy saving. 5.2 MEASUREMENT COMMANDS The ICP-101xx provides the possibility to define the sensor behavior during measurement as well as the transmission sequence of measurement results. These characteristics are defined by the appropriate measurement command. Each measurement command triggers both a temperature and a pressure measurement. OPERATION MODE Low Power (LP) Normal (N) Low Noise (LN) Ultra-Low Noise (ULN) TRANSMIT T FIRST 0x609C 0x6825 0x70DF 0x7866 TRANSMIT P FIRST 0x401A 0x48A3 0x5059 0x58E0 Table 13. Measurement Commands 5.3 STARTING A MEASUREMENT A measurement communication sequence consists of a START condition followed by the I2C header with the 7-bit I2C device address and a write bit (write W: ‘0’, 8-bit word including I2C header: 0xC6). The sensor indicates the proper reception of a byte by pulling the SDA pin low (ACK bit) after the falling edge of the 8th SCL clock. Then the sensor is ready to receive a 16-bit measurement command. Again, the ICP-101xx acknowledges the proper reception of each byte with ACK condition. A complete measurement cycle is presented in Figure 8. With the acknowledgement of the measurement command, the ICP-101xx starts measuring pressure and temperature. 5.4 SENSOR BEHAVIOR DURING MEASUREMENT In general, the sensor does not respond to any I2C activity during measurement, i.e. I2C read and write headers are not acknowledged (NACK). 5.5 READOUT OF MEASUREMENT RESULTS After a measurement command has been issued and the sensor has completed the measurement, the master can read the measurement results by sending a START condition followed by an I2C read header (8-bit word including I2C header: 0xC7). The sensor will acknowledge the reception of the read header and send the measured data in the specified order to the master. The MSB of the corresponding data is always transmitted first. Temperature data is transmitted in two 8-bit words and pressure data is transmitted in four 8-bit words. Regarding the pressure data, only the first three words MMSB, MLSB and LMSB contain information about the ADC pressure value p_dout. Therefore, for retrieving the ADC pressure value, LLSB must be disregarded: p_dout = MMSB ≪ 16 | MLSB ≪ 8| LMSB. Document Number: DS-000186 Revision: 1.2 Page 16 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 Two bytes of data are always followed by one byte CRC checksum, for calculation see section 5.8. Each byte must be acknowledged by the microcontroller with an ACK condition for the sensor to continue sending data. If the ICP-101xx does not receive an ACK from the master after any byte of data, it will not continue sending data. Whether the sensor sends out pressure or temperature data first depends on the measurement command that was sent to the sensor to initiate the measurement (see Table 13). The I2C master can abort the read transfer with a NACK condition after any data byte if it is not interested in subsequent data, e.g. the CRC byte or the second measurement result, to save time. 5.6 SOFT RESET The ICP-101xx provides a soft reset mechanism that forces the system into a well-defined state without removing the power supply. If the system is in idle state (i.e. if no measurement is in progress) the soft reset command will be accepted by ICP-101xx. This triggers the sensor to reset all internal state machines and reload calibration data from the memory. COMMAND HEXADECIMAL CODE BINARY CODE Soft reset 0x805D 1000’0000’0101’1101 Table 14. Soft Reset Command 5.7 READ-OUT OF ID REGISTER The ICP-101xx has an ID register which contains a specific product code. The read-out of the ID register can be used to verify the presence of the sensor and proper communication. The command to read the ID register is shown in Table 15. COMMAND HEXADECIMAL CODE BINARY CODE Read ID register 0xEFC8 1110’1111’1100’1000 Table 15. Read-Out Command of ID Register It needs to be sent to the ICP-101xx after an I2C write header. After the ICP-101xx has acknowledged the proper reception of the command, the master can send an I2C read header and the ICP-101xx will submit the 16-bit ID followed by 8 bits of CRC. The structure of the ID is described in Table 16. Bits 15:6 of the ID contain unspecified information (marked as “x”), which may vary from sensor to sensor, while bits 5:0 contain the ICP-101xx specific product code. 16-bit ID xxxx'xxxx’xx 00’1000 bits 5 to 0: ICP-101xx-specific product code bits 15 to 6: unspecified information Table 16. 16-bit ID Structure 5.8 CHECKSUM CALCULATION The 8-bit CRC checksum transmitted after each data word is generated by a CRC algorithm with the properties displayed in Table 17. The CRC covers the contents of the two previously transmitted data bytes. Document Number: DS-000186 Revision: 1.2 Page 17 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 PROPERTY VALUE Name CRC-8 Width 8 bits Polynomial 0x31 (x8 + x5 + x4 + 1) Initialization 0xFF Reflect input false Reflect output false Final XOR 0x00 Examples CRC(0x00) = 0xAC CRC(0xBEEF) = 0x92 Table 17. ICP-101xx I2C CRC Properties 5.9 CONVERSION OF SIGNAL OUTPUT Pressure measurement data is always transferred as 4 8-bit words; temperature measurement data is always transferred as two 8bit words. Please see section 5.5 for more details. Temperature measurement values t_dout are linearized by the ICP-101xx and must be calculated to °C by the user via the following formula: T = - 45°C + 175°C 216 × t_dout. For retrieving physical pressure values in Pa the following conversion formula has to be used: P=A+ B , C + pdout where p_dout is the sensor’s raw pressure output. The converted output is compensated for temperature effects via the temperature dependent functions A, B and C. Besides the raw temperature output t_dout, the calculation of A, B and C requires to access calibration parameters OTP0, OTP1, OTP2, OTP3 stored in the OTP of the sensor. Read-out of OTP parameters is described in section 5.10. Full sample code for calculating physical pressure values is given in section 5.11. The general workflow of the conversion is done by: 1) Import class Invensense_pressure_conversion 2) Read out values OTP0, …, OTP3 and save to c1, …, c4 3) Create object name for an individual sensor with parameter values c1, …, c4 name = Invensense_pressure_conversion ([c1,c2,c3,c4]) 4) Get raw pressure p_dout and temperature t_dout data from the sensor as described in chapter 5.5. 5) Call function get_pressure: name.get_pressure(p_dout, t_dout) The sample code from section 5.13 gives an example of this workflow. Document Number: DS-000186 Revision: 1.2 Page 18 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 5.10 READ-OUT OF CALIBRATION PARAMETERS For converting raw pressure data to physical values, four calibration parameters have to be retrieved from the OTP of the sensor. Set up of OTP read: 1) Send I2C write header 0xC6 2) Send command 0xC595 (move pointer in address register) 3) Send address parameter together with its CRC 0x00669C Steps 1) – 3) can be executed on many platforms by a single I2C write of the value 0xC59500669C. Read out parameters: Repeat the following procedure 4 times: Send I2C write header 0xC6 a) b) Send command 0xC7F7 (incremental read-out of OTP) Send I2C read header 0xC7 c) d) Read 3B (2B of data and 1B of CRC) Decode data as 16bit big endian signed integer and store result into n-th calibration parameter cn. e) Steps a) to d) can be executed on many platforms by a single write 0xC7F7 to the chip address followed by a single read of 3 B from the chip address. 5.11 SAMPLE CODE: EXAMPLE C SYNTAX /* data structure to hold pressure sensor related parameters */ typedef struct inv_invpres { struct inv_invpres_serif serif; uint32_t min_delay_us; uint8_t pressure_en; uint8_t temperature_en; float sensor_constants[4]; // OTP values float p_Pa_calib[3]; float LUT_lower; float LUT_upper; float quadr_factor; float offst_factor; } inv_invpres_t; int inv_invpres_init(struct inv_invpres * s) { short otp[4]; read_otp_from_i2c(s, otp); init_base(s, otp); } return 0; int read_otp_from_i2c(struct inv_invpres * s, short *out) { unsigned char data_write[10]; unsigned char data_read[10] = {0}; int status; int i; // OTP Read mode data_write[0] = 0xC5; data_write[1] = 0x95; data_write[2] = 0x00; data_write[3] = 0x66; data_write[4] = 0x9C; Document Number: DS-000186 Revision: 1.2 Page 19 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 status = inv_invpres_serif_write_reg(&s->serif, ICC_ADDR_PRS, data_write, 5); if (status) return status; // Read OTP values for (i = 0; i < 4; i++) { data_write[0] = 0xC7; data_write[1] = 0xF7; status = inv_invpres_serif_write_reg(&s->serif, ICC_ADDR_PRS, data_write, 2); if (status) return status; status = inv_invpres_serif_read_reg(&s->serif, ICC_ADDR_PRS, data_read, 3); if (status) return status; } out[i] = data_read[0]p_Pa_calib[0] = 45000.0; s->p_Pa_calib[1] = 80000.0; s->p_Pa_calib[2] = 105000.0; s->LUT_lower = 3.5 * (1LUT_lower + (float)(s->sensor_constants[0] * t * t) * s->quadr_factor; s2 = s->offst_factor * s->sensor_constants[3] + (float)(s->sensor_constants[1] * t * t) * s->quadr_factor; s3 = s->LUT_upper + (float)(s->sensor_constants[2] * t * t) * s->quadr_factor; in[0] = s1; in[1] = s2; in[2] = s3; calculate_conversion_constants(s, s->p_Pa_calib, in, out); A = out[0]; B = out[1]; C = out[2]; *pressure = A + B / (C + p_LSB); *temperature = -45.f + 175.f/65536.f * T_LSB; } return 0; // p_Pa -- List of 3 values corresponding to applied pressure in Pa // p_LUT -- List of 3 values corresponding to the measured p_LUT values at the applied pressures. void calculate_conversion_constants(struct inv_invpres * s, float *p_Pa, float *p_LUT, float *out) { float A,B,C; C = (p_LUT[0] * p_LUT[1] * (p_Pa[0] - p_Pa[1]) + p_LUT[1] * p_LUT[2] * (p_Pa[1] - p_Pa[2]) + p_LUT[2] * p_LUT[0] * (p_Pa[2] - p_Pa[0])) / Document Number: DS-000186 Revision: 1.2 Page 20 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 (p_LUT[2] * (p_Pa[0] - p_Pa[1]) + p_LUT[0] * (p_Pa[1] - p_Pa[2]) + p_LUT[1] * (p_Pa[2] - p_Pa[0])); A = (p_Pa[0] * p_LUT[0] - p_Pa[1] * p_LUT[1] - (p_Pa[1] - p_Pa[0]) * C) / (p_LUT[0] - p_LUT[1]); B = (p_Pa[0] - A) * (p_LUT[0] + C); } out[0] = A; out[1] = B; out[2] = C; 5.12 SAMPLE CODE: CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX) class InvensensePressureConversion: """ Class for conversion of the pressure and temperature output of the Invensense sensor""" def __init__(self, sensor_constants): """ Initialize customer formula Arguments: sensor_constants -- list of 4 integers: [c1, c2, c3, c4] """ self.sensor_constants = sensor_constants # configuration for ICP-101xx Samples self.p_Pa_calib = [45000.0, 80000.0, 105000.0] self.LUT_lower = 3.5 * (2**20) self.LUT_upper = 11.5 * (2**20) self.quadr_factor = 1 / 16777216.0 self.offst_factor = 2048.0 def calculate_conversion_constants(self, p_Pa, p_LUT): """ calculate temperature dependent constants Arguments: p_Pa -- List of 3 values corresponding to applied pressure in Pa p_LUT -- List of 3 values corresponding to the measured p_LUT values at the applied pressures. """ C = (p_LUT[0] * p_LUT[1] * (p_Pa[0] - p_Pa[1]) + p_LUT[1] * p_LUT[2] * (p_Pa[1] - p_Pa[2]) + p_LUT[2] * p_LUT[0] * (p_Pa[2] - p_Pa[0])) / \ (p_LUT[2] * (p_Pa[0] - p_Pa[1]) + p_LUT[0] * (p_Pa[1] - p_Pa[2]) + p_LUT[1] * (p_Pa[2] - p_Pa[0])) A = (p_Pa[0] * p_LUT[0] - p_Pa[1] * p_LUT[1] - (p_Pa[1] - p_Pa[0]) * C) / (p_LUT[0] - p_LUT[1]) B = (p_Pa[0] - A) * (p_LUT[0] + C) return [A, B, C] def get_pressure(self, p_LSB, T_LSB): Document Number: DS-000186 Revision: 1.2 Page 21 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 """ Convert an output from a calibrated sensor to a pressure in Pa. Arguments: p_LSB -- Raw pressure data from sensor T_LSB -- Raw temperature data from sensor """ t = T_LSB - 32768.0 s1 = self.LUT_lower + float(self.sensor_constants[0] * t * t) * self.quadr_factor s2 = self.offst_factor * self.sensor_constants[3] + float(self.sensor_constants[1] * t * t) * self.quadr_factor s3 = self.LUT_upper + float(self.sensor_constants[2] * t * t) * self.quadr_factor A, B, C = self.calculate_conversion_constants(self.p_Pa_calib, [s1, s2, s3]) return A + B / (C + p_LSB) [end of the pseudocode] 5.13 SAMPLE CODE: USING CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX) def read_otp_from_i2c(): # TODO: implement read from I2C # refer to data sheet for I2C commands to read OTP return 1000, 2000, 3000, 4000 def read_raw_pressure_temp_from_i2c(): # TODO: implement read from I2C # refer to data sheet for I2C commands to read pressure and temperature return 8000000, 32000 # Sample code to read from Invensense_pressure_conversion import Invensense_pressure_conversion # -- initialization c1, c2, c3, c4 = read_otp_from_i2c() conversion = Invensense_pressure_conversion([c1, c2, c3, c4]) # -- read raw pressure and temp data, calculate pressure p, T = read_raw_pressure_temp_from_i2c() pressure = conversion.get_pressure(p, T) print 'Pressure: %f' % pressure [end of the pseudocode] 5.14 COMMUNICATION DATA SEQUENCES 5 6 7 8 S 1 1 0 0 0 1 1 0 I2C address + write Document Number: DS-000186 Revision: 1.2 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 0 1 0 1 0 0 0 0 Measurement command MSB 0 1 0 1 1 0 0 1 Measurement command LSB Page 22 of 34 ACK 4 ACK 3 ACK 1 2 P ICP-101xx measuring Measurement in progress ICP-10100, ICP-10101, ICP-10110, ICP-10111 repeated I2C address + read while meas. is in prog. (polling) P 40 41 42 43 44 45 46 47 48 49 ICP-101xx measuring ICP-101xx in idle state measurement cont’d measurement S 1 1 0 0 0 1 1 1 completed Pressure MMSB 0 0 0 1 1 1 0 0 ACK 0 0 1 1 0 0 1 1 ACK 1 0 1 0 0 0 0 1 ACK 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 Pressure CRC checksum Pressure MLSB Pressure LMSB 0 0 0 1 1 1 0 0 ACK 0 0 1 1 0 0 1 1 ACK 1 0 1 0 0 0 0 1 ACK 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Pressure CRC checksum Pressure LLSB Temperature MSB Temperature LSB 1 1 0 0 0 1 1 1 ACK 1 0 0 0 1 0 1 1 ACK 0 1 1 0 0 1 0 0 ACK 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 P Temperature CRC checksum Figure 8. Communication Data Sequences Document Number: DS-000186 Revision: 1.2 Page 23 of 34 I2C address + read ACK S 1 1 0 0 0 1 1 1 NACK 29 30 31 32 33 34 35 36 37 38 39 ICP-10100, ICP-10101, ICP-10110, ICP-10111 6 ASSEMBLY This section provides general guidelines for assembling TDK-InvenSense Micro Electro-Mechanical Systems (MEMS) pressure sensors. 6.1 IMPLEMENTATION AND USAGE RECOMMENDATIONS Soldering When soldering, use the standard soldering profile IPC/JEDEC J-STD-020 with peak temperatures of 260°C. ICP-101xx may exhibit a pressure offset after soldering, some settling time may be required depending on soldering properties, PCB properties, and ambient conditions. The ICP-101xx is an open cavity package, it is mandatory to use no-clean solder paste and no board wash should be applied. Chemical Exposure and Sensor Protection The ICP-101xx is an open cavity package, the ICP-101x0 is waterproof to 1.5m for 30 minutes (IPx8), however the ICP-101x1 should not be exposed to particulates or liquids. If any type of protective coating must be applied to the circuit board, the sensor must be protected during the coating process. Document Number: DS-000186 Revision: 1.2 Page 24 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 7 PACKAGE DIMENSIONS Package dimensions for the ICP-10100 & ICP-10101: Top View: ICP-10100 Bottom View: ICP-10100 & ICP-10101 Figure 9. ICP-10100 & ICP-1010 Package Diagrams Document Number: DS-000186 Revision: 1.2 Page 25 of 34 Top View: ICP-10101 ICP-10100, ICP-10101, ICP-10110, ICP-10111 SYMBOLS A A3 b c D D1 E E1 e L L1 L3 MIN. 0.64 ------1.90 --1.90 ----0.275 0.025 0.250 DIMENSIONS IN MILLIMETERS NOM. 0.72 0.595 REF. 0.25 0.125 REF. 2.00 1.85 2.00 1.85 0.50 0.375 0.075 0.300 Table 18. ICP-10100 & ICP-10101 Package Dimensions Recommended PCB land pattern for the ICP-10100 & ICP-10101: Figure 10. ICP-10100 & ICP-10101 recommended PCB land pattern Document Number: DS-000186 Revision: 1.2 Page 26 of 34 MAX. 0.800 ------2.10 --2.10 ----0.400 0.100 0.325 ICP-10100, ICP-10101, ICP-10110, ICP-10111 Product artwork for the ICP-10100 & ICP-10101: Package Artwork: ICP-10100 Package Artwork: ICP-10101 Package dimensions for the ICP-10110 & ICP-10111: Top View: ICP-10110 Document Number: DS-000186 Revision: 1.2 Top View: ICP-10111 Page 27 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 Bottom View: ICP-10110 & ICP-10111 Figure 11. ICP-10110 & ICP-10111 Package Diagrams SYMBOLS A A3 b c E E1 D D1 e L L1 L3 S MIN. 0.84 ------1.90 --2.40 ----0.35 0.05 0.30 --- DIMENSIONS IN MILLIMETERS NOM. 0.92 0.79 REF. 0.35 0.13 REF. 2.00 1.85 2.50 2.35 0.65 0.45 0.10 0.35 0.10 Table 19. ICP-10110 & ICP-10111 Package Dimensions Recommended PCB land pattern for the ICP-10110 & ICP-10111: Document Number: DS-000186 Revision: 1.2 Page 28 of 34 MAX. 1.00 ------2.10 --2.60 ----0.55 0.15 0.40 --- ICP-10100, ICP-10101, ICP-10110, ICP-10111 Figure 12. ICP-10110 & ICP-10111 recommended PCB land pattern Product artwork for the ICP-10110 & ICP-10111: Package Artwork: ICP-10110 Document Number: DS-000186 Revision: 1.2 Page 29 of 34 Package Artwork: ICP-10111 ICP-10100, ICP-10101, ICP-10110, ICP-10111 8 PART NUMBER PART MARKINGS The part number part markings for ICP-101xx devices are summarized below: PART NUMBER ICP-10100 ICP-10101 ICP-10110 ICP-10111 PART MARKING P1 P2 P5 P6 Table 20. Part Number Part Markings TOP VIEW Part Number Lot Traceability Code Date Code: (Y)Year(W)WorkWeek Px XXXX YW 1-Hole (ICP-10101) or 3-Hole (ICP-10100) Figure 13. Part Number Part Markings for 2x2mm (ICP-10101 & ICP-10100) TOP VIEW 1-Hole (ICP-10111) or 3-Hole (ICP-10110) Px XXXX YW Part Number Lot Traceability Code Date Code: (Y)Year(W)WorkWeek Figure 144. Part Number Part Markings for 2x2.5mm (ICP-10111 & ICP-10110) Document Number: DS-000186 Revision: 1.2 Page 30 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 9 ORDERING GUIDE PART TEMP RANGE PACKAGE BODY PACKAGE LID QUANTITY PACKAGING ICP-10100† −40°C to +85°C 2x2x0.72mm LGA-10L 3-Hole: 1.5m Waterproof 10,000 13” Tape and Reel 10,000 13” Tape and Reel ICP-10101† −40°C to +85°C 2x2x0.72mm LGA-10L 1-Hole ICP-10110† −40°C to +85°C 2x2.5x0.92mm LGA-8L 3-Hole: 1.5m Waterproof 10,000 13” Tape and Reel ICP-10111† −40°C to +85°C 2x2.5x0.92mm LGA-8L 1-Hole 10,000 13” Tape and Reel †Denotes RoHS and Green-Compliant Package Document Number: DS-000186 Revision: 1.2 Page 31 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 10 REFERENCES Please refer to “InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)” for the following information: • Manufacturing Recommendations o Assembly Guidelines and Recommendations o PCB Design Guidelines and Recommendations o MEMS Handling Instructions o ESD Considerations o Reflow Specification o Storage Specifications o Package Marking Specification o Tape & Reel Specification o Reel & Pizza Box Label o Packaging o Representative Shipping Carton Label • Compliance o Environmental Compliance o DRC Compliance o Compliance Declaration Disclaimer Document Number: DS-000186 Revision: 1.2 Page 32 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 11 REVISION HISTORY Revision Date Revision Description 01/02/2017 1.0 Initial Release 02/04/2019 1.1 Updated package drawing information to include additional details 05/06/2019 1.2 Updated package drawing information to clarify dimensions Document Number: DS-000186 Revision: 1.2 Page 33 of 34 ICP-10100, ICP-10101, ICP-10110, ICP-10111 This information furnished by InvenSense, Inc. (“InvenSense”) is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights. Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment. ©2016—2017 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. ©2016—2019 InvenSense. All rights reserved. Document Number: DS-000186 Revision: 1.2 Page 34 of 34
ICP-10110 价格&库存

很抱歉,暂时无法提供与“ICP-10110”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ICP-10110
  •  国内价格 香港价格
  • 10000+13.7062110000+1.66135

库存:0