ICP-10100, ICP-10101, ICP-10110, ICP-10111
High Accuracy, Low Power, Waterproof Barometric Pressure
and Temperature Sensor IC
GENERAL INFORMATION
FEATURES
The ICP-101xx pressure sensor family is based on MEMS
capacitive technology which provides ultra-low noise at the
lowest power, enabling industry leading relative accuracy,
sensor throughput, and temperature stability. The pressure
sensor can measure pressure differences with an accuracy of
±1 Pa, an accuracy enabling altitude measurement
differentials as small as 8.5 cm, less than the height of a single
stair step.
•
•
•
•
Consuming only 1.3 µA @1 Hz, available in a small footprint
2 mm x 2 mm x 0.72 mm waterproof to 1.5m depth 10-pin
LGA package (ICP-10100), the ICP-101xx is ideally suited for
mobile phones, wearable fitness monitoring, drones, and
battery powered IoT.
•
The ICP-101xx offers an industry leading temperature
coefficient offset of ±0.5 Pa/°C. The combination of high
accuracy, low power, temperature stability, waterproofing in
a small footprint enables higher performance barometric
pressure sensing for sports activity identification, mobile
indoor/outdoor navigation, and altitude-hold in drones.
•
•
•
•
•
•
Pressure operating range: 30 to 110 kPa
Noise and current consumption
o 0.4 Pa @ 10.4 µA (ULN mode)
o 0.8 Pa @ 5.2 µA (LN mode)
o 3.2 Pa @ 1.3 µA (LP mode)
Pressure Sensor Relative Accuracy: ±1 Pa for any
10 hPa change over 950 hPa-1050 hPa at 25°C
Pressure Sensor Absolute Accuracy: ±1 hPa over
950 hPa-1050 hPa, 0°C to 65°C
Pressure Sensor Temperature Coefficient Offset:
±0.5 Pa/°C over 25°C to 45°C at 100 kPa
Temperature Sensor Absolute Accuracy: ±0.4°C
IPx8: Waterproof to 1.5m depth (ICP-10100 & ICP10110)
Temperature operating range: -40 °C to 85 °C
Host Interface: I2C at up to 400 kHz
Single Supply voltage: 1.8V ±5%
RoHS and Green compliant
DEVICE INFORMATION
PART
NUMBER
ICP-10100
PACKAGE
LID OPENING
2x2x0.72mm LGA-10L
3-Hole, IPx8: 1.5m Waterproof
3-Hole IPx8 Lid Opening
1-Hole Lid Opening
ICP-10101
2x2x0.72mm LGA-10L
1-Hole
ICP-10100 & ICP-10110
ICP-10101 & ICP-10111
ICP-10110
ICP-10111
2x2.5x0.92mm LGA-8L
3-Hole, IPx8: 1.5m Waterproof
2x2.5x0.92mm LGA-8L
1-Hole
TYPICAL OPERATING CIRCUIT
Denotes RoHS and Green-Compliant Package
BLOCK DIAGRAMS
AP/HUB
I2C
ICP-101xx
APPLICATIONS
•
•
•
•
•
•
•
Altitude Control of Drones and Flying Toys
Mobile Phones
Virtual Reality and Gaming Equipment
Indoor/Outdoor Navigation (dead-reckoning,
floor/elevator/step detection)
Vertical velocity monitoring
Leisure, Sports, and Fitness Activity Identification
Weather Forecasting
InvenSense reserves the right to change the detail
specifications as may be required to permit
improvements in the design of its products.
TDK Corporation
1745 Technology Drive, San Jose, CA 95110 U.S.A
+1(408) 988–7339
www.invensense.com
Document Number: DS-000186
Revision: 1.2
Release Date: 05/06/2019
ICP-10100, ICP-10101, ICP-10110, ICP-10111
TABLE OF CONTENTS
GENERAL INFORMATION............................................................................................................................................................................... 1
DEVICE INFORMATION ................................................................................................................................................................................. 1
APPLICATIONS ............................................................................................................................................................................................ 1
FEATURES .................................................................................................................................................................................................. 1
TYPICAL OPERATING CIRCUIT......................................................................................................................................................................... 1
1
INTRODUCTION ......................................................................................................................................................................... 5
1.1
1.2
2
PRESSURE AND TEMPERATURE SENSOR SPECIFICATIONS ..........................................................................................................6
2.1
2.2
2.3
2.4
2.5
3
OPERATION RANGES ........................................................................................................................................................................ 6
OPERATION MODES ........................................................................................................................................................................ 6
PRESSURE SENSOR SPECIFICATIONS .................................................................................................................................................... 7
TEMPERATURE SENSOR SPECIFICATIONS .............................................................................................................................................. 7
RECOMMENDED OPERATION CONDITIONS ........................................................................................................................................... 7
ELECTRICAL SPECIFICATIONS ...................................................................................................................................................... 8
3.1
3.2
3.3
3.4
4
PURPOSE AND SCOPE ....................................................................................................................................................................... 5
PRODUCT OVERVIEW ....................................................................................................................................................................... 5
ELECTRICAL CHARACTERISTICS ........................................................................................................................................................... 8
ABSOLUTE MAXIMUM RATINGS ......................................................................................................................................................... 9
SENSOR SYSTEM TIMING .................................................................................................................................................................. 9
I2C TIMING CHARACTERIZATION....................................................................................................................................................... 10
APPLICATIONS INFORMATION ................................................................................................................................................. 11
4.1
4.2
INTERFACE SPECIFICATIONS ............................................................................................................................................................. 11
PIN OUT DIAGRAM AND SIGNAL DESCRIPTION .................................................................................................................................... 11
4.3
4.4
TYPICAL OPERATING CIRCUIT........................................................................................................................................................... 13
BILL OF MATERIALS FOR EXTERNAL COMPONENTS ............................................................................................................................... 15
ICP-10100 and ICP-10101: 2x2x0.72mm 10-pin LGA ............................................................................................................................................. 11
ICP-10110 and ICP-10111: 2x2.5x0.92 mm 8-pin LGA ........................................................................................................................................... 12
5
OPERATION AND COMMUNICATION ....................................................................................................................................... 16
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
6
POWER-UP AND COMMUNICATION START ......................................................................................................................................... 16
MEASUREMENT COMMANDS .......................................................................................................................................................... 16
STARTING A MEASUREMENT ........................................................................................................................................................... 16
SENSOR BEHAVIOR DURING MEASUREMENT ...................................................................................................................................... 16
READOUT OF MEASUREMENT RESULTS.............................................................................................................................................. 16
SOFT RESET ................................................................................................................................................................................. 17
READ-OUT OF ID REGISTER ............................................................................................................................................................. 17
CHECKSUM CALCULATION ............................................................................................................................................................... 17
CONVERSION OF SIGNAL OUTPUT..................................................................................................................................................... 18
READ-OUT OF CALIBRATION PARAMETERS ......................................................................................................................................... 19
SAMPLE CODE: EXAMPLE C SYNTAX.................................................................................................................................................. 19
SAMPLE CODE: CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX) ...................................................................................................... 21
SAMPLE CODE: USING CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX) ............................................................................................. 22
COMMUNICATION DATA SEQUENCES ................................................................................................................................................ 22
ASSEMBLY................................................................................................................................................................................ 24
6.1
IMPLEMENTATION AND USAGE RECOMMENDATIONS ........................................................................................................................... 24
Soldering ................................................................................................................................................................................................................ 24
Chemical Exposure and Sensor Protection ............................................................................................................................................................ 24
Document Number: DS-000186
Revision: 1.2
Page 2 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
7
PACKAGE DIMENSIONS ............................................................................................................................................................ 25
8
PART NUMBER PART MARKINGS ............................................................................................................................................. 30
9
ORDERING GUIDE .................................................................................................................................................................... 30
10
REFERENCES ......................................................................................................................................................................... 32
11
REVISION HISTORY ............................................................................................................................................................... 33
Document Number: DS-000186
Revision: 1.2
Page 3 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
LIST OF FIGURES
Figure 1. Digital I/O Pads Timing..................................................................................................................................................................................... 10
Figure 2. Pin Out Diagram for ICP-10100 & ICP10101, 2 mm x 2 mm x 0.72 mm LGA ................................................................................................... 11
Figure 3. Pin Out Diagram for ICP-10110 & ICP-10111 2 mm x 2.5 mm x 0.92 mm LGA ................................................................................................ 12
Figure 4. ICP-10100 & ICP-10101 Application Schematic ............................................................................................................................................... 13
Figure 5. Example: Typical application circuit, including pull-up resistor Rp and decoupling of VDD and VSS by capacitor (2 x 2.5 mm package) ........ 14
Figure 6. ICP-10110 & ICP-10111 Application Schematic ............................................................................................................................................... 14
Figure 7. Example: Typical application circuit, including pull-up resistor Rp and decoupling of VDD and VSS by capacitor (2 x 2.5 mm package) ........ 15
Figure 8. Communication Data Sequences ..................................................................................................................................................................... 23
Figure 9. ICP-10100 & ICP-1010 Package Diagrams ........................................................................................................................................................ 25
Figure 10. ICP-10100 & ICP-10101 recommended PCB land pattern ............................................................................................................................. 26
Figure 11. ICP-10110 & ICP-10111 Package Diagrams .................................................................................................................................................... 28
Figure 12. ICP-10110 & ICP-10111 recommended PCB land pattern ............................................................................................................................. 29
Figure 13. Part Number Part Markings ........................................................................................................................................................................... 30
LIST OF TABLES
Table 1. Operation Ranges................................................................................................................................................................................................ 6
Table 2. Operation Modes ................................................................................................................................................................................................ 6
Table 3. Pressure Sensor Specifications ............................................................................................................................................................................ 7
Table 4. Temperature Sensor Specifications .................................................................................................................................................................... 7
Table 5. Electrical Specifications ....................................................................................................................................................................................... 8
Table 6. Absolute Maximum Ratings ................................................................................................................................................................................ 9
Table 7. System Timing Specifications .............................................................................................................................................................................. 9
Table 8. I2C Parameters Specification ............................................................................................................................................................................. 10
Table 9. Signal Descriptions ............................................................................................................................................................................................ 11
Table 10. Signal Descriptions .......................................................................................................................................................................................... 12
Table 11. Bill of Materials ............................................................................................................................................................................................... 15
Table 12. ICP-101xx I2C Device Address .......................................................................................................................................................................... 16
Table 13. Measurement Commands............................................................................................................................................................................... 16
Table 14. Soft Reset Command....................................................................................................................................................................................... 17
Table 15. Read-Out Command of ID Register ................................................................................................................................................................. 17
Table 16. 16-bit ID Structure .......................................................................................................................................................................................... 17
Table 17. ICP-101xx I2C CRC Properties .......................................................................................................................................................................... 18
Table 18. ICP-10100 & ICP-10101 Package Dimensions ................................................................................................................................................. 26
Table 19. ICP-10110 & ICP-10111 Package Dimensions ................................................................................................................................................. 28
Table 20. Part Number Part Markings ............................................................................................................................................................................ 30
Document Number: DS-000186
Revision: 1.2
Page 4 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
1 INTRODUCTION
1.1 PURPOSE AND SCOPE
This document is a preliminary product specification, providing a description, specifications, and design related information for the
ICP-101xx Pressure Sensor.
Specifications are subject to change without notice. Final specifications will be updated based upon characterization of production
silicon.
1.2 PRODUCT OVERVIEW
The ICP-101xx is an ultra-low power, low noise, digital output barometric pressure and temperature sensor IC. It is based on an
innovative MEMS capacitive pressure sensor technology that can measure pressure differences with an accuracy of ±1 Pa at the
industry’s lowest power. The high accuracy MEMS capacitive pressure sensor is capable of measuring altitude differentials down to
8.5 cm without the penalty of increased power consumption or reduced sensor throughput.
The capacitive pressure sensor has a ±1 hPa absolute accuracy over its full range of 300 hPa -1100 hPa. The pressure sensor has an
embedded temperature sensor and 400 kHz I2C bus for communication. For power-critical applications, the ICP-101xx features a low
power mode of 1.3 µA at a noise of 3.2 Pa or for high performance applications, it features a low noise mode of 0.8 Pa while only
consuming 5.2 µA.
The ICP-10100 and ICP-10110 has three 0.025 mm package openings, making waterproof to 1.5m for 30 minutes providing many
mobile applications improved water resistance with no additional waterproofing costs.
The ICP-101xx also offers industry leading temperature stability of the pressure sensor with a temperature coefficient offset of
±0.5 Pa/°C. The high accuracy, temperature stability, and market leading low power consumption of 1.3 µA @1 Hz offered by ICP101xx makes it ideally suited for applications such as mobile phones, drone flight control and stabilization, indoor/outdoor
navigation (elevator, floor, and stair step detection), sports and fitness activity monitoring, and battery-powered IoT.
Document Number: DS-000186
Revision: 1.2
Page 5 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
2 PRESSURE AND TEMPERATURE SENSOR SPECIFICATIONS
2.1 OPERATION RANGES
The sensor shows best performance when operated within the recommended temperature and pressure range (hereafter called
normal conditions) of 0°C – 45°C and 95 kPa – 105 kPa, respectively. The following ranges are defined for the device:
OPERATION RANGE
PRESSURE (KPA)
TEMPERATURE (°C)
Normal
95 to 105
0 to 45
Extended
30 to 110
-20 to 65
Maximum
25 to 115
-40 to 85
Table 1. Operation Ranges
2.2 OPERATION MODES
The sensor can be operated in up to four different measurement modes to satisfy different requirements for power consumption vs.
noise, accuracy and measurement frequency. An overview of the operation modes is given in Table 2.
PARAMETER
Conversion Time
Current
Consumption
Pressure RMS Noise
CONDITIONS
Time between sending last bit of
measurement command, and
sensor data ready for
measurement
1 Hz ODR
Valid for P = 100 kPa, T = 25°C,
and U = 1.8V
SENSOR MODE
Low Power (LP)
Normal (N)
TYP
1.6
5.6
MAX
1.8
6.3
UNITS
NOTES
1
1
Low Noise (LN)
Ultra Low Noise
(ULN)
Low Power (LP)
Normal (N)
Low Noise (LN)
Ultra Low Noise
(ULN)
Low Power (LP)
Normal
Low Noise (LN)
Ultra Low Noise
(ULN)
20.8
23.8
ms
1
83.2
94.5
1.3
2.6
5.2
1
µA
10.4
3.2
1.6
0.8
Pa
0.4
Table 2. Operation Modes
Notes:
1.
Guaranteed by design.
Low Power modes supports ODR greater than 500 Hz while the Low Noise mode provides industry leading RMS noise at a fast 40 Hz
ODR. Further decrease in noise may be achieved by software oversampling and filtering through customer’s software
implementation or custom TDK-InvenSense operation modes available upon request.
Document Number: DS-000186
Revision: 1.2
Page 6 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
2.3 PRESSURE SENSOR SPECIFICATIONS
Pressure sensor specifications are given in Table 3. Default conditions of 25 °C and 1.8V supply voltage apply, unless otherwise stated.
PARAMETER
Absolute Accuracy
Relative Accuracy
CONDITIONS
Normal range
Extended range
Any step ≤ 1 kPa, 25 °C
Any step ≤ 10 kPa, 25 °C
TYP
±1
±1.5
±1
±3
UNITS
hPa
Extended range
±1
hPa/y
1.5
hPa
±0.5
Pa/°C
0.01
Pa
Long-term drift
During 1 year
Solder drift
Temperature coefficient offset
P = 100 kPa
25°C … 45°C
Maximum range
Resolution
NOTES
1
Pa
1, 2
Table 3. Pressure Sensor Specifications
Notes:
1.
2.
Absolute accuracy may be improved through One Point Calibration
Sensor accuracy post Solder reflow may be improved through One Point Calibration
2.4 TEMPERATURE SENSOR SPECIFICATIONS
Specifications of the temperature sensor are shown in Table 4.
PARAMETER
Absolute Accuracy
Repeatability
Resolution
Long-term drift
CONDITIONS
Extended range
Extended range
Maximum range
Normal range
TYP
±0.4
±0.1
0.01
600kPa
Table 6. Absolute Maximum Ratings
3.3 SENSOR SYSTEM TIMING
Default conditions of 25°C and 1.8V supply voltage apply to typ. values listed in Table 7, unless otherwise stated. Max. values apply
over the specified operating range of VDD and over the operating temperature range.
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
COMMENTS
Power-up time
tPU
After hard reset, VDD ≥ VPOR
-
170
-
µs
Time between VDD reaching VPU
and sensor entering idle state
Soft reset time
tSR
After soft reset
-
170
-
µs
Time between ACK of soft reset
command and sensor entering
idle state
LN Mode
-
20.8
23.8
ms
Duration for a pressure and
temperature measurement
Measurement duration
tMEAS
Table 7. System Timing Specifications
Document Number: DS-000186
Revision: 1.2
Page 9 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
3.4 I2C TIMING CHARACTERIZATION
Default conditions of 25°C and 1.8V supply voltage apply to values in Table 8, unless otherwise stated.
PARAMETER
SYMBOL
SCL clock frequency
CONDITIONS
fSCL
Hold time (repeated) START condition
After this period, the first clock
pulse is generated
tHD;STA
MIN
TYP
MAX
UNITS
0
-
400
kHz
0.6
-
-
µs
LOW period of the SCL clock
tLOW
1.3
-
-
µs
HIGH period of the SCL clock
tHIGH
0.6
-
-
µs
Set-up time for a repeated START condition
tSU;STA
0.6
-
-
µs
SDA hold time
tHD;DAT
0
-
-
µs
SDA set-up time
tSU;DAT
100
-
-
ns
SCL/SDA rise time
tR
20
-
300
ns
SCL/SDA fall time
tF
-
-
300
ns
SDA valid time
tVD;DAT
-
-
0.9
µs
Set-up time for STOP condition
tSU;STO
0.6
-
-
µs
CB
-
-
400
pF
Capacitive load on bus line
Table 8. I2C Parameters Specification
1/fSC
tHIGH
tLOW
tR
tF
70
SCL
30
tHD;DA
tSU;D
DATA IN
70
SDA
30
tVD;DAT
tF
DATA OUT
70
SDA
30
Figure 1. Digital I/O Pads Timing
Document Number: DS-000186
Revision: 1.2
tR
Page 10 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
4 APPLICATIONS INFORMATION
4.1 INTERFACE SPECIFICATIONS
The ICP-101xx supports I2C fast mode, SCL clock frequency from 0 to 400 kHz.
4.2 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION
ICP-10100 and ICP-10101: 2x2x0.72mm 10-pin LGA
PIN NUMBER
1
2
3
4
5
6
7
8
9
10
PIN NAME
RESV
SCL
RESV
SDA
RESV
RESV
RESV
GND
GND
VDD
DESCRIPTION
No Internal Connection: Can connect to VDD/VDDIO/GND/NC
I2C Serial Clock
Connect to Ground
I2C Serial Data
Connect to VDD
Connect to VDD
No Internal Connection: Can connect to VDD/VDDIO/GND/NC
Connect to Ground
Connect to Ground
Power Supply VDD
Table 9. Signal Descriptions
3
RESV
4
SDA
5
RESV
2
6
SCL
RESV
BOTTOM VIEW
1
7
RESV
RESV
10
VDD
9
GND
8
GND
Figure 2. Pin Out Diagram for ICP-10100 & ICP10101, 2 mm x 2 mm x 0.72 mm LGA
Document Number: DS-000186
Revision: 1.2
Page 11 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
ICP-10110 and ICP-10111: 2x2.5x0.92 mm 8-pin LGA
PIN NUMBER
PIN NAME
DESCRIPTION
1
2
3
4
5
6
7
8
GND
RESV
SDA
SCL
RESV
RESV
GND
VDD
Connect to Ground
No Internal Connection: Can connect to VDD/VDDIO/GND/NC
I2C Serial Data
I2C Serial Clock
Connect to Ground
No Internal Connection: Can connect to VDD/VDDIO/GND/NC
Connect to Ground
Power Supply VDD
Table 10. Signal Descriptions
1
8
GND
VDD
2
7
RESV
GND
BOTTOM VIEW
3
SDA
4
SCL
6
RESV
5
RESV
Figure 3. Pin Out Diagram for ICP-10110 & ICP-10111 2 mm x 2.5 mm x 0.92 mm LGA
Document Number: DS-000186
Revision: 1.2
Page 12 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
4.3 TYPICAL OPERATING CIRCUIT
GND
GND
VDD
1.71-1.89V
C1, 100nF
GND
10
VDD
No Internal Connection
Can connect to: VDD/VDDIO/GND/NC
9
GND
8
GND
1
7
RESV
RESV
No Internal Connection
Can connect to: VDD/VDDIO/GND/NC
TOP VIEW
SCL
2
6
SCL
RESV
3
4
VDD
5
RESV
SDA
RESV
GND
SDA
VDD
Figure 4. ICP-10100 & ICP-10101 Application Schematic
Power supply pins supply voltage (Vdd) and ground (Vss) must be decoupled with a 100 nF capacitor that shall be placed as close to
the sensor as possible (see Figure 5).
Document Number: DS-000186
Revision: 1.2
Page 13 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
Figure 5. Example: Typical application circuit, including pull-up resistor Rp and decoupling of VDD and VSS by capacitor (2 x 2.5 mm package)
SCL is used to synchronize the communication between the microcontroller and the sensor. The master must keep the clock
frequency within 0 to 400 kHz as specified in Table 8.
The SDA pin is used to transfer data in and out of the sensor. For safe communication, the timing specifications defined in the I2C
manual must be met.
To avoid signal contention, the microcontroller must only drive SDA and SCL low. External pull-up resistors (i.e. 10 kΩ) are required
to pull the signal high. For dimensioning resistor sizes, user should also consider bus capacity requirements. It should be noted that
pull-up resistors may be included in I/O circuits of microcontrollers.
1
8
VDD
GND
VDD
1.71-1.89V
GND
C1, 100nF
GND
2
7
GND
GND
No Internal Connection
RESV
Can connect to: VDD/VDDIO/GND/NC
3
SDA
4
SCL
TOP
No Internal Connection
Can connect to: VDD/VDDIO/GND/NC
6
RESV
5
GND
RESV
SDA
SCL
Figure 6. ICP-10110 & ICP-10111 Application Schematic
Document Number: DS-000186
Revision: 1.2
Page 14 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
Power supply pins supply voltage (Vdd) and ground (Vss) must be decoupled with a 100 nF capacitor that shall be placed as close to
the sensor as possible (see Figure 7).
The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.
Figure 7. Example: Typical application circuit, including pull-up resistor Rp and decoupling of VDD and VSS by capacitor (2 x 2.5 mm package)
4.4 BILL OF MATERIALS FOR EXTERNAL COMPONENTS
COMPONENT
VDD Bypass Capacitor
LABEL
SPECIFICATION
QUANTITY
C1
Ceramic, X7R, 100 nF ±10%
1
Table 11. Bill of Materials
Document Number: DS-000186
Revision: 1.2
Page 15 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
5 OPERATION AND COMMUNICATION
All commands and memory locations of the ICP-101xx are mapped to a 16-bit address space which can be accessed via the I2C protocol.
ICP-101XX
BINARY
DECIMAL
HEXADECIMAL
I2C address
110’0011
99
0x63
Table 12. ICP-101xx I2C Device Address
5.1 POWER-UP AND COMMUNICATION START
Upon VDD reaching the power-up voltage level VPOR, the ICP-101xx enters idle state after a duration of tPU. In idle state, the ICP101xx is ready to receive commands from the master (microcontroller).
Each transmission sequence begins with START condition (S) and ends with an (optional) STOP condition (P) as described in the
I2C-bus specification. Whenever the sensor is powered up, but not performing a measurement or communicating, it automatically
enters idle state for energy saving.
5.2 MEASUREMENT COMMANDS
The ICP-101xx provides the possibility to define the sensor behavior during measurement as well as the transmission sequence of
measurement results. These characteristics are defined by the appropriate measurement command.
Each measurement command triggers both a temperature and a pressure measurement.
OPERATION MODE
Low Power (LP)
Normal (N)
Low Noise (LN)
Ultra-Low Noise (ULN)
TRANSMIT T FIRST
0x609C
0x6825
0x70DF
0x7866
TRANSMIT P FIRST
0x401A
0x48A3
0x5059
0x58E0
Table 13. Measurement Commands
5.3 STARTING A MEASUREMENT
A measurement communication sequence consists of a START condition followed by the I2C header with the 7-bit I2C device address
and a write bit (write W: ‘0’, 8-bit word including I2C header: 0xC6). The sensor indicates the proper reception of a byte by pulling
the SDA pin low (ACK bit) after the falling edge of the 8th SCL clock. Then the sensor is ready to receive a 16-bit measurement
command. Again, the ICP-101xx acknowledges the proper reception of each byte with ACK condition. A complete measurement
cycle is presented in Figure 8.
With the acknowledgement of the measurement command, the ICP-101xx starts measuring pressure and temperature.
5.4 SENSOR BEHAVIOR DURING MEASUREMENT
In general, the sensor does not respond to any I2C activity during measurement, i.e. I2C read and write headers are not
acknowledged (NACK).
5.5 READOUT OF MEASUREMENT RESULTS
After a measurement command has been issued and the sensor has completed the measurement, the master can read the
measurement results by sending a START condition followed by an I2C read header (8-bit word including I2C header: 0xC7). The
sensor will acknowledge the reception of the read header and send the measured data in the specified order to the master. The MSB
of the corresponding data is always transmitted first. Temperature data is transmitted in two 8-bit words and pressure data is
transmitted in four 8-bit words. Regarding the pressure data, only the first three words MMSB, MLSB and LMSB contain information
about the ADC pressure value p_dout. Therefore, for retrieving the ADC pressure value, LLSB must be disregarded:
p_dout = MMSB ≪ 16 | MLSB ≪ 8| LMSB.
Document Number: DS-000186
Revision: 1.2
Page 16 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
Two bytes of data are always followed by one byte CRC checksum, for calculation see section 5.8. Each byte must be acknowledged
by the microcontroller with an ACK condition for the sensor to continue sending data. If the ICP-101xx does not receive an ACK from
the master after any byte of data, it will not continue sending data.
Whether the sensor sends out pressure or temperature data first depends on the measurement command that was sent to the
sensor to initiate the measurement (see Table 13).
The I2C master can abort the read transfer with a NACK condition after any data byte if it is not interested in subsequent data, e.g.
the CRC byte or the second measurement result, to save time.
5.6 SOFT RESET
The ICP-101xx provides a soft reset mechanism that forces the system into a well-defined state without removing the power supply.
If the system is in idle state (i.e. if no measurement is in progress) the soft reset command will be accepted by ICP-101xx. This
triggers the sensor to reset all internal state machines and reload calibration data from the memory.
COMMAND
HEXADECIMAL CODE
BINARY CODE
Soft reset
0x805D
1000’0000’0101’1101
Table 14. Soft Reset Command
5.7 READ-OUT OF ID REGISTER
The ICP-101xx has an ID register which contains a specific product code. The read-out of the ID register can be used to verify the
presence of the sensor and proper communication. The command to read the ID register is shown in Table 15.
COMMAND
HEXADECIMAL CODE
BINARY CODE
Read ID register
0xEFC8
1110’1111’1100’1000
Table 15. Read-Out Command of ID Register
It needs to be sent to the ICP-101xx after an I2C write header. After the ICP-101xx has acknowledged the proper reception of the
command, the master can send an I2C read header and the ICP-101xx will submit the 16-bit ID followed by 8 bits of CRC. The
structure of the ID is described in Table 16. Bits 15:6 of the ID contain unspecified information (marked as “x”), which may vary from
sensor to sensor, while bits 5:0 contain the ICP-101xx specific product code.
16-bit ID
xxxx'xxxx’xx 00’1000
bits 5 to 0: ICP-101xx-specific product code
bits 15 to 6: unspecified information
Table 16. 16-bit ID Structure
5.8 CHECKSUM CALCULATION
The 8-bit CRC checksum transmitted after each data word is generated by a CRC algorithm with the properties displayed in Table 17.
The CRC covers the contents of the two previously transmitted data bytes.
Document Number: DS-000186
Revision: 1.2
Page 17 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
PROPERTY
VALUE
Name
CRC-8
Width
8 bits
Polynomial
0x31 (x8 + x5 + x4 + 1)
Initialization
0xFF
Reflect input
false
Reflect output
false
Final XOR
0x00
Examples
CRC(0x00) = 0xAC
CRC(0xBEEF) = 0x92
Table 17. ICP-101xx I2C CRC Properties
5.9 CONVERSION OF SIGNAL OUTPUT
Pressure measurement data is always transferred as 4 8-bit words; temperature measurement data is always transferred as two 8bit words. Please see section 5.5 for more details.
Temperature measurement values t_dout are linearized by the ICP-101xx and must be calculated to °C by the user via the following
formula:
T = - 45°C +
175°C
216
× t_dout.
For retrieving physical pressure values in Pa the following conversion formula has to be used:
P=A+
B
,
C + pdout
where p_dout is the sensor’s raw pressure output. The converted output is compensated for temperature effects via the
temperature dependent functions A, B and C. Besides the raw temperature output t_dout, the calculation of A, B and C requires to
access calibration parameters OTP0, OTP1, OTP2, OTP3 stored in the OTP of the sensor. Read-out of OTP parameters is described in
section 5.10.
Full sample code for calculating physical pressure values is given in section 5.11. The general workflow of the conversion is done by:
1) Import class
Invensense_pressure_conversion
2) Read out values OTP0, …, OTP3 and save to c1, …, c4
3) Create object name for an individual sensor with parameter values c1, …, c4
name = Invensense_pressure_conversion
([c1,c2,c3,c4])
4) Get raw pressure p_dout and temperature t_dout data from the sensor as described in chapter 5.5.
5) Call function get_pressure:
name.get_pressure(p_dout, t_dout)
The sample code from section 5.13 gives an example of this workflow.
Document Number: DS-000186
Revision: 1.2
Page 18 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
5.10 READ-OUT OF CALIBRATION PARAMETERS
For converting raw pressure data to physical values, four calibration parameters have to be retrieved from the OTP of the sensor.
Set up of OTP read:
1) Send I2C write header 0xC6
2) Send command 0xC595 (move pointer in address register)
3) Send address parameter together with its CRC 0x00669C
Steps 1) – 3) can be executed on many platforms by a single I2C write of the value 0xC59500669C.
Read out parameters:
Repeat the following procedure 4 times:
Send I2C write header 0xC6
a)
b) Send command 0xC7F7 (incremental read-out of OTP)
Send I2C read header 0xC7
c)
d) Read 3B (2B of data and 1B of CRC)
Decode data as 16bit big endian signed integer and store result into n-th calibration parameter cn.
e)
Steps a) to d) can be executed on many platforms by a single write 0xC7F7 to the chip address followed by a single read of 3 B from
the chip address.
5.11 SAMPLE CODE: EXAMPLE C SYNTAX
/* data structure to hold pressure sensor related parameters */
typedef struct inv_invpres
{
struct inv_invpres_serif serif;
uint32_t min_delay_us;
uint8_t pressure_en;
uint8_t temperature_en;
float sensor_constants[4]; // OTP values
float p_Pa_calib[3];
float LUT_lower;
float LUT_upper;
float quadr_factor;
float offst_factor;
} inv_invpres_t;
int inv_invpres_init(struct inv_invpres * s)
{
short otp[4];
read_otp_from_i2c(s, otp);
init_base(s, otp);
}
return 0;
int read_otp_from_i2c(struct inv_invpres * s, short *out)
{
unsigned char data_write[10];
unsigned char data_read[10] = {0};
int status;
int i;
// OTP Read mode
data_write[0] = 0xC5;
data_write[1] = 0x95;
data_write[2] = 0x00;
data_write[3] = 0x66;
data_write[4] = 0x9C;
Document Number: DS-000186
Revision: 1.2
Page 19 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
status = inv_invpres_serif_write_reg(&s->serif, ICC_ADDR_PRS, data_write, 5);
if (status)
return status;
// Read OTP values
for (i = 0; i < 4; i++) {
data_write[0] = 0xC7;
data_write[1] = 0xF7;
status = inv_invpres_serif_write_reg(&s->serif, ICC_ADDR_PRS, data_write, 2);
if (status)
return status;
status = inv_invpres_serif_read_reg(&s->serif, ICC_ADDR_PRS, data_read, 3);
if (status)
return status;
}
out[i] = data_read[0]p_Pa_calib[0] = 45000.0;
s->p_Pa_calib[1] = 80000.0;
s->p_Pa_calib[2] = 105000.0;
s->LUT_lower = 3.5 * (1LUT_lower + (float)(s->sensor_constants[0] * t * t) * s->quadr_factor;
s2 = s->offst_factor * s->sensor_constants[3] + (float)(s->sensor_constants[1] * t * t) * s->quadr_factor;
s3 = s->LUT_upper + (float)(s->sensor_constants[2] * t * t) * s->quadr_factor;
in[0] = s1;
in[1] = s2;
in[2] = s3;
calculate_conversion_constants(s, s->p_Pa_calib, in, out);
A = out[0];
B = out[1];
C = out[2];
*pressure = A + B / (C + p_LSB);
*temperature = -45.f + 175.f/65536.f * T_LSB;
}
return 0;
// p_Pa -- List of 3 values corresponding to applied pressure in Pa
// p_LUT -- List of 3 values corresponding to the measured p_LUT values at the applied pressures.
void calculate_conversion_constants(struct inv_invpres * s, float *p_Pa,
float *p_LUT, float *out)
{
float A,B,C;
C = (p_LUT[0] * p_LUT[1] * (p_Pa[0] - p_Pa[1]) +
p_LUT[1] * p_LUT[2] * (p_Pa[1] - p_Pa[2]) +
p_LUT[2] * p_LUT[0] * (p_Pa[2] - p_Pa[0])) /
Document Number: DS-000186
Revision: 1.2
Page 20 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
(p_LUT[2] * (p_Pa[0] - p_Pa[1]) +
p_LUT[0] * (p_Pa[1] - p_Pa[2]) +
p_LUT[1] * (p_Pa[2] - p_Pa[0]));
A = (p_Pa[0] * p_LUT[0] - p_Pa[1] * p_LUT[1] - (p_Pa[1] - p_Pa[0]) * C) / (p_LUT[0] - p_LUT[1]);
B = (p_Pa[0] - A) * (p_LUT[0] + C);
}
out[0] = A;
out[1] = B;
out[2] = C;
5.12 SAMPLE CODE: CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)
class
InvensensePressureConversion:
""" Class for conversion of the pressure and temperature output of the Invensense sensor"""
def __init__(self, sensor_constants):
""" Initialize customer formula
Arguments:
sensor_constants -- list of 4 integers: [c1, c2, c3, c4]
"""
self.sensor_constants = sensor_constants
# configuration for ICP-101xx Samples
self.p_Pa_calib = [45000.0, 80000.0, 105000.0]
self.LUT_lower = 3.5 * (2**20)
self.LUT_upper = 11.5 * (2**20)
self.quadr_factor = 1 / 16777216.0
self.offst_factor = 2048.0
def calculate_conversion_constants(self, p_Pa, p_LUT):
""" calculate temperature dependent constants
Arguments:
p_Pa -- List of 3 values corresponding to applied pressure in Pa
p_LUT -- List of 3 values corresponding to the measured p_LUT values at the applied pressures.
"""
C = (p_LUT[0] * p_LUT[1] * (p_Pa[0] - p_Pa[1]) +
p_LUT[1] * p_LUT[2] * (p_Pa[1] - p_Pa[2]) +
p_LUT[2] * p_LUT[0] * (p_Pa[2] - p_Pa[0])) / \
(p_LUT[2] * (p_Pa[0] - p_Pa[1]) +
p_LUT[0] * (p_Pa[1] - p_Pa[2]) +
p_LUT[1] * (p_Pa[2] - p_Pa[0]))
A = (p_Pa[0] * p_LUT[0] - p_Pa[1] * p_LUT[1] - (p_Pa[1] - p_Pa[0]) * C) / (p_LUT[0] - p_LUT[1])
B = (p_Pa[0] - A) * (p_LUT[0] + C)
return [A, B, C]
def get_pressure(self, p_LSB, T_LSB):
Document Number: DS-000186
Revision: 1.2
Page 21 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
""" Convert an output from a calibrated sensor to a pressure in Pa.
Arguments:
p_LSB -- Raw pressure data from sensor
T_LSB -- Raw temperature data from sensor
"""
t = T_LSB - 32768.0
s1 = self.LUT_lower + float(self.sensor_constants[0] * t * t) * self.quadr_factor
s2 = self.offst_factor * self.sensor_constants[3] + float(self.sensor_constants[1] * t * t) * self.quadr_factor
s3 = self.LUT_upper + float(self.sensor_constants[2] * t * t) * self.quadr_factor
A, B, C = self.calculate_conversion_constants(self.p_Pa_calib, [s1, s2, s3])
return A + B / (C + p_LSB)
[end of the pseudocode]
5.13 SAMPLE CODE: USING CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)
def read_otp_from_i2c():
# TODO: implement read from I2C
# refer to data sheet for I2C commands to read OTP
return 1000, 2000, 3000, 4000
def read_raw_pressure_temp_from_i2c():
# TODO: implement read from I2C
# refer to data sheet for I2C commands to read pressure and temperature
return 8000000, 32000
# Sample code to read
from
Invensense_pressure_conversion import
Invensense_pressure_conversion
# -- initialization
c1, c2, c3, c4 = read_otp_from_i2c()
conversion =
Invensense_pressure_conversion([c1, c2, c3, c4])
# -- read raw pressure and temp data, calculate pressure
p, T = read_raw_pressure_temp_from_i2c()
pressure = conversion.get_pressure(p, T)
print 'Pressure: %f' % pressure
[end of the pseudocode]
5.14 COMMUNICATION DATA SEQUENCES
5
6
7
8
S 1 1 0 0 0 1 1 0
I2C address + write
Document Number: DS-000186
Revision: 1.2
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0 1 0 1 0 0 0 0
Measurement command
MSB
0 1 0 1 1 0 0 1
Measurement command
LSB
Page 22 of 34
ACK
4
ACK
3
ACK
1 2
P
ICP-101xx measuring
Measurement in progress
ICP-10100, ICP-10101, ICP-10110, ICP-10111
repeated I2C address +
read while meas. is in
prog. (polling)
P
40 41 42 43 44 45 46 47 48 49
ICP-101xx
measuring
ICP-101xx in
idle state
measurement
cont’d
measurement
S 1 1 0 0 0 1 1 1
completed
Pressure MMSB
0 0 0 1 1 1 0 0
ACK
0 0 1 1 0 0 1 1
ACK
1 0 1 0 0 0 0 1
ACK
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
Pressure CRC
checksum
Pressure MLSB
Pressure LMSB
0 0 0 1 1 1 0 0
ACK
0 0 1 1 0 0 1 1
ACK
1 0 1 0 0 0 0 1
ACK
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
Pressure CRC
checksum
Pressure LLSB
Temperature MSB
Temperature LSB
1 1 0 0 0 1 1 1
ACK
1 0 0 0 1 0 1 1
ACK
0 1 1 0 0 1 0 0
ACK
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
P
Temperature CRC
checksum
Figure 8. Communication Data Sequences
Document Number: DS-000186
Revision: 1.2
Page 23 of 34
I2C address + read
ACK
S 1 1 0 0 0 1 1 1
NACK
29 30 31 32 33 34 35 36 37 38 39
ICP-10100, ICP-10101, ICP-10110, ICP-10111
6 ASSEMBLY
This section provides general guidelines for assembling TDK-InvenSense Micro Electro-Mechanical Systems (MEMS) pressure sensors.
6.1 IMPLEMENTATION AND USAGE RECOMMENDATIONS
Soldering
When soldering, use the standard soldering profile IPC/JEDEC J-STD-020 with peak temperatures of 260°C. ICP-101xx may exhibit a
pressure offset after soldering, some settling time may be required depending on soldering properties, PCB properties, and ambient
conditions.
The ICP-101xx is an open cavity package, it is mandatory to use no-clean solder paste and no board wash should be applied.
Chemical Exposure and Sensor Protection
The ICP-101xx is an open cavity package, the ICP-101x0 is waterproof to 1.5m for 30 minutes (IPx8), however the ICP-101x1 should
not be exposed to particulates or liquids. If any type of protective coating must be applied to the circuit board, the sensor must be
protected during the coating process.
Document Number: DS-000186
Revision: 1.2
Page 24 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
7 PACKAGE DIMENSIONS
Package dimensions for the ICP-10100 & ICP-10101:
Top View: ICP-10100
Bottom View: ICP-10100 & ICP-10101
Figure 9. ICP-10100 & ICP-1010 Package Diagrams
Document Number: DS-000186
Revision: 1.2
Page 25 of 34
Top View: ICP-10101
ICP-10100, ICP-10101, ICP-10110, ICP-10111
SYMBOLS
A
A3
b
c
D
D1
E
E1
e
L
L1
L3
MIN.
0.64
------1.90
--1.90
----0.275
0.025
0.250
DIMENSIONS IN MILLIMETERS
NOM.
0.72
0.595 REF.
0.25
0.125 REF.
2.00
1.85
2.00
1.85
0.50
0.375
0.075
0.300
Table 18. ICP-10100 & ICP-10101 Package Dimensions
Recommended PCB land pattern for the ICP-10100 & ICP-10101:
Figure 10. ICP-10100 & ICP-10101 recommended PCB land pattern
Document Number: DS-000186
Revision: 1.2
Page 26 of 34
MAX.
0.800
------2.10
--2.10
----0.400
0.100
0.325
ICP-10100, ICP-10101, ICP-10110, ICP-10111
Product artwork for the ICP-10100 & ICP-10101:
Package Artwork: ICP-10100
Package Artwork: ICP-10101
Package dimensions for the ICP-10110 & ICP-10111:
Top View: ICP-10110
Document Number: DS-000186
Revision: 1.2
Top View: ICP-10111
Page 27 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
Bottom View: ICP-10110 & ICP-10111
Figure 11. ICP-10110 & ICP-10111 Package Diagrams
SYMBOLS
A
A3
b
c
E
E1
D
D1
e
L
L1
L3
S
MIN.
0.84
------1.90
--2.40
----0.35
0.05
0.30
---
DIMENSIONS IN MILLIMETERS
NOM.
0.92
0.79 REF.
0.35
0.13 REF.
2.00
1.85
2.50
2.35
0.65
0.45
0.10
0.35
0.10
Table 19. ICP-10110 & ICP-10111 Package Dimensions
Recommended PCB land pattern for the ICP-10110 & ICP-10111:
Document Number: DS-000186
Revision: 1.2
Page 28 of 34
MAX.
1.00
------2.10
--2.60
----0.55
0.15
0.40
---
ICP-10100, ICP-10101, ICP-10110, ICP-10111
Figure 12. ICP-10110 & ICP-10111 recommended PCB land pattern
Product artwork for the ICP-10110 & ICP-10111:
Package Artwork: ICP-10110
Document Number: DS-000186
Revision: 1.2
Page 29 of 34
Package Artwork: ICP-10111
ICP-10100, ICP-10101, ICP-10110, ICP-10111
8 PART NUMBER PART MARKINGS
The part number part markings for ICP-101xx devices are summarized below:
PART NUMBER
ICP-10100
ICP-10101
ICP-10110
ICP-10111
PART MARKING
P1
P2
P5
P6
Table 20. Part Number Part Markings
TOP VIEW
Part Number
Lot Traceability Code
Date Code: (Y)Year(W)WorkWeek
Px
XXXX
YW
1-Hole (ICP-10101) or
3-Hole (ICP-10100)
Figure 13. Part Number Part Markings for 2x2mm (ICP-10101 & ICP-10100)
TOP VIEW
1-Hole (ICP-10111) or
3-Hole (ICP-10110)
Px
XXXX
YW
Part Number
Lot Traceability Code
Date Code: (Y)Year(W)WorkWeek
Figure 144. Part Number Part Markings for 2x2.5mm (ICP-10111 & ICP-10110)
Document Number: DS-000186
Revision: 1.2
Page 30 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
9 ORDERING GUIDE
PART
TEMP RANGE
PACKAGE BODY
PACKAGE LID
QUANTITY
PACKAGING
ICP-10100†
−40°C to +85°C
2x2x0.72mm LGA-10L
3-Hole: 1.5m Waterproof
10,000
13” Tape and Reel
10,000
13” Tape and Reel
ICP-10101†
−40°C to +85°C
2x2x0.72mm LGA-10L
1-Hole
ICP-10110†
−40°C to +85°C
2x2.5x0.92mm LGA-8L
3-Hole: 1.5m Waterproof
10,000
13” Tape and Reel
ICP-10111†
−40°C to +85°C
2x2.5x0.92mm LGA-8L
1-Hole
10,000
13” Tape and Reel
†Denotes RoHS and Green-Compliant Package
Document Number: DS-000186
Revision: 1.2
Page 31 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
10 REFERENCES
Please refer to “InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)” for the following information:
• Manufacturing Recommendations
o Assembly Guidelines and Recommendations
o PCB Design Guidelines and Recommendations
o MEMS Handling Instructions
o ESD Considerations
o Reflow Specification
o Storage Specifications
o Package Marking Specification
o Tape & Reel Specification
o Reel & Pizza Box Label
o Packaging
o Representative Shipping Carton Label
• Compliance
o Environmental Compliance
o DRC Compliance
o Compliance Declaration Disclaimer
Document Number: DS-000186
Revision: 1.2
Page 32 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
11 REVISION HISTORY
Revision Date
Revision
Description
01/02/2017
1.0
Initial Release
02/04/2019
1.1
Updated package drawing information to include additional details
05/06/2019
1.2
Updated package drawing information to clarify dimensions
Document Number: DS-000186
Revision: 1.2
Page 33 of 34
ICP-10100, ICP-10101, ICP-10110, ICP-10111
This information furnished by InvenSense, Inc. (“InvenSense”) is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use,
or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves
the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes
no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any
claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to,
claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any
patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the
property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or
mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment,
transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.
©2016—2017 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the
InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may be trademarks of the
respective companies with which they are associated.
©2016—2019 InvenSense. All rights reserved.
Document Number: DS-000186
Revision: 1.2
Page 34 of 34