ICP-20100
High Accuracy, Low Power, Barometric Pressure
and Temperature Sensor IC
GENERAL INFORMATION
FEATURES
The ICP-20100 pressure sensor provides a high-accuracy, low
power, barometric pressure and temperature sensor solution,
that integrates a capacitive pressure sensor for monitoring
pressure changes in the range of 30 to 110 kPa.
The ICP-20100 integrates a DSP module for on-chip
calibration with an Analog-to-Digital converter (ADC), digital
filtering, a FIFO and has I²C, I3CSM, and SPI interfaces
available. The solution can be configured to achieve ultra-low
noise or ultra-low power performance and is flexible to
perform anywhere in-between. Additionally, the filters can be
enabled to allow even lower noise performance or activate
features such as filtering of pressure glitches (e.g.
opening/closing a window).
The ICP-20100 is available in a closed package with a vent
hole.
DEVICE INFORMATION
PART
NUMBER
PACKAGE
LID
OPENING
MSL**
ICP-20100*
2x2x0.8mm
LGA-10L
1-Hole
1
* Denotes RoHS and Green-Compliant Package
** Moisture Sensitivity Level of the package
BLOCK DIAGRAM
•
Digital-output pressure and temperature sensors,
with programmable output: all-pressure, alltemperature or pressure & temperature
Programmable noise performance down to
0.5 Parms through programmable Oversampling
Ratio (OSR)
Digital filtering for pressure signals
o Finite Impulse Response (FIR) filter for
improved noise performance
o Infinite Impulse Response (IIR) filter for e.g.
filtering of pressure glitches
Package dimensions 2x2x0.8 mm (10-pin LGA)
96-byte FIFO buffer enables the application
processor to read up to 16 pressure-temperature
pairs in a burst
User-programmable Interrupt
Host interface: 12 MHz SPI/1 MHz I2C/12.5 MHz
I3CSM
Temperature operating range: -40°C to 85°C
Main Supply voltage: 1.8V ±10% or 3.3V ±10%
I/O supply voltage externally applied (1.2V ±10%,
1.8V ±10% or 3.3V* ±10%) *available only when main
supply voltage equals 3.3V ±10%
RoHS and Green compliant
•
•
•
•
•
•
•
•
•
•
TYPICAL OPERATING CIRCUIT
GND
GND
VDDIO
APPLICATIONS
•
•
•
•
C2, 100nF
Smartphones and Tablets
Wearable Sensors
Home and Building Automation
Weather Stations
GND
INT
VDDIO
AD0
SCL
(VDDIO / GND)
VDD
C1, 100nF
SDA
GND
GND
InvenSense, Inc. reserves the right to change
specifications and information herein without notice
unless the product is in mass production and the
datasheet has been designated by InvenSense in writing
as subject to a specified Product / Process Change
Notification Method regulation.
InvenSense, a TDK Group Company
1745 Technology Drive, San Jose, CA 95110 U.S.A
+1(408) 988–7339
invensense.tdk.com
Document Number: DS-000416
Revision: 1.3
Release Date: 12/17/2021
ICP-20100
TABLE OF CONTENTS
General Information ..................................................................................................................................................1
Device Information ....................................................................................................................................................1
Block Diagram ............................................................................................................................................................1
Applications ...............................................................................................................................................................1
Features .....................................................................................................................................................................1
Typical Operating Circuit ...........................................................................................................................................1
1
2
3
4
Introduction ...........................................................................................................................................................7
1.1
Purpose and Scope ........................................................................................................................................7
1.2
Product Overview ..........................................................................................................................................7
Pressure And Temperature Sensor Specifications .................................................................................................8
2.1
Operation Ranges ..........................................................................................................................................8
2.2
Operation Modes ...........................................................................................................................................8
2.3
Pressure Sensor Specifications ......................................................................................................................8
2.4
Temperature Sensor Specifications ...............................................................................................................9
Electrical Specifications .......................................................................................................................................10
3.1
Electrical Characteristics ..............................................................................................................................10
3.2
Absolute Maximum Ratings .........................................................................................................................12
3.3
Sensor System Timing ..................................................................................................................................12
3.4
I2C Timing Characterization .........................................................................................................................13
3.5
I3CSM Timing Characterization .....................................................................................................................14
3.6
SPI 4-Wire Mode Timing Characterization ...................................................................................................15
3.7
SPI 3-Wire Mode Timing Characterization ...................................................................................................16
Interface Specifications .......................................................................................................................................17
4.1
I3CSM / I2C Interface .....................................................................................................................................17
4.1.1
I2C Interface .........................................................................................................................................17
4.1.2
I3CSM Interface .....................................................................................................................................17
4.1.3
I2C Data Protocol ..................................................................................................................................18
4.1.4
I3CSM Data Protocol ..............................................................................................................................18
4.1.5
Supported I3CSM Common Command Codes (CCC) ..............................................................................19
4.1.6
I3CSM Provisional Identifier ...................................................................................................................19
4.1.7
I3CSM Bus Characteristics Register .......................................................................................................20
4.1.8
I3CSM Device Characteristics Register ...................................................................................................20
4.1.9
Fixed I2C slave address and address increment....................................................................................20
4.1.10
I3CSM Slave Address ..............................................................................................................................20
Document Number: DS-000416
Revision: 1.3
Page 2 of 60
ICP-20100
4.2
4.2.1
SPI Protocol ..........................................................................................................................................21
4.2.2
SPI Modes ............................................................................................................................................22
4.2.3
SPI Frame Abort ...................................................................................................................................22
4.2.4
Supported Commands..........................................................................................................................22
4.3
5
6
7
SPI Interface .................................................................................................................................................20
Drive Strength Configuration .......................................................................................................................23
Applications Information .....................................................................................................................................24
5.1
ICP-20100 Pin Out Diagram And Signal Description ....................................................................................24
5.2
Typical Operating CircuitS ............................................................................................................................25
5.3
Bill of Materials for External Components ...................................................................................................26
5.4
ASIC identification........................................................................................................................................27
Pressure and Temperature Measurement ..........................................................................................................28
6.1
Pressure and Temperature Measurement Accuracy ...................................................................................28
6.2
Pressure and Temperature Measurement Sequencing ...............................................................................28
6.2.1
Duty Cycled Operation .........................................................................................................................28
6.2.2
Triggered operation .............................................................................................................................29
6.3
FIR Filter .......................................................................................................................................................30
6.4
IIR Filter ........................................................................................................................................................31
6.5
Boot Sequence .............................................................................................................................................31
6.6
Mode switching/selection ...........................................................................................................................34
6.7
Pressure/Temperature read-out .................................................................................................................34
6.7.1
Pressure conversion formula ................................................................................................................34
6.7.2
Temperature conversion formula ........................................................................................................35
FIFO ......................................................................................................................................................................36
7.1
FIFO Accessibility .........................................................................................................................................36
7.2
FIFO Full/Empty ...........................................................................................................................................37
7.3
FIFO Overflow/Underflow ...........................................................................................................................37
7.4
FIFO Watermark Low/High ..........................................................................................................................37
7.5
FIFO Flush ....................................................................................................................................................37
7.6
Absolute Pressure VaLue Overrun/Underrun ..............................................................................................37
7.7
Delta Pressure VaLue Overrun .....................................................................................................................37
8
Interrupts .............................................................................................................................................................38
9
Assembly ..............................................................................................................................................................39
9.1
Implementation and Usage Recommendations ..........................................................................................39
9.1.1
Soldering ..............................................................................................................................................39
Document Number: DS-000416
Revision: 1.3
Page 3 of 60
ICP-20100
9.1.2
Chemical Exposure and Sensor Protection ...........................................................................................39
10
Package Dimensions ........................................................................................................................................40
11
Part Number Part Markings .............................................................................................................................42
12
Register Map ....................................................................................................................................................43
13
Register Map Description ................................................................................................................................44
13.1
TRIM1_MSB .................................................................................................................................................44
13.2
TRIM2_LSB ...................................................................................................................................................44
13.3
TRIM2_MSB .................................................................................................................................................44
13.4
DEVICE_ID ....................................................................................................................................................44
13.5
IO_DRIVE_STRENGTH ..................................................................................................................................45
13.6
OTP_CONFIG1 ..............................................................................................................................................45
13.7
OTP_MR_LSB ...............................................................................................................................................45
13.8
OTP_MR_MSB ..............................................................................................................................................45
13.9
OTP_MRA_LSB .............................................................................................................................................46
13.10
OTP_MRA_MSB .......................................................................................................................................46
13.11
OTP_MRB_LSB .........................................................................................................................................46
13.12
OTP_MRB_MSB .......................................................................................................................................46
13.13
OTP_ADDRESS..........................................................................................................................................46
13.14
OTP_COMMAND ......................................................................................................................................47
13.15
OTP_RDATA .............................................................................................................................................47
13.16
OTP_STATUS ............................................................................................................................................47
13.17
OTP_DBG2 ...............................................................................................................................................47
13.18
OTP_STATUS2 ..........................................................................................................................................47
13.19
MASTER_LOCK .........................................................................................................................................48
13.20
MODE_SELECT .........................................................................................................................................48
13.21
INTERRUPT_STATUS ................................................................................................................................49
13.22
INTERRUPT_MASK ...................................................................................................................................50
13.23
FIFO_CONFIG ...........................................................................................................................................50
13.24
FIFO_FILL ..................................................................................................................................................51
13.25
SPI_MODE ................................................................................................................................................51
13.26
PRESS_ABS_LSB .......................................................................................................................................52
13.27
PRESS_ABS_MSB ......................................................................................................................................52
13.28
PRESS_DELTA_LSB ...................................................................................................................................52
13.29
PRESS_DELTA_MSB ..................................................................................................................................53
13.30
DEVICE_STATUS .......................................................................................................................................53
Document Number: DS-000416
Revision: 1.3
Page 4 of 60
ICP-20100
13.31
I3C_INFO ..................................................................................................................................................53
13.32
VERSION ...................................................................................................................................................53
13.33
PRESS_DATA_0 ........................................................................................................................................54
13.34
PRESS_DATA_1 ........................................................................................................................................54
13.35
PRESS_DATA_2 ........................................................................................................................................54
13.36
TEMP_DATA_0 .........................................................................................................................................54
13.37
TEMP_DATA_1 .........................................................................................................................................54
13.38
TEMP_DATA_2 .........................................................................................................................................55
14
Tape & Reel Specification ................................................................................................................................56
15
Ordering Guide ................................................................................................................................................57
16
References .......................................................................................................................................................58
17
Revision History ...............................................................................................................................................59
Document Number: DS-000416
Revision: 1.3
Page 5 of 60
ICP-20100
LIST OF FIGURES
Figure 1. I2C Bus Timing Diagram .................................................................................................................................13
Figure 2. I3CSM Bus Timing Diagrams ...........................................................................................................................14
Figure 3. SPI 4-Wire Mode Bus Timing Diagram ..........................................................................................................15
Figure 4. SPI 3-Wire Mode Bus Timing Diagram ..........................................................................................................16
Figure 5. I2C Data Protocol ...........................................................................................................................................18
Figure 6. I3CSM Data Protocol.......................................................................................................................................19
Figure 7. 4-Wire SPI Transaction Overview .................................................................................................................21
Figure 8. 3-Wire SPI Transaction Overview .................................................................................................................21
Figure 9. Pin Out Diagram for ICP-20100, 2mm x 2mm x 0.8mm LGA ........................................................................24
Figure 10. ICP-20100 Application Schematic (I3CSM / I2C Interface to Host) ...............................................................25
Figure 11. ICP-20100 Application Schematic (SPI Interface to Host) ...........................................................................26
Figure 12. Duty Cycled Measurement .........................................................................................................................28
Figure 13. Duty Cycled Measurement Without Wait ..................................................................................................29
Figure 14. Pressure-Only Mode ...................................................................................................................................29
Figure 15. FIR Filter ......................................................................................................................................................30
Figure 16. Pressure Output Code.................................................................................................................................34
Figure 17. Temperature Output Code .........................................................................................................................35
Figure 18. FIFO Read Out Modes .................................................................................................................................36
Figure 19. ICP-20100 Package Diagrams......................................................................................................................40
Figure 20. Part Number Part Markings for ICP-20100 .................................................................................................42
Figure 21. ICP-20100 Tape Dimensions
....................................................................................................56
Figure 22. ICP-20100 Tape and Reel Drawing ..............................................................................................................56
LIST OF TABLES
Table 1. Operation Ranges.............................................................................................................................................8
Table 2. Operation Modes .............................................................................................................................................8
Table 3. Pressure Sensor Specifications.........................................................................................................................8
Table 4. Temperature Sensor Specifications .................................................................................................................9
Table 5. Electrical Supplies ..........................................................................................................................................10
Table 6. Electrical Specifications ..................................................................................................................................11
Table 7. Absolute Maximum Ratings ...........................................................................................................................12
Table 8. System Timing Specifications .........................................................................................................................12
Table 9. I2C Parameters Specification ..........................................................................................................................13
Table 10. I3CSM Parameters Specification ....................................................................................................................14
Table 11. SPI 4-Wire Mode Parameters Specification .................................................................................................15
Table 12. SPI 3-Wire Mode Parameters Specification .................................................................................................16
Table 13. Supported I3CSM CCCs ..................................................................................................................................19
Table 14. I3CSM Provisional Identifier ..........................................................................................................................19
Table 15. I3CSM Bus Characteristics Register................................................................................................................20
Table 16. SPI Data Rate Specifications .........................................................................................................................21
Table 17. SPI Supported Commands............................................................................................................................22
Table 18. ICP-20100 Signal Descriptions......................................................................................................................24
Table 19. ICP-20100 Package Dimensions ...................................................................................................................41
Table 20. Part Number Part Markings .........................................................................................................................42
Table 21. Register Map ................................................................................................................................................43
Document Number: DS-000416
Revision: 1.3
Page 6 of 60
ICP-20100
1
1.1
INTRODUCTION
PURPOSE AND SCOPE
This document is a preliminary product specification, providing a description, specifications, and design related
information for the ICP-20100 Pressure Sensor.
Specifications are subject to change without notice. Final specifications will be updated based upon
characterization of production silicon.
1.2
PRODUCT OVERVIEW
The ICP-20100 is a high accuracy, low power, barometric pressure and temperature sensor solution that integrates
a capacitive pressure sensor for monitoring pressure changes in the range of 30 to 110kPa.
The ICP-20100 pressure and temperature sensor device combines TDK InvenSense 2nd generation (20k-series)
capacitive pressure sensors.
Other industry-leading features include up to 20-bits output data, programmable digital filters, an embedded
temperature sensor, calibration, FIFO, and programmable interrupts. The device features I2C, I3CSM, and SPI serial
interfaces, a VDD operating range of 1.8V ±10% or 3.3V ±10%, and an externally applied VDDIO operating range of
1.2V ±10%, 1.8V ±10% or 3.3V* ±10% (*available only when VDD voltage equals 3.3V ±10%).
The host interface can be configured to support SPI slave or I 2C/ I3CSM slave modes. The SPI interface supports
speeds up to 12 MHz, the I2C interface supports speeds up to 1 MHz, and the I3CSM interface supports speeds up to
12.5 MHz.
The MEMS sensor consists of a capacitive pressure sensor whose capacitance changes according to the pressure
applied. An integrated temperature sensor on the same MEMS sensor allows for accurate temperature
measurements.
Document Number: DS-000416
Revision: 1.3
Page 7 of 60
ICP-20100
2
PRESSURE AND TEMPERATURE SENSOR SPECIFICATIONS
2.1
OPERATION RANGES
PARAMETER
Functional Pressure Range
Operating Temperature Range
VALUE
30 to 110
-40 to 85
UNITS
kPa
°C
Table 1. Operation Ranges
2.2
OPERATION MODES
The sensor can be operated in the following measurement modes to satisfy different requirements for power
consumption vs. noise, accuracy, and measurement frequency.
Operation mode can be selected using register field MEAS_CONFIG in register MODE_SELECT. Modes 0 to 3 are
pre-defined while Mode 4 is user configurable. Please refer to “AN-000238: ICP-20100 and ICP-20132 User
Configurable Operation Mode and IIR Filter” for details on how to configure MODE4.
PARAMETER
BW
(HZ)
ODR
(HZ)
MODE0
MODE1
MODE2
MODE3
MODE4*
6.25
30
10
0.5
12.5
25
120
40
2
25
PRESSURE
NOISE (PARMS)
TYP
0.5
1
2.5
0.5
0.3
CURRENT
CONSUMPTION
(µA)
TYP
211
222
49
23
250
IIR FILTER
ENABLED
FIR FILTER
ENABLED
No
No
No
No
No
Yes
Yes
Yes
Yes
No
Table 2. Operation Modes
Note: MODE4 is user configurable as explained in the application note “AN-000238: ICP-20100 and ICP-20132 User Configurable Operation
Mode and IIR Filter”. MODE4 functionality shown is default device calibration, user can modify MODE4 configuration as explained in AN000238.
2.3
PRESSURE SENSOR SPECIFICATIONS
Pressure sensor specifications are given in Table 3. Default conditions of 25 °C, VDD = 1.8V and VDDIO = 1.8V
apply, unless otherwise stated.
PARAMETER
Functional pressure range
Absolute Accuracy
Relative Accuracy
Temperature Coefficient of Offset
(TCO)
Long-Term Drift (during 1 year)
Solder Drift
Resolution
CONDITIONS
Valid from -20°C to 65°C
Any step ≤ 1 kPa at 25°C
P = 100 kPa
25°C … 45°C
Board-level specification
MIN
TYP
MAX
UNITS
NOTES
30
70
±20
±1
110
kPa
Pa
Pa
1
1
±0.4
Pa/°C
1
±10
±0.4
20
Pa
hPa
bits
2
3, 4
Table 3. Pressure Sensor Specifications
Notes:
1.
2.
3.
4.
Parameter specifications shown are component-level. They may be different at the board-level and may depend on PCB characteristics including but
not limited to PCB material, number of layers, PCB thickness. They may also depend on usage conditions.
Determined based on HTOL data.
Derived from validation or characterization of parts, not tested in production.
Board-level spec values depend on specific board design. For design information of boards used for device characterization, that forms the basis of the
spec values reported here, please contact your local TDK InvenSense FAE.
Document Number: DS-000416
Revision: 1.3
Page 8 of 60
ICP-20100
2.4
TEMPERATURE SENSOR SPECIFICATIONS
Specifications of the temperature sensor are shown in Table 4.
PARAMETER
Temperature accuracy
Output Data rate
CONDITIONS
MIN
TYP
±0.5
ODR
Table 4. Temperature Sensor Specifications
Notes:
1.
Temperature ODR = Pressure ODR for selected mode
Document Number: DS-000416
Revision: 1.3
Page 9 of 60
MAX
UNITS
°C
Hz
NOTES
1
ICP-20100
3
3.1
ELECTRICAL SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
Default conditions of 25 °C, VDD = 1.8V and VDDIO = 1.8V apply to values in Table 5 and Table 6, unless otherwise
stated.
PARAMETER
Main Supply Voltage
I/O Supply Voltage
Supply current
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
1.62
1.8
1.98
V
2.97
3.3
3.63
V
1.08
1.2
1.32
V
1.62
1.8
1.98
V
2.97
3.3
3.63
V
-
2.65
-
µA
VDD
VDDI0
IDD
standby
Table 5. Electrical Supplies
Document Number: DS-000416
Revision: 1.3
COMMENTS
Page 10 of 60
Externally supplied
ICP-20100
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
NOTES
SUPPLIES
Supply Ramp Time
Monotonic ramp. Ramp rate is 10% to 90% of
the final value
0.01
Power Supply Noise
10
ms
50
mV
peak-peak
2
2
TEMPERATURE SENSOR
Operating Range
ADC Resolution
ODR
-20
Ambient
65
°C
800
bits
Hz
15
2
1
1
I2C ADDRESS
AD0 = 0
AD0 = 1
I2C ADDRESS
0x63
0x64
DIGITAL INPUTS
VIH, High Level Input Voltage
VIL, Low Level Input Voltage
0.7*VDDIO
V
0.3*VDDIO
V
2
DIGITAL OUTPUTS
VOH, High Level Output
Voltage
VOL, Low-Level Output Voltage
0.75*VDDIO
V
2
0.25*VDDIO
V
Drive strength for VDDIO =
1.2V
0.5
2
3
4
2
4
6
8
4
6
9
12
mA
Drive strength for VDDIO =
1.8V/3.3V
1
2
4
8
2
4
8
12
4
8
12
16
mA
-2
+2
%
2
-3.125
+3.125
%
2
INTERNAL CLOCK SOURCE
Clock Frequency Initial
Tolerance
Low clock frequency 8kHz
Main clock frequency 1.9MHz
Table 6. Electrical Specifications
Notes:
1.
2.
Guaranteed by design.
Derived from validation or characterization of parts, not guaranteed in production
Document Number: DS-000416
Revision: 1.3
Page 11 of 60
ICP-20100
3.2
ABSOLUTE MAXIMUM RATINGS
Stress levels beyond those listed in Table 7 may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these conditions cannot be guaranteed. Exposure to the absolute
maximum rating conditions for extended periods may affect the reliability of the device.
PARAMETER
RATING
Supply voltage, VDD
-0.3V to +4.0V
Supply Voltage, SCL & SDA
-0.3V to VDDIO+0.3V
Operating temperature range
-40°C to +85°C
Storage temperature range
-40°C to +85°C
ESD HBM
1.5 kV
ESD CDM
500V
Radiated EMI immunity
4kV/m
Conducted EMI immunity
2Vrms
Table 7. Absolute Maximum Ratings
3.3
SENSOR SYSTEM TIMING
Default conditions of 25 °C, VDD = 1.8V and VDDIO = 1.8V apply to TYP values listed in Table 8, unless otherwise
stated. MAX values apply over the specified operating range of VDD and over the operating temperature range.
PARAMETER
SYMBOL
Power-up time
tPU
CONDITIONS
MIN
-
TYP
2
MAX
-
Table 8. System Timing Specifications
Document Number: DS-000416
Revision: 1.3
Page 12 of 60
UNITS
COMMENTS
ms
Time between VDD reaching VPU and sensor
entering idle state; VPU is the power-up
voltage, the minimum VDD at which start-up
time is guaranteed, it has a value of 1.56V.
ICP-20100
I2C TIMING CHARACTERIZATION
3.4
Default conditions of 25 °C, VDD = 1.8V and VDDIO = 1.8V apply to values in Table 9, unless otherwise stated.
PARAMETERS
2
CONDITIONS
MIN
TYP
MAX
UNITS
NOTES
1
2
I C TIMING
I C FAST-MODE PLUS
fSCL, SCL Clock Frequency
MHz
1
tHD.STA, (Repeated) START Condition Hold Time
260
ns
1
tLOW, SCL Low Period
500
ns
1
tHIGH, SCL High Period
260
ns
1
tSU.STA, Repeated START Condition Setup Time
260
ns
1
tHD.DAT, SDA Data Hold Time
5
ns
1
tSU.DAT, SDA Data Setup Time
55
ns
1
tr, SDA and SCL Rise Time 2
Cb bus cap. From 10 to 400 pF
20*(VDD/5.5V)
120
ns
1
tf, SDA and SCL Fall Time 2
Cb bus cap. From 10 to 400 pF
20*(VDD/5.5V)
120
ns
1
tSU.STO, STOP Condition Setup Time
260
ns
1
tBUF, Bus Free Time Between STOP and START
Condition
500
ns
1
Cb, Capacitive Load for each Bus Line
550
450
pF
1
tVD.DAT, Data Valid Time
ns
1
tVD.ACK, Data Valid Acknowledge Time
450
ns
1
Table 9. I2C Parameters Specification
Notes:
1.
Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets.
Figure 1. I2C Bus Timing Diagram
Document Number: DS-000416
Revision: 1.3
Page 13 of 60
ICP-20100
3.5
I3CSM TIMING CHARACTERIZATION
Default conditions of 25 °C, VDD = 1.8V and VDDIO = 1.8V apply to values in Table 10, unless otherwise stated.
PARAMETERS
I3CSM TIMING
CONDITIONS
MIN
TYP
MAX
UNITS
12.5
12.9
MHz
I3CSM SDR mode
fSCL, SCL Clock Frequency
tLOW, SCL Low Period
From 30% to 30%
24
ns
tDIG_L, SCL Low Period (to high transition)
From 30% to 70%
32
ns
tHIGH_MIXED, SCL High Period for Mixed Bus
From 70% to 70%
24
tDIG_H_MIXED, SCL High Period for Mixed Bus
From 70% to 30%
32
tHIGH, SCL High Period
From 70% to 70%
24
tDIG_H, SCL High Period
From 70% to 30%
32
tSCO, Clock in to Data Out for Slave
ns
45
ns
ns
ns
12
ns
tCR, SCL Rise Time
Capped at 60
12
ns
tCF, SCL Fall Time
Capped at 60
12
ns
tHD_PP, SDA Signal Data Hold in Push-Pull mode
Slave
0
tSU_PP, SDA Signal Data Setup in Push-Pull mode
Cb, Capavitive Load per Bus Line
3
SDA/SCL
Table 10. I3CSM Parameters Specification
Figure 2. I3CSM Bus Timing Diagrams
Document Number: DS-000416
Revision: 1.3
ns
Page 14 of 60
ns
50
pF
NOTES
ICP-20100
3.6
SPI 4-WIRE MODE TIMING CHARACTERIZATION
Default conditions of 25°C and 1.8V supply voltage apply to values in Table 11, unless otherwise stated.
PARAMETERS
CONDITIONS
MIN
TYP
MAX
UNITS
NOTES
12
MHz
1
SPI TIMING
fSPC, SCL Clock Frequency
tLOW, SCL Low Period
40
ns
1
tHIGH, SCL High Period
40
ns
1
tSU.CS, CS Setup Time
20
ns
1
tHD.CS, CS Hold Time
20
ns
1
tSU.SDI, SDI Setup Time
5
ns
1
tHD.SDI, SDI Hold Time
20
ns
1
ns
1
tVD.SDO, SDO Valid Time
Cload = 50 pF
tHD.SDO, SDO Hold Time
Cload = 50 pF
32
ns
1
tDIS.SDO, SDO Output Disable Time
5
25
ns
1
tFall, SCLK Fall Time
5
ns
2
tRise, SCLK Rise Time
5
ns
2
Table 11. SPI 4-Wire Mode Parameters Specification
Notes:
1.
2.
Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets
Based on other parameter values
Figure 3. SPI 4-Wire Mode Bus Timing Diagram
Document Number: DS-000416
Revision: 1.3
Page 15 of 60
ICP-20100
3.7
SPI 3-WIRE MODE TIMING CHARACTERIZATION
Default conditions of 25°C and 1.8V supply voltage apply to values in Table 12, unless otherwise stated.
PARAMETERS
CONDITIONS
MIN
TYP
MAX
UNITS
NOTES
12
MHz
1
SPI TIMING
fSPC, SCL Clock Frequency
tLOW, SCL Low Period
40
ns
1
tHIGH, SCL High Period
40
ns
1
tSU.CS, CS Setup Time
20
ns
1
tHD.CS, CS Hold Time
20
ns
1
tSU.SDI, SDI Setup Time
5
ns
1, 3
tHD.SDI, SDI Hold Time
20
ns
1, 3
ns
1, 3
tVD.SDO, SDO Valid Time
Cload = 50 pF
tHD.SDO, SDO Hold Time
Cload = 50 pF
32
ns
1, 3
tDIS.SDO, SDO Output Disable Time
5
25
ns
1, 3
tFall, SCLK Fall Time
5
ns
2
tRise, SCLK Rise Time
5
ns
2
Table 12. SPI 3-Wire Mode Parameters Specification
Notes:
1.
2.
3.
Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets
Based on other parameter values
Separate SDI and SDO times are provided to account for input and output transactions on the SDIO interface for 3-wire SPI mode
Figure 4. SPI 3-Wire Mode Bus Timing Diagram
Document Number: DS-000416
Revision: 1.3
Page 16 of 60
ICP-20100
4
INTERFACE SPECIFICATIONS
The ICP-20100 supports I3CSM, I2C, SPI host-interface options. The ICP-20100 always operates as a slave when
connected to the host. Selection between SPI and I3CSM/I2C is done with the CSB pin. If the pin is pulled low, the
SPI interface is active and I3CSM/I2C are disabled. If CSB is high, I3CSM/I2C is selected.
I3CSM / I2C INTERFACE
4.1
The I3CSM/I2C interface can operate in I2C legacy mode or I3CSM SDR mode (SCL clock frequency up to 12.5 MHz).
After reset, the device requires a minimum of 10 clock cycles to initialize the I3CSM/I2C interface. Before doing this,
no communication is possible through I3CSM/I2C. This initialization can be done through a dummy write transaction
to address 0xEE.
4.1.1 I2C Interface
The ICP-20100 I2C slave interface can operate in following modes:
•
Standard mode (SCL clock frequency up to 100 kHz)
•
Fast mode (SCL clock frequency up to 400 kHz)
•
Fast mode plus (SCL clock frequency up to 1 MHz)
4.1.2 I3CSM Interface
I3CSM is a new 2-wire digital interface comprised of the signals serial data (SDA) and serial clock (SCLK). I3CSM is
intended to improve upon the I2C interface, while preserving backward compatibility.
I3CSM carries the advantages of I²C in simplicity, low pin count, easy board design, and multi-drop (vs. point to
point), but provides the higher data rates, simpler pads, and lower power of SPI. I3CSM adds higher throughput for
a given frequency, dynamic addressing.
The I3CSM interface complies with “MIPI I3C Specification -- public edition”, version 1.0, 23 December 2016.
By default, the I2C protocol is used. Only when the device detects that it is connected to an I3C SM bus, will it
permanently switch to the I3CSM protocol and the glitch filter will be disabled.
The I3CSM interface supports:
•
SDR data rate up to 12.5 MHz
•
Dynamic Addressing
•
Error detection (Parity)
•
Common Command Codes described in Table 13.
Document Number: DS-000416
Revision: 1.3
Page 17 of 60
ICP-20100
4.1.3 I2C Data Protocol
A transfer is always started by addressing the device with an I2C write header followed by the targeted 8-bit
register address.
For write accesses, the master continues sending the 8-bit data word.
For read accesses, the master must change the transfer direction from write to read by sending an I 2C read header
with the correct address. The device then transmits the data word (if available). An address increment feature
enables reading multiple data bytes in a row.
All commands and memory locations are mapped to an 8-bit register space which can be accessed via the I2C
interface. Data is always transferred as 8-bit words. Figure 5 illustrates the different transfer types.
Figure 5. I2C Data Protocol
The I2C interface has access to all registers needed for functional operation.
Every byte transmitted from the I2C master to the slave device must be acknowledged.
In read direction, the master indicates with the acknowledge if an address increment read needs to be initiated.
An ACK from the master indicates a request for an address increment read. A NACK from the master indicates the
end of the read transfer and needs to be followed by a STOP condition.
Every last I2C bus transaction to ICP-20100 should end with read to address 0x00. At least once in every 255 I2C
read or burst read transactions (Burst read accesses treated as one read transaction independent of burst size) on
the bus to other I2C devices, the host should perform a read to ICP-20100 address 0x00.
One possible implementation of the requirement above would be to add a dummy read from ICP-20100 address
0x00 after any I2C transactions.
Another possible implementation is to perform a dummy read from ICP-20100 address 0x00 after each last I2C bus
transaction to ICP-20100 and add a dummy read from ICP-20100 address 0x00 at a constant rate of 110Hz.
4.1.4 I3CSM Data Protocol
The device is switched to I3CSM mode by sending the reserved byte 7’h7E.
While in I3CSM mode, the device is addressed with an I3CSM write header containing the dynamic device address,
followed by the targeted 8-bit register address.
For write accesses, the master continues sending the 8-bit data word.
For read accesses, the master must change the transfer direction from write to read by sending an I3CSM read
header containing the dynamic device address. The device then transmits the data word. An address increment
feature allows to read out multiple data bytes in a row.
All commands and memory locations are mapped to an 8-bit register space which can be accessed via the I3CSM
interface. Data is always transferred as 8-bit words. Figure 6 illustrates the different transfer types.
Document Number: DS-000416
Revision: 1.3
Page 18 of 60
ICP-20100
Figure 6. I3CSM Data Protocol
The I3CSM interface has access to all registers needed for functional operation.
Every last I3C bus transaction to ICP-20100 should end with read to address 0x00. At least once in every 255 I3C
read or burst read transactions (Burst read accesses treated as one read transaction independent of burst size) on
the bus to other I3C devices, the host should perform a read to ICP-20100 address 0x00.
One possible implementation of the requirement above would be to add a dummy read from ICP-20100 address
0x00 after any I3C transactions.
Another possible implementation is to perform a dummy read from ICP-20100 address 0x00 after each last I3C bus
transaction to ICP-20100 and add a dummy read from ICP-20100 address 0x00 at a constant rate of 110Hz.
4.1.5 Supported I3CSM Common Command Codes (CCC)
I3CSM features CCCs that allow the master to manage the bus and its connected slaves, either directly or through a
broadcast.
The I3CSM master should not use any unsupported CCCs.
CODE
CCC TYPE
MNEMONIC
DESCRIPTION
0x06
0x07
0x86
0x87
0x88
0x8D
0x8E
0x8F
0x90
broadcast
broadcast
direct
direct
direct
direct
direct
direct
direct
RSTDAA
ENTDAA
RSTDAA
SETDASA
SETNEWDA
GETPID
GETBCR
GETDCR
GETSTATUS
Reset Dynamic Address Assignment
Enter Dynamic Address Assignment
Reset Dynamic Address Assignment (p2p)
Set Dynamic Address from Static Address
Set New Dynamic Address
Get Provisional ID
Get Bus Characteristics Register
Get Device Characteristics Register
Get Device Status
Table 13. Supported I3CSM CCCs
4.1.6 I3CSM Provisional Identifier
The Provision Identifier (PID) is hardwired as:
FIXED
BIT
NAME
47:33
32
31:16
15:12
11:0
MIPI Manufacturer ID
PID Type Selector
Part ID
Instance ID
Vendor defined
VALUE
15’h0235
0
0
0
0
Table 14. I3CSM Provisional Identifier
Document Number: DS-000416
Revision: 1.3
Page 19 of 60
NOTE
TDK Manufacturer ID
0 = PID fixed value
ICP-20100
4.1.7 I3CSM Bus Characteristics Register
The Bus Characteristics Register (BCR) is hardwired as:
FIXED
BIT
NAME
7
6
5
4
3
2
1
0
Device Role [1]
Device Role [0]
Data Rate support
Bridge Identifier
Offline Capable
IBI Payload
IBI Request Capable
Max Data Speed Limit
NOTE
VALUE
0
0
0
0
0
0
0
0
fixed (slave role)
fixed (slave role)
fixed (SDR only)
fixed (no bridge)
fixed (not offline capable)
fixed (IBI not supported)
fixed (IBI not supported)
fixed (no speed limit, GETMXDS not supported)
Table 15. I3CSM Bus Characteristics Register
4.1.8 I3CSM Device Characteristics Register
The Device Characteristics Register (DCR) byte [7:0] is hardwired to the fixed value 0x62, which corresponds to the
“Environment Pressure Sensor” as defined by MIPI. (see
https://www.mipi.org/MIPI_I3C_device_characteristics_register)
4.1.9 Fixed I2C slave address and address increment
The value assigned on AD0 allows to adapt the I2C address as follows:
•
•
AD0 = 0 : I2C address = 0x63
AD0 = 1 : I2C address = 0x64
4.1.10 I3CSM Slave Address
I3CSM supports dynamic addressing feature which allows master and slaves to do dynamic address arbitration on
the I3CSM bus.
The concatenation of {PID[15:0],BCR[7:0],DCR[7:0]} is used to determine the priority for dynamic addressing by the
Master.
Since there is already a static address present for I2C, this can be used via the SETDASA command if known by the
Master up front. When applicable, the address increment is applied as well.
4.2
SPI INTERFACE
The ICP-20100 SPI slave interface can operate in the following modes:
•
3-wire mode using pins CSB, SDIO and SCL
•
4-wire mode using pins CSB, SDI, SDO and SCL
The SPI interface has access to all registers needed for functional operation.
Document Number: DS-000416
Revision: 1.3
Page 20 of 60
ICP-20100
4.2.1 SPI Protocol
The SPI frame format is as follows:
1.
2.
3.
4.
5.
6.
SPI master pulls CSB low
SPI master sends 1 command byte
SPI master sends 1 address byte
For write frames, SPI master sends a master data byte
For read frames, IFPS replies with a number of slave data bytes
SPI master releases CSB
This is pictured in the Figure 7 and Figure 8 respectively for 4-wire SPI and 3-wire SPI.
Figure 7. 4-Wire SPI Transaction Overview
Figure 8. 3-Wire SPI Transaction Overview
A transmitter conceptually produces data bits at the falling edge of the SPI clock SCL, and a receiver samples the
data bits at the rising edge of the SPI clock.
Bytes are transmitted in the order MSB to LSB.
The slave keeps SDO in high-Z unless a reply is expected from the command (read request).
PARAMETER
DESCRIPTION
MIN
spi_speed
Data rate of the SPI protocol
DC
TYP
MAX
UNIT
12
Mbps
Table 16. SPI Data Rate Specifications
Document Number: DS-000416
Revision: 1.3
Page 21 of 60
COMMENTS
ICP-20100
4.2.2 SPI Modes
The ICP-20100 supports SPI MODE0 and MODE3.
When the SPI interface is idle, SCL is low. Data is propagated on the clock's falling edge and captured on the clock's
rising edge.
4.2.3 SPI Frame Abort
The SPI master can abort an SPI frame by de-asserting CSB.
4.2.4 Supported Commands
Table 17 shows the supported commands via the SPI interface.
COMMAND CODE
0x3C
0x33
COMMAND
DESCRIPTION
CMD_READ_REG
CMD_WRITE_REG
Read from register
Write to register
Table 17. SPI Supported Commands
Document Number: DS-000416
Revision: 1.3
Page 22 of 60
ICP-20100
4.3
DRIVE STRENGTH CONFIGURATION
The device starts up with drive strength 2 mA in 1.8V IO supply mode. If the application requires high speed
communication (>1 MHz) or uses VDDIO=1.2V, the drive strength settings need to be adapted. This is done by
reconfiguring register IO_DRIVE_STRENGTH (section 13.5 in this datasheet).
This section provides MATLAB sample code on how to do this. The following terminology is used in this code for
register map references:
regMap.Register_Name.Register_Field_Name.Write(Value)
where
-
“Register_Name” is the register name;
-
“Register_Field_Name” is the name of the register field in the register;
-
“Write” is a write operation for the specified register field;
-
“Value” is the value being written to the specified register field
Please refer to sections 12 and 13 for information about the registers/register fields shown in the sample code.
function PowerMode(self)
%% PowerMode: function to move into power mode
global regMap
%% Move to power mode if not already inside
if (regMap.MODE_SELECT.POWER_MODE.read==0)
fprintf('Moving into power mode...\n')
regMap.MODE_SELECT.POWER_MODE.write(1);
pause(0.001);
end
end
function Configure_drive_strength(self)
%% Configure_drive_strength: sample code on how to configure the drive strength
% after a reset of the device
global regMap
self.PowerMode;
%% Configure the drive strength mirror registers
% This example configures a drive strength of 12mA for 1.8V IO supply
regMap.IO_DRIVE_STRENGTH.IO_DS.write('0x3');
end
Document Number: DS-000416
Revision: 1.3
Page 23 of 60
ICP-20100
5
5.1
APPLICATIONS INFORMATION
ICP-20100 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION
PIN NUMBER
1
2
3
PIN NAME
CSB
SCL
VSS
4
SDA / SDIO / SDI
5
VDD
6
SDO / AD0
7
8
9
10
INT
RESV
RESV
VDDIO
DESCRIPTION
SPI Chip Select
I3CSM / I2C / SPI Serial Clock
Power Supply Ground
SDA: I3CSM / I2C serial data; SDIO: SPI serial data I/O (3-wire mode);
SDI: SPI serial data input (4-wire mode)
Power Supply Voltage
SDO: SPI serial data output (4-wire mode);
AD0: I3CSM / I2C slave address LSB
Interrupt Output
Connect to Ground
Connect to Ground
IO Power Supply
Table 18. ICP-20100 Signal Descriptions
8
9
10
RESV
RESV
VDDIO
7
1
INT
CSB
BOTTOM VIEW
6
2
SDO / AD0
SCL
5
VDD
4
SDA / SDIO
/ SDI
3
VSS
Figure 9. Pin Out Diagram for ICP-20100, 2mm x 2mm x 0.8mm LGA
Document Number: DS-000416
Revision: 1.3
Page 24 of 60
ICP-20100
5.2
TYPICAL OPERATING CIRCUITS
GND
GND
VDDIO
C2, 100nF
GND
INT
VDDIO
AD0
SCL
(VDDIO / GND)
VDD
C1, 100nF
SDA
GND
GND
Figure 10. ICP-20100 Application Schematic (I3CSM / I2C Interface to Host)
Note: I2C lines are open drain and pull-up resistors (e.g. 5kΩ) are required.
Document Number: DS-000416
Revision: 1.3
Page 25 of 60
ICP-20100
GND
GND
VDDIO
C2, 100nF
GND
INT
CSB
SDO
SCL
VDD
C1, 100nF
SDIO
/ SDI
GND
GND
Figure 11. ICP-20100 Application Schematic (SPI Interface to Host)
5.3
BILL OF MATERIALS FOR EXTERNAL COMPONENTS
COMPONENT
LABEL
SPECIFICATION
QUANTITY
VDD Bypass Capacitor
C1
X7R, 100nF ±10%
1
VDDIO Bypass Capacitor
C2
X7R, 100nF ±10%
1
Document Number: DS-000416
Revision: 1.3
Page 26 of 60
ICP-20100
5.4
ASIC IDENTIFICATION
For identifying this device, please use following procedure:
1) Power-on the ASIC
2) Initialize the I2C interface by toggling the clock line a few times. The easiest way to do that is by
inserting a dummy I2C write transaction. You can, for example, execute the first transaction (write to
lock register) twice.
3) Check that the value from register regMap.device_id equals 0x63
4) Check the value from register regMap.version:
•
0x00 indicates a device version A
•
0xB2 indicates a device version B
Document Number: DS-000416
Revision: 1.3
Page 27 of 60
ICP-20100
6
PRESSURE AND TEMPERATURE MEASUREMENT
The ICP-20100 uses a 2nd order ADC with time-multiplexed pressure and temperature measurements.
Integration time for measurement, or over-sampling ratio (OSR) can be configured independently for pressure and
temperature.
6.1
PRESSURE AND TEMPERATURE MEASUREMENT ACCURACY
Increasing the pressure OSR improves the noise on the pressure measurement but also results in more current
consumption due to a delayed return to STANDBY mode.
Increasing the temperature OSR improves the noise on the temperature measurement and on the pressure
measurement due to the non-linear pressure compensation as a function of the temperature but also results in
more current consumption due to a delayed return to STANDBY.
The pressure and temperature OSR values are limited by the Output Data Rate (ODR) selection. For details of the
relationship between these parameters, refer to section 6.2.
For given OSR and ODR settings, the noise can further be optimized by using an IIR filter. Refer to section 0 for
details of the IIR filter.
6.2
PRESSURE AND TEMPERATURE MEASUREMENT SEQUENCING
Pressure and temperature measurements are time-multiplexed, with pressure measurement performed first and
followed by temperature measurement.
A measurement can be started either automatically (duty cycled operation) or manually (triggered operation).
6.2.1 Duty Cycled Operation
In duty cycled operation Pressure/Temperature measurements are automatically started.
The time between 2 measurements is defined by the ODR (Output Data Rate) setting and is timed based on the
low power clock.
In Figure 12 and Figure 13, TOSR_P is the pressure sensor OSR and TOSR_T is the temperature sensor OSR.
Figure 12. Duty Cycled Measurement
If the configured ODR period is smaller than the conversion time for pressure and temperature, the actual ODR is
adapted to match the conversion time.
Document Number: DS-000416
Revision: 1.3
Page 28 of 60
ICP-20100
Figure 13. Duty Cycled Measurement Without Wait
By disabling the pressure or temperature measurement through setting its respective OSR configuration register
(refer to the application note “AN-000238: ICP-20100 and ICP-20132 User Configurable Operation Mode and IIR
Filter”) to value 0, a temperature-only or pressure-only measurement can be configured.
If a pressure-only setting is combined with an ODR period setting that is smaller than the conversion time, a
maximal conversion rate can be established in which no settling is needed for each individual sample and a higher
ODR can be reached. The same principle applies for temperature-only setting.
Figure 14. Pressure-Only Mode
The maximum ODR can be calculated based on the pressure and temperature OSR by the following formula:
ODRMAX(Hz)= 106/(168+2.1*1.5*(OSRPRESS+OSRTEMP))
with OSRPRESS, OSRTEMP the pressure and temperature Over Sampling Ratio.
where 𝑂𝑆𝑅𝑃𝑅𝐸𝑆𝑆 = (𝑂𝑆𝑅_𝑃𝑅𝐸𝑆𝑆𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 + 1) ∗ 25 and 𝑂𝑆𝑅𝑇𝐸𝑀𝑃 = (𝑂𝑆𝑅_𝑇𝐸𝑀𝑃𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 + 1) ∗ 25
6.2.2 Triggered operation
Triggered operation (also called forced measurement mode) performs a single Pressure, Temperature, or
Pressure/Temperature pair measurement. After the measurement, the device returns to standby mode.
Triggered operation is only supported for MODE4.
Document Number: DS-000416
Revision: 1.3
Page 29 of 60
ICP-20100
6.3
FIR FILTER
The ICP-20100 includes a FIR filter in the signal path.
The FIR filter is a low pass filter, filtering off the remaining noise above ODR/4.
Figure 15. FIR Filter
In case the FIR filter is enabled first 14 samples should be ignored after mode change. This can be done by
configuring ICP-20100 in required mode and poll for FIFO count to be 14 and flushing FIFO or by using FIFO
watermark interrupt. The following sequence will explain ignoring first 14 samples using FIFO watermark interrupt:
1) Power-on the ASIC
2) Only for I2C: initialize the I2C interface by toggling the clock line a few times. The easiest way to do that
is by inserting a dummy I2C write transaction.
3) Configure the FIFO watermark high to 14 samples
•
regMap.FIFO_CONFIG = 0xE0
4) Unmask the watermark high interrupt
•
regMap.INTERRUPT_MASK = 0xFB
5) Start a measurement
•
regMap.MODE_SELECT.MEAS_CONFIG = M (M is the selected mode)
•
regMap.MODE_SELECT.MEAS_MODE = 1
•
regMap.MODE_SELECT.POWER_MODE = 0
6) Wait for the interrupt
7) Stop the measurement
•
regMap.MODE_SELECT = 0x00
•
wait 10us;
8) Flush the FIFO
•
regMap.FIFO_FILL = 0x80;
9) Reconfigure the interrupt settings if required for the application and detection of measurement data
10) Start a measurement
•
regMap.MODE_SELECT.MEAS_CONFIG = M (M is the selected mode)
•
regMap.MODE_SELECT.MEAS_MODE = 1
•
regMap.MODE_SELECT.POWER_MODE = 0
Document Number: DS-000416
Revision: 1.3
Page 30 of 60
ICP-20100
11) Wait for the interrupt or use another mechanism (polling, fixed wait) to detect if measurement data is
available
12) Read the data from FIFO registers
•
Press[7:0] = regMap.PRESS_DATA_0
•
Press[15:8] = regMap.PRESS_DATA_1
•
Press[19:16] = regMap.PRESS_DATA_2
•
Temp[7:0] = regMap.TEMP_DATA_0
•
Temp[15:8] = regMap.TEMP_DATA_1
•
Temp[19:16] = regMap.TEMP_DATA_2
13) Repeat step 12 until the FIFO is empty
In case FIR filter is disabled (for operation mode 4) the first sample after mode change need to be ignored.
6.4
IIR FILTER
The ICP-20100 includes an IIR filter in the signal path, to filter out pressure glitches due to sudden pressure
changes caused by events such as slamming door, or wind blowing on the sensor. The IIR filter is a 1st order filter
with programmable cut-off frequency.
For details on how to program and use the IIR filter, refer to the application note “AN-000238: ICP-20100 and ICP20132 User Configurable Operation Mode and IIR Filter.”
6.5
BOOT SEQUENCE
Before starting any measurement, the device needs to be configured. This section lists the different steps to be
taken before being able to conduct a measurement.
The following terminology is used in this code for register map references:
regMap.Register_Name.Register_Field_Name = Value
where
-
“Register_Name” is the register name
-
“Register_Field_Name” is the name of the register field in the register
-
“Value” is the value being written to the specified register field
1) Power-on the ASIC
2) Initialize the I2C interface by toggling the clock line a few times. The easiest way to do that is by
inserting a dummy I2C write transaction. You can for example execute the first transaction (write to
lock register) twice.
3) Check the value from register regMap.version:
•
If 0x00 (version A), continue to step 4.
•
If 0xB2 (version B), no further initialization is required.
4) Check the value from register regMap. OTP_STATUS2. BOOT_UP_STATUS
Document Number: DS-000416
Revision: 1.3
Page 31 of 60
ICP-20100
•
If 1, ICP-20100 didn’t go through power cycle after previous boot up sequence. No further
initialization is required.
•
If 0, boot up config is not done after ICP-20100 power on. Continue to step 5
5) Bring the ASIC in power mode to activate the OTP power domain and get access to the main registers
•
regMap.MODE_SELECT.POWER_MODE = 1
•
Wait 4ms;
6) Unlock the main registers
•
regMap.MASTER_LOCK.LOCK = 0x1f
7) Enable the OTP and the write switch
•
regMap.OTP_CONFIG1.OTP_ENABLE = 1;
•
regMap.OTP_CONFIG1.OTP_WRITE_SWITCH = 1;
•
wait 10μs;
8) Toggle the OTP reset pin
•
regMap.OTP_DBG2.RESET = 1
•
wait 10us
•
regMap.OTP_DBG2.RESET = 0
•
wait 10us
9) Program redundant read
•
regMap.OTP_MRA_LSB = 0x04
•
regMap.OTP_MRA_MSB = 0x04
•
regMap.OTP_MRB_LSB = 0x21
•
regMap.OTP_MRB_MSB = 0x20
•
regMap.OTP_MR_LSB = 0x10
•
regMap.OTP_MR_MSB = 0x80
10) Write the address content and read command
•
regMap.OTP_ADDRESS.ADDRESS = 8’hF8
•
regMap.OTP_COMMAND.ADDRESS = 4’h0
•
regMap.OTP_COMMAND.COMMAND = 1
// for offset
// read action
11) Wait for the OTP read to finish
•
Monitor regMap.OTP_STATUS.BUSY to be 0
12) Read the data from register
•
Offset = regMap.OTP_RDATA.VALUE
13) Write the next address content and read command
•
regMap.OTP_ADDRESS.ADDRESS = 8’hF9
•
regMap.OTP_COMMAND.ADDRESS = 4’h0
Document Number: DS-000416
Revision: 1.3
Page 32 of 60
// for gain
ICP-20100
•
regMap.OTP_COMMAND.COMMAND = 1
// read action
14) Wait for the OTP read to finish
•
Monitor regMap.OTP_STATUS.BUSY to be 0
15) Read the data from register
•
Gain = regMap.OTP_RDATA.VALUE
16) Write the next address content and read command
•
regMap.OTP_ADDRESS.ADDRESS = 8’hFA
•
regMap.OTP_COMMAND.ADDRESS = 4’h0
•
regMap.OTP_COMMAND.COMMAND = 1
// for HFosc
// read action
17) Wait for the OTP read to finish
•
Monitor regMap.OTP_STATUS.BUSY to be 0
18) Read the data from register
•
HFosc = regMap.OTP_RDATA.VALUE
19) Disable OTP and write switch
•
regMap.OTP_CONFIG1.OTP_ENABLE = 0;
•
regMap.OTP_CONFIG1.OTP_WRITE_SWITCH = 0;
•
wait 10μs;
20) Write the Offset to the main registers
•
regMap.TRIM1_MSB.PEFE_OFFSET_TRIM = Offset[5:0]
21) Write the Gain to the main registers without touching the parameter BG_PTAT_TRIM
•
Rdata = regMap.TRIM2_MSB
•
Rdata[6:4] = Gain[2:0]
•
regMap.TRIM2_MSB = Rdata
22) Write the HFosc trim value to the main registers
•
regMap.TRIM2_LSB = HFosc
23) Lock the main registers
•
regMap.MASTER_LOCK.LOCK = 0x00
24) Move to standby
•
regMap.MODE_SELECT.POWER_MODE = 0
25) Write bootup config status to 1 to avoid re initialization with out power cycle.
regMap. OTP_STATUS2. BOOT_UP_STATUS = 1
Note: The bootup sequence should be run only once for every powerup. Running the boot sequence multiple times
could create issues.
Document Number: DS-000416
Revision: 1.3
Page 33 of 60
ICP-20100
6.6
MODE SWITCHING/SELECTION
Mode switching/selection is done by
•
Making sure the previous mode is selected by reading the register field MODE_SYNC_STATUS of register
DEVICE_STATUS until it is set to ‘1’.
•
Starting the new mode by selecting it in the register field MEAS_CONFIG of register MODE_SELECT.
6.7
PRESSURE/TEMPERATURE READ-OUT
Pressure and temperature are read out by
•
Waiting until the FIFO contains data (either by polling the FIFO_LEVEL register field in register FIFO_FILL or
though configuration of the FIFO watermark high interrupt).
•
Read out registers PRESS_DATA_0, PRESS_DATA_1, PRESS_DATA_2, TEMP_DATA_0 , TEMP_DATA_1, and
TEMP_DATA_2 using the address increment burst feature of the SPI, I 2C or I3CSM interface. The FIFO read
pointer will automatically increment on reading the last register TEMP_DATA_2. The read address will
automatically wrap to address PRESS_DATA_0 (in case of Pressure first mode refer to section 7). This
means that multiple FIFO locations can be read out by continuously using the interface address increment
function until the FIFO is empty.
6.7.1 Pressure conversion formula
The 20-bit output pressure value represents a two’s complement integer from -219 till 219-1
To convert this value into pressure, use the formula
P = (POUT/217)*40kPa + 70kPa
- P: pressure in kPa
- POUT: two’s complement representation of the pressure output code
Figure 16. Pressure Output Code
Document Number: DS-000416
Revision: 1.3
Page 34 of 60
ICP-20100
6.7.2 Temperature conversion formula
The 20-bit output temperature value represents a two’s complement integer from -219 till 219-1
To convert this value into temperature, use the formula
T = (TOUT/218)*65C + 25C
- T: temperature in degrees Celsius
- TOUT: two’s complement representation of the temperature output code
Figure 17. Temperature Output Code
Document Number: DS-000416
Revision: 1.3
Page 35 of 60
ICP-20100
7
FIFO
A 96-bytes FIFO allows to buffer up to 16 pressure and temperature measurement pairs before reading them out
through I2C, I3CSM or SPI.
Four modes are supported when reading out the FIFO with address increment:
•
Pressure first: The address wraps to the start address of the Pressure value
•
Temperature only: The address wraps to the start address of the Temperature value
•
Temperature first: Temperature and pressure locations are switched, the address wraps to the start
address of the Temperature value
•
Pressure only: Temperature and pressure locations are switched, the address wraps to the start address
of the Pressure value
Figure 18. FIFO Read Out Modes
7.1
FIFO ACCESSIBILITY
The Measurement FIFO registers are accessible from the I2C/I3CSM/SPI interface in all operating modes, including
Standby mode.
The Measurement FIFO registers need to be read out in burst mode for I2C/I3CSM. The data that is read out is not
guaranteed to be consistent if every byte is addressed separately.
Document Number: DS-000416
Revision: 1.3
Page 36 of 60
ICP-20100
7.2
FIFO FULL/EMPTY
A FIFO full flag is raised when the FIFO level reaches the FIFO size.
Data is not written to the FIFO if it is full. The FIFO full flag is reset when the FIFO level drops below the FIFO size by
fetching a FIFO word through from the I2C/I3CSM/SPI interface.
A FIFO empty flag is raised when the FIFO level reaches 0.
A read transaction from the FIFO returns 0x00 values if it is empty. The FIFO empty flag is reset when the FIFO level
increases above 0.
7.3
FIFO OVERFLOW/UNDERFLOW
A FIFO overflow flag is raised when a new pressure/temperature pair is written to the FIFO while it is full. The
written pressure/temperature pair is ignored. The FIFO overflow flag is latched and can be reset by setting it
through the I2C/I3CSM/SPI interface.
A FIFO underflow flag is raised when a pressure/temperature pair is fetched from the FIFO while it is empty. The
data read from the FIFO contains 0x00 values. The FIFO underflow flag is latched and can be reset by setting it
through the I2C/I3CSM/SPI interface.
7.4
FIFO WATERMARK LOW/HIGH
Two FIFO watermark register fields, FIFO_WMK_LOW and FIFO_WMK_HIGH, can be used to manage the data flow
from the sensor to the host.
The watermark high flag is set when the FIFO level reaches the high value watermark specified by
FIFO_WMK_HIGH.
The watermark low flag is set when the FIFO level reaches the low value watermark specified by FIFO_WMK_LOW.
The FIFO watermark flags are latched and can be reset by setting them through the I2C/I3CSM/SPI interface.
7.5
FIFO FLUSH
A FIFO flush command allows the user to flush the FIFO. The register field FLUSH should be set to 1 to flush the
FIFO.
7.6
ABSOLUTE PRESSURE VALUE OVERRUN/UNDERRUN
An absolute pressure value overrun flag is raised when the pressure value crosses a configurable 16-bit pressure
overrun/underrun value. This value is configurable in the user register map using registers PRESS_ABS_LSB and
PRESS_ABS_MSB.
7.7
DELTA PRESSURE VALUE OVERRUN
A delta pressure value overrun flag is raised when the absolute difference between 2 consecutive pressure values
exceeds a configurable 16-bit delta pressure overrun value. This value is configurable in the user register map,
using registers PRESS_DELTA_LSB and PRESS_DELTA_MSB.
Document Number: DS-000416
Revision: 1.3
Page 37 of 60
ICP-20100
8
INTERRUPTS
The interrupt pin is open-drain. It is pulled high by default by an internal pull-up resistor. On an interrupt event, it
is driven low until the interrupt source has been cleared through the I 2C/I3CSM/SPI interface.
The interrupt can be configured to be connected to any of the following interrupt sources:
•
FIFO overflow
•
FIFO underflow
•
FIFO watermark low
•
FIFO watermark high
•
Absolute pressure threshold overrun
•
Absolute pressure threshold underrun
•
Delta pressure threshold overrun
Each interrupt source can be individually masked.
Document Number: DS-000416
Revision: 1.3
Page 38 of 60
ICP-20100
9
ASSEMBLY
This section provides general guidelines for assembling TDK Micro Electro-Mechanical Systems (MEMS) pressure
sensors.
9.1
IMPLEMENTATION AND USAGE RECOMMENDATIONS
9.1.1 Soldering
When soldering, use the standard soldering profile IPC/JEDEC J-STD-020 with peak temperatures of 260°C.
ICP-20100 may exhibit a pressure offset after soldering, some settling time may be required depending on
soldering properties, PCB properties, and ambient conditions.
ICP-20100 devices have MSL rating 1, appropriate JEDEC J-STD-020 guidelines should be followed to avoid
damaging the part.
9.1.2 Chemical Exposure and Sensor Protection
The ICP-20100 is an open cavity package and should not be exposed to particulates or liquids. If any type of
protective coating must be applied to the circuit board, the sensor must be protected during the coating process.
Document Number: DS-000416
Revision: 1.3
Page 39 of 60
ICP-20100
10
PACKAGE DIMENSIONS
Package dimensions for the ICP-20100:
Top View: ICP-20100
Bottom View: ICP-20100
Figure 19. ICP-20100 Package Diagrams
Document Number: DS-000416
Revision: 1.3
Page 40 of 60
ICP-20100
SYMBOLS
A
A3
b
c
D
D1
E
E1
e
L
L1
L3
MIN.
0.750
0.655
0.200
0.100
1.950
1.820
1.950
1.820
0.450
0.275
0.025
0.250
DIMENSIONS IN MILLIMETERS
NOM.
0.800
0.675
0.250
0.125
2.000
1.850
2.000
1.850
0.500
0.375
0.075
0.300
Table 19. ICP-20100 Package Dimensions
Document Number: DS-000416
Revision: 1.3
Page 41 of 60
MAX.
0.850
0.695
0.300
0.150
2.050
1.880
2.050
1.880
0.550
0.425
0.100
0.325
ICP-20100
11
PART NUMBER PART MARKINGS
The part number part markings for ICP-20100 devices are summarized below:
PART NUMBER
ICP-20100
PART MARKING
S1
Table 20. Part Number Part Markings
TOP VIEW
Part Number
Lot Traceability Code
Date Code: (Y)Year(W)WorkWeek
S1
XXXX
YW
1-Hole (ICP-20100)
Figure 20. Part Number Part Markings for ICP-20100
Document Number: DS-000416
Revision: 1.3
Page 42 of 60
ICP-20100
12
REGISTER MAP
This section lists the register map for ICP-20100.
Addr
(Hex)
Addr
(Dec.)
Register Name
Serial
I/F
5
5
TRIM1_MSB
R/W
6
6
TRIM2_LSB
R/W
7
7
TRIM2_MSB
R/W
C
12
DEVICE_ID
RO
Bit7
Bit6
Bit5
Bit4
Bit3
-
-
PEFE_GAIN_TRIM
BG_PTAT_TRIM
VALUE
13
IO_DRIVE_STRENGTH
R/W
172
OTP_CONFIG1
R/W
AD
173
OTP_MR_LSB
R/W
VALUE_LSB
AE
174
OTP_MR_MSB
R/W
VALUE_MSB
AF
175
OTP_MRA_LSB
R/W
VALUE_LSB
B0
176
OTP_MRA_MSB
R/W
VALUE_MSB
B1
177
OTP_MRB_LSB
R/W
VALUE_LSB
B2
178
OTP_MRB_MSB
R/W
VALUE_MSB
B5
181
OTP_ADDRESS_REG
R/W
B6
182
OTP_COMMAND_REG
R/W
B8
184
OTP_RDATA
R
-
IO_DS
-
OTP_EN
COMMAND
OTP_ADDRESS_MSB
VALUE
B9
185
OTP_STATUS
R
188
OTP_DBG2
R/W
BE
190
MASTER_LOCK
W
BF
191
OTP_STATUS2
R/W
C0
192
MODE_SELECT
R/W
C1
193
INTERRUPT_STATUS
R/W
-
PRESS_D
ELTA_INT
C2
194
INTERRUPT_MASK
R/W
-
PRESS_D
ELTA_MA
SK
C3
195
FIFO_CONFIG
R/W
C4
196
FIFO_FILL
R/W
FIFO_FLU
SH
FIFO_EMP
TY
C5
197
SPI_MODE
R/W
C7
199
PRESS_ABS_LSB
R/W
PRESS_ABS_LSB
C8
200
PRESS_ABS_MSB
R/W
PRESS_ABS_MSB
-
BUSY
RESET
LOCK
BOOT_UP
_STATUS
FORCED_
MEAS_TRI
GGER
MEAS_MO
DE
POWER_M
ODE
PRESS_A
BS_INT
-
FIFO_WM
K_LOW_IN
T
FIFO_WM
K_HIGH_I
NT
FIFO_UND
ERFLOW_I
NT
FIFO_OV
ERFLOW
_INT
PRESS_A
BS_MASK
-
FIFO_WM
K_LOW_M
ASK
FIFO_WM
K_HIGH_M
ASK
FIFO_UND
ERFLOW_
MASK
FIFO_OV
ERFLOW
_MASK
MEAS_CONFIG
FIFO_WM_HIGH
FIFO_LEVEL
SPI_MOD
E
-
C9
201
PRESS_DELTA_LSB
R/W
PRESS_DELTA_LSB
202
PRESS_DELTA_MSB
R/W
PRESS_DELTA_MSB
CD
205
DEVICE_STATUS
R
CE
206
I3C_INFO
R
D3
211
VERSION
R
FA
250
PRESS_DATA_0
R
PRESS_DATA_1
R
PRESS_DATA_2
R
FD
253
TEMP_DATA_0
R
FE
254
TEMP_DATA_1
R
FF
255
TEMP_DATA_2
R
MODE_S
YNC_ST
ATUS
I3C_INFO
MAJOR
MINOR
PRESS_DATA_0
PRESS_DATA_1
-
PRESS_DATA_2
TEMP_DATA_0
TEMP_DATA_1
-
Table 21. Register Map
Document Number: DS-000416
Revision: 1.3
FIFO_READOUT_MODE
FIFO_WM_LOW
FIFO_FUL
L
CA
252
OTP_WR
OTP_ADDRESS_LSB
-
BC
251
Bit0
PEFE_OFFSET_TRIM
D
FB
Bit1
HF_OSC_TRIM
AC
FC
Bit2
Page 43 of 60
TEMP_DATA_2
ICP-20100
13
REGISTER MAP DESCRIPTION
This section describes the function and contents of each register.
13.1 TRIM1_MSB
Name: TRIM1_MSB
Address: 5 (0x05)
Serial IF: R/W
Reset value: Device dependent
BIT NAME
7:6 5:0 PEFE_OFFSET_TRIM
FUNCTION
Reserved
Trim value for the pressure front-end
13.2 TRIM2_LSB
Name: TRIM2_LSB
Address: 6 (0x06)
Serial IF: R/W
Reset value: Device dependent
BIT NAME
7
6:0 HFOSC_TRIM
FUNCTION
Reserved
Trim value for the high frequency oscillator
13.3 TRIM2_MSB
Name: TRIM1_MSB
Address: 7 (0x07)
Serial IF: R/W
Reset value: Device dependent
BIT NAME
7
6:4 PEFE_GAIN_TRIM
3:0 BG_PTAT_TRIM
FUNCTION
Reserved
Trim value for the pressure front-end
Trim value for PTAT current
13.4 DEVICE_ID
Name: DEVICE_ID
Address: 12 (0x0C)
Serial IF: RO
Reset value: 0x63
BIT NAME
7:0 VALUE
Document Number: DS-000416
Revision: 1.3
FUNCTION
8-bit Device ID
Page 44 of 60
ICP-20100
13.5 IO_DRIVE_STRENGTH
Name: IO_DRIVE_STRENGTH
Address: 13 (0x0D)
Serial IF: R/W
Reset value: 0x03
BIT NAME
7:3 -
2:0
IO_DS
FUNCTION
Reserved
IO drive strength value
000: 2 mA for 1.8V IO supply
001: 4 mA for 1.8V IO supply
010: 8 mA for 1.8V IO supply
011: 12 mA for 1.8V IO supply
100: 2 mA for 1.2V IO supply
101: 4 mA for 1.2V IO supply
110: 6 mA for 1.2V IO supply
111: 8 mA for 1.2V IO supply
13.6 OTP_CONFIG1
Name: OTP_CONFIG1
Address: 172 (0xAC)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7:2 RESERVED
1
OTP_WRITE_SWITCH
0
OTP_ENABLE
FUNCTION
Connect OTP VCC to VCORE. This is needed for OTP write. VCORE should be
3V3 in this case
Enable the OTP
13.7 OTP_MR_LSB
Name: OTP_MR_LSB
Address: 173 (0xAD)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7:0 VALUE_LSB
FUNCTION
OTP MR register bits 7:0
13.8 OTP_MR_MSB
Name: OTP_MR_MSB
Address: 174 (0xAE)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7:0 VALUE_MSB
Document Number: DS-000416
Revision: 1.3
FUNCTION
OTP MR register bits 15:8
Page 45 of 60
ICP-20100
13.9 OTP_MRA_LSB
Name: OTP_MRA_LSB
Address: 175 (0xAF)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7:0 VALUE_LSB
FUNCTION
OTP MRA register bits 7:0
13.10 OTP_MRA_MSB
Name: OTP_MRA_MSB
Address: 176 (0xB0)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7:0 VALUE_MSB
FUNCTION
OTP MRA register bits 15:8
13.11 OTP_MRB_LSB
Name: OTP_MRB_LSB
Address: 177 (0xB1)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7:0 VALUE_LSB
FUNCTION
OTP MRB register bits 7:0
13.12 OTP_MRB_MSB
Name: OTP_MRB_MSB
Address: 178 (0xB2)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7:0 VALUE_MSB
FUNCTION
OTP MRB register bits 15:8
13.13 OTP_ADDRESS
Name: OTP_ADDRESS
Address: 181 (0xB5)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7:0 ADDRESS
Document Number: DS-000416
Revision: 1.3
FUNCTION
OTP address [7:0] to read from or to write to
Page 46 of 60
ICP-20100
13.14 OTP_COMMAND
Name: OTP_COMMAND
Address: 182 (0xB6)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7
RESERVED
6:4 COMMAND
3:0 ADDRESS
FUNCTION
OTP access command
OTP address [11:8] to read from or to write to
13.15 OTP_RDATA
Name: OTP_RDATA
Address: 184 (0xB8)
Serial IF: R
Reset value: 0x00
BIT NAME
7:0 VALUE
FUNCTION
OTP read data word
13.16 OTP_STATUS
Name: OTP_STATUS
Address: 185 (0xB9)
Serial IF: R
Reset value: 0x00
BIT NAME
7:1 RESERVED
0
BUSY
FUNCTION
OTP controller BUSY flag
13.17 OTP_DBG2
Name: OTP_DBG2
Address: 188 (0xBC)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7
RESET
6:0 RESERVED
FUNCTION
Value of the OTP port RESET
-
13.18 OTP_STATUS2
Name: OTP_STATUS2
Address: 191 (0xBF)
Serial IF: R/W
Reset value: 0xF0
BIT NAME
7:1 RESERVED
Document Number: DS-000416
Revision: 1.3
FUNCTION
-
Page 47 of 60
ICP-20100
0
BOOT_UP_STATUS
Boot up config status.
Host can set this bit to 1 when boot up config is done and read later to know
if ICP-20100 is power cycled and needs boot up config.
13.19 MASTER_LOCK
Name: MASTER_LOCK
Address: 190 (0xBE)
Serial IF: W
Reset value: 0x00
BIT NAME
7:0
LOCK
FUNCTION
Write 8'h1F to unlock write access to all main registers
Write any other value to lock write access to all main registers
The OTP mirror registers are not locked by this register
13.20 MODE_SELECT
Name: MODE_SELECT
Address: 192 (0xC0)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7:5
MEAS_CONFIG
4
FORCED_MEAS_TRIGGER
3
MEAS_MODE
2
POWER_MODE
1:0
FIFO_READOUT_MODE
Document Number: DS-000416
Revision: 1.3
FUNCTION
Measurement Configuration (the modes listed below are described in
section 2.2)
000: Mode0
001: Mode1
010: Mode2
011: Mode3
100: Mode4
101 to 111: Reserved
Initiate Triggered Operation (also called Forced Measurement Mode)
0: Stay in Standby mode
1: Trigger for forced measurement (only supported for Mode4)
Measurement Mode Selection
0: Standby or trigger forced measurement based on the field
FORCED_MEAS_TRIGGER
1: Continuous Measurements (duty cycled): Measurements are started
based on the selected mode ODR_REG
Power Mode Selection
0: Normal Mode: Device is in standby and goes to active mode during the
execution of a measurement
1: Active Mode: Power on DVDD and enable the high frequency clock
FIFO Readout Mode Selection (refer to the FIFO section for further
information)
00: Pressure first.
When you start reading from address 0xFA with address increment, you will
read out press(n), temp(n), press(n+1), temp(n+1), …
01: Temperature only.
When you start reading from address 0xFD with address increment, you will
read out temp(n), temp(n+1), …
Page 48 of 60
ICP-20100
10: Temperature first.
When you start reading from address 0xFA with address increment, you will
read out temp(n), press(n), temp(n+1), press(n+1), …
11: Pressure only.
When you start reading from address 0xFD with address increment, you will
read out press(n), press(n+1), …
Notes:
- Make sure DEVICE_STATUS.MODE_SYNC_STATUS bit is set before writing this register.
13.21 INTERRUPT_STATUS
Name: INTERRUPT_STATUS
Address: 193 (0xC1)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7
-
6
PRESS_DELTA_INT
5
PRESS_ABS_INT
4
-
3
FIFO_WMK_LOW_INT
2
FIFO_WMK_HIGH_INT
Document Number: DS-000416
Revision: 1.3
FUNCTION
Reserved
Delta pressure overrun
Read
0: The difference between 2 consecutive pressure measurements after
filtering didn't exceed the programmed delta pressure overrun value. The
interrupt has not triggered
1: The difference between 2 consecutive pressure measurements after
filtering exceeded the programmed delta pressure overrun value. The
interrupt has triggered
Write policy is W1C
0: the press_delta_int interrupt status bit is unchanged
1: the press_delta_int interrupt status bit is cleared
Pressure underrun/overrun
Read
0: The pressure value didn't cross the programmed pressure
underrun/overrun value. The interrupt has not triggered
1: The pressure value crossed the programmed pressure underrun/overrun
value. The interrupt has triggered
Write policy is W1C
0: the press_abs interrupt status bit is unchanged
1: the press_abs interrupt status bit is cleared
Reserved
FIFO watermark low
Read
0: The FIFO fill level didn't reach in downward direction the programmed
watermark low value. The interrupt has not triggered
1: The FIFO fill level reached in downward direction the programmed
watermark low value. The interrupt has triggered
Write policy is W1C
0: the fifo_wmk_low interrupt status bit is unchanged
1: the fifo_wmk_low interrupt status bit is cleared
FIFO watermark high
Read
0: The FIFO fill level didn't reach in upward direction the programmed
watermark high value. The interrupt has not triggered
1: The FIFO fill level reached in upward direction the programmed
watermark high value. The interrupt has triggered
Page 49 of 60
ICP-20100
1
FIFO_UNDERFLOW_INT
0
FIFO_OVERFLOW_INT
Write policy is W1C
0: the fifo_wmk_high interrupt status bit is unchanged
1: the fifo_wmk_high interrupt status bit is cleared
FIFO underflow
Read
0: No new pressure/temperature pair was fetched from the FIFO while it was
empty. The interrupt has not triggered
1: A new pressure/temperature pair was fetched from the FIFO while it was
empty. The interrupt has triggered
Write policy is W1C
0: the fifo_underflow interrupt status bit is unchanged
1: the fifo_underflow interrupt status bit is cleared
FIFO overflow
Read
0: No new pressure/temperature pair was written to the FIFO while it was
full. The interrupt has not triggered
1: A new pressure/temperature pair was written to the FIFO while it was full.
The interrupt has triggered
Write policy is W1C
0: the fifo_overflow interrupt status bit is unchanged
1: the fifo_overflow interrupt status bit is cleared
13.22 INTERRUPT_MASK
Name: INTERRUPT_MASK
Address: 194 (0xC2)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7
6
PRESS_DELTA_MASK
5
PRESS_ABS_MASK
4
-
3
FIFO_WMK_LOW_MASK
2
FIFO_WMK_HIGH_MASK
1
FIFO_UNDERFLOW_MASK
0
FIFO_OVERFLOW_MASK
FUNCTION
Reserved (program to 1)
0: PRESS_DELTA interrupt is not masked
1: PRESS_DELTA interrupt is masked
0: PRESS_ABS interrupt is not masked
1: PRESS_ABS interrupt is masked
Reserved
0: FIFO_WMK_LOW interrupt is not masked
1: FIFO_WMK_LOW interrupt is masked
0: FIFO_WMK_HIGH interrupt is not masked
1: FIFO_WMK_HIGH interrupt is masked
0: FIFO_UNDERFLOW interrupt is not masked
1: FIFO_UNDERFLOW interrupt is masked
0: FIFO_OVERFLOW interrupt is not masked
1: FIFO_OVERFLOW interrupt is masked
13.23 FIFO_CONFIG
Name: FIFO_CONFIG
Address: 195 (0xC3)
Serial IF: R/W
Reset value: 0x00
Document Number: DS-000416
Revision: 1.3
Page 50 of 60
ICP-20100
BIT
NAME
7:4
FIFO_WM_HIGH
3:0
FIFO_WM_LOW
FUNCTION
FIFO high watermark value. Interrupt is triggered when the FIFO fill level
reaches this value in the upward direction. A value of 0 disables the high
watermark check.
FIFO low watermark value. Interrupt is triggered when the FIFO fill level
reaches this value in the downward direction.
13.24 FIFO_FILL
Name: FIFO_FILL
Address: 196 (0xC4)
Serial IF: R/W
Reset value: 0x40
BIT NAME
7
FIFO_FLUSH
6
FIFO_EMPTY
5
FIFO_FULL
4:0
FIFO_LEVEL
FUNCTION
FIFO flush command. (This field should not be modified while doing a
measurement)
0: No change
1: FIFO is flushed. Flushing the FIFO will empty it.
FIFO empty indication.
0: The FIFO level is above 0
1: The FIFO level is at 0
FIFO full indication.
0: The FIFO level is below the FIFO size
1: The FIFO level has reached the FIFO size
FIFO fill level
00000: Empty
00001: 1/16 full
00010: 2/16 full
00011: 3/16 full
00100: 4/16 full
00101: 5/16 full
00110: 6/16 full
00111: 7/16 full
01000: 8/16 full
01001: 9/16 full
01010: 10/16 full
01011: 11/16 full
01100: 12/16 full
01101: 13/16 full
01110: 14/16 full
01111: 15/16 full
10000: Full
10001 to 11111: Reserved
13.25 SPI_MODE
Name: SPI_MODE
Address: 197 (0xC5)
Serial IF: R/W
Reset value: 0x00
Document Number: DS-000416
Revision: 1.3
Page 51 of 60
ICP-20100
BIT
7:1
0
NAME
SPI_MODE
FUNCTION
Reserved
0: SPI 4-wire mode enabled
1: SPI 3-wire mode enabled
13.26 PRESS_ABS_LSB
Name: PRESS_ABS_LSB
Address: 199 (0xC7)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7:0
PRESS_ABS_LSB
FUNCTION
LSB part of the 16bit pressure overrun/underrun value.
The 16bit value represents pressure values according to the formula
PABS = (P(kPa)-70kPa)/40kPa*213
For example, 80 kPa threshold results in value 0x0800, 50 kPa results in
value 0xF000
This register should not be modified while doing a measurement.
13.27 PRESS_ABS_MSB
Name: PRESS_ABS_MSB
Address: 200 (0xC8)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7:0
PRESS_ABS_MSB
FUNCTION
MSB part of the 16bit pressure overrun/underrun value.
The 16bit value represents pressure values according to the formula
PABS = (P(kPa)-70kPa)/40kPa*213
For example, 80kPa threshold results in value 0x0800, 50 kPa results in value
0xF000
This register should not be modified while doing a measurement.
13.28 PRESS_DELTA_LSB
Name: PRESS_DELTA_LSB
Address: 201 (0xC9)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7:0
PRESS_DELTA_LSB
Document Number: DS-000416
Revision: 1.3
FUNCTION
LSB part of the 16bit delta pressure overrun/underrun value.
The 16bit value represents pressure values according to the formula
PDELTA = (P(kPa)/80)* 214
For example, a delta pressure of 0.5 kPa is represented by the value 0x0066
This register should not be modified while doing a measurement.
Page 52 of 60
ICP-20100
13.29 PRESS_DELTA_MSB
Name: PRESS_DELTA_MSB
Address: 202 (0xCA)
Serial IF: R/W
Reset value: 0x00
BIT NAME
7:0
PRESS_DELTA_MSB
FUNCTION
MSB part of the 16bit delta pressure overrun/underrun value.
The 16bit value represents pressure values according to the formula
PDELTA = (P(kPa)/80)* 214
For example, a delta pressure of 0.5 kPa is represented by the value 0x0066
This register should not be modified while doing a measurement.
13.30 DEVICE_STATUS
Name: DEVICE_STATUS
Address: 205 (0xCD)
Serial IF: R
Reset value: 0x00
BIT NAME
7:6 0
MODE_SYNC_STATUS
FUNCTION
Reserved
0: Synchronization of the selected mode to the internal clock domain is
ongoing. MODE_SELECT register is not accessible by the user.
1: Synchronization of the selected mode to the internal clock domain is
finished. MODE_SELECT register is accessible by the user.
13.31 I3C_INFO
Name: I3C_INFO
Address: 206 (0xCE)
Serial IF: R
Reset value: 0x00
BIT NAME
7:0 I3C_INFO
FUNCTION
This register contains the I3CSM dynamic slave address
13.32 VERSION
Name: VERSION
Address: 211 (0xD3)
Serial IF: R
Reset value: 0x00 (version A); 0xB2 (version B)
BIT
NAME
FUNCTION
7:4
MAJOR
Major version number
3:0
MINOR
Minor version number
Document Number: DS-000416
Revision: 1.3
Page 53 of 60
ICP-20100
13.33 PRESS_DATA_0
Name: PRESS_DATA_0
Address: 250 (0xFA)
Serial IF: R
Reset value: 0x00
BIT NAME
7:0 PRESS_DATA_0
FUNCTION
Pressure data bits [7:0]
13.34 PRESS_DATA_1
Name: PRESS_DATA_1
Address: 251 (0xFB)
Serial IF: R
Reset value: 0x00
BIT NAME
7:0 PRESS_DATA_1
FUNCTION
Pressure data bits [15:8]
13.35 PRESS_DATA_2
Name: PRESS_DATA_2
Address: 252 (0xFC)
Serial IF: R
Reset value: 0x00
BIT NAME
7:4 3:0 PRESS_DATA_2
FUNCTION
Reserved
Pressure data bits [19:16]
13.36 TEMP_DATA_0
Name: TEMP_DATA_0
Address: 253 (0xFD)
Serial IF: R
Reset value: 0x00
BIT NAME
7:0 TEMP_DATA_0
FUNCTION
Temperature data bits [7:0]
13.37 TEMP_DATA_1
Name: TEMP_DATA_1
Address: 254 (0xFE)
Serial IF: R
Reset value: 0x00
BIT NAME
7:0 TEMP_DATA_1
Document Number: DS-000416
Revision: 1.3
FUNCTION
Temperature data bits [15:8]
Page 54 of 60
ICP-20100
13.38 TEMP_DATA_2
Name: TEMP_DATA_2
Address: 255 (0xFF)
Serial IF: R
Reset value: 0x00
BIT NAME
7:4 3:0 TEMP_DATA_2
Document Number: DS-000416
Revision: 1.3
FUNCTION
Reserved
Temperature data bits [19:16]
Page 55 of 60
ICP-20100
14
TAPE & REEL SPECIFICATION
Figure 21. ICP-20100 Tape Dimensions
Figure 22. ICP-20100 Tape and Reel Drawing
Document Number: DS-000416
Revision: 1.3
Page 56 of 60
ICP-20100
15
ORDERING GUIDE
PART
ICP-20100†
TEMP RANGE
PACKAGE BODY
PACKAGE LID
QUANTITY
PACKAGING
−40°C to +85°C
2x2x0.8mm LGA10L
1-Hole
10,000
13” Tape
and Reel
†Denotes RoHS and Green-Compliant Package
Document Number: DS-000416
Revision: 1.3
Page 57 of 60
ICP-20100
16
REFERENCES
Please refer to “InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)” and “Pressure Sensor PCB
Design Guidelines (AN-000140)” for the following information:
• Manufacturing Recommendations
o Assembly Guidelines and Recommendations
o PCB Design Guidelines and Recommendations
o MEMS Handling Instructions
o ESD Considerations
o Reflow Specification
o Storage Specifications
o Package Marking Specification
o Reel & Pizza Box Label
o Packaging
o Representative Shipping Carton Label
• Compliance
o Environmental Compliance
o DRC Compliance
o Compliance Declaration Disclaimer
Document Number: DS-000416
Revision: 1.3
Page 58 of 60
ICP-20100
17
REVISION HISTORY
REVISION DATE
REVISION
DESCRIPTION
10/12/2020
0.1
Initial Release
Updated ASIC Identification Procedure (Section 5.4); Updated Duty Cycled Operation
Description (Section 6.2.1); Updated FIFO FULL/EMPTY Description (Section 7.2);
Moved sections on FIFO OVERFLOW/UNDERFLOW, FIFO WATERMARK LOW/HIGH,
ABSOLUTE PRESSURE VALUE OVERRUN/UNDERRUN, DELTA PRESSURE VALUE
OVERRUN from Section 7 to Section 8.
Updated Pressure Sensor Specifications (Table 3); Updated ASIC Identification
Procedure (Section 5.4); Updated Duty Cycled Operation Description (Section 6.2.1);
Updated Interrupts (Section 8).
03/12/2021
0.2
04/01/2021
0.3
05/03/2021
0.4
Added MSL information (Cover Page); Added Tape & Reel Specification (Section 14).
07/09/2021
1.0
Updated Pressure Sensor Specifications (Table 3); Updated References (Section 16)
09/15/2021
1.1
12/08/2021
1.2
12/17/2021
1.3
Document Number: DS-000416
Revision: 1.3
Updated Table 3 Notes and Conditions; Added OSRPRESS and OSRTEMP Calculation
(Section 6.2.1); Updated FIFO_FLUSH Register Field Description (Section 13.23)
Updated Drive Strength for VDDIO = 1.2V and for VDDIO = 1.8V/3.3V (Section 3.1);
Updated HBM from 2kV to 1.5kV (Section 3.2); Added new dummy reads for I2C and
I3C (Section 4.1.3 and Section 4.1.4); Updated Drive Strength Configuration (Section
4.3); Updated FIR Filter section (Section 6.3); Updated drive strength (Section 13.5,
3.1); Updated boot section (Section 6.5); Updated ASIC identification section (Section
5.4, 13.31); Added register OTP_STATUS2 (Section 12, 13.18); Updated IO_DS
description (Section 13.5); Added Notes (Section 13.20)
Updated Boot Sequence (Section 6.5)
Page 59 of 60
ICP-20100
This information furnished by InvenSense or its affiliates (“TDK InvenSense”) is believed to be accurate and reliable. However, no responsibility
is assumed by TDK InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use.
Specifications are subject to change without notice. TDK InvenSense reserves the right to make changes to this product, including its circuits
and software, in order to improve its design and/or performance, without prior notice. TDK InvenSense makes no warranties, neither expressed
nor implied, regarding the information and specifications contained in this document. TDK InvenSense assumes no responsibility for any claims
or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is
not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or
otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied.
Trademarks that are registered trademarks are the property of their respective companies. TDK InvenSense sensors should not be used or sold
in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life
threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear
instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.
©2020—2021 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps,
DMP, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and
product names may be trademarks of the respective companies with which they are associated.
©2020—2021 InvenSense. All rights reserved.
Document Number: DS-000416
Revision: 1.3
Page 60 of 60