PXD20-xxSxx Single Output DC/DC Converter
9 to 18 , 18to 36 and 36 to75 Vdc input, 1.5to 15 Vdc Single Output, 20W
Features
Low profile: 2.0X1.0X0.4 inches (50.8X25.4X10.2mm)
2:1 wide input voltage of 9-18, 18-36 and 36-75VDC
20 Watts output power
Input to output isolation: 1600Vdc, min
Operating case temperature range :100°C max
Over-current protection, auto-recovery
Output over voltage protection
ISO 9001 certified manufacturing facilities
UL60950-1, EN60950-1 and IEC60950-1 licensed
CE Mark meet 2006/95/EC, 93/68/EEC and 2004/108/EC
Compliant to RoHS EU directive 2002/95/EC
Applications
Distributed power architectures
Communication equipment
Computer equipment
Option
Negative logic Remote on/off
General Description
The PXD20-xxSxx series offers 20 watts of output power from a 2 x 1 x 0.4 inch package.
Table of contents
Absolute maximum rating
P2
External trim adjustment
P9
Input Specifications
P2
Characteristic curves
P11
General Specifications
P3
Test configurations
P20
Output Specifications
P4
Part number structure
P21
Thermal Consideration
P5
Mechanical data
P21
Output over current protection
P7
Safety and installation instruction
P22
Short circuit protection
P7
MTBF and Reliability
P22
Solder and Reflow consideration
P8
1
Data Sheet
Absolute Maximum Rating
Parameter
Max
Unit
12Sxx
18
Vdc
24Sxx
36
Vdc
48Sxx
75
Vdc
12Sxx
36
Vdc
24Sxx
50
Vdc
48Sxx
100
Vdc
+85
°C
100
°C
Device
Continuous
Input Voltage
Transient (100ms)
Operating temperature range
All
(Operating temperature will be depended De-rating curve)
Min
Typ
-40
Operating case range
All
Storage temperature
All
-55
I/O Isolation voltage
All
1600
I/O Isolation capacitance
All
+105
°C
Vdc
1000
pF
Input Specifications
Parameter
Device
Operating Input Voltage
Input reflected ripple current
(Please see the testing configurations part.)
Start Up Time (nominal vin and
Power up
constant resistive load)
Remove on/off
Min
Typ
Max
Unit
12Sxx
9
12
18
Vdc
24Sxx
18
24
36
Vdc
48Sxx
36
48
75
Vdc
All
20
mA p-p
All
10
mS
Remote ON/OFF
Positive Logic
Negative Logic
(Option)
DC-DC ON
All
3
12
Vdc
DC-DC OFF
All
0
1.2
Vdc
All
0
1.2
Vdc
All
3
12
Vdc
DC-DC ON
DC-DC OFF
2
Data Sheet
General Specifications
Parameter
Device
Min
Typ
Max
Unit
12S1P5
78
%
12S1P8
79
%
12S2P5
83
%
12S3P3
85
%
12S05
87
%
12S12
86
%
12S15
86
%
24S1P5
80
%
24S1P8
81
%
Efficiency
24S2P5
84
%
Test at Vin, nom and full load
24S3P3
86
%
24S05
89
%
24S12
87
%
(Please see he testing configurations part.)
24S15
87
%
48S1P5
80
%
48S1P8
82
%
48S2P5
84
%
48S3P3
87
%
48S05
89
%
48S12
88
%
48S15
Isolation resistance
Transient Response Recovery Time
(25% load step change)
All
All
87
%
9
Ω
10
μS
250
Isolation Capacitance
All
Switching Frequency(Test at Vin, nom and full load)
All
1000
Weight
All
27
MTBF (please see the MTBF and reliability part)
All
1.791×10
500
pF
KHz
g
6
hours
3
Data Sheet
Output Specifications
Parameter
Operating Output Range
Line Regulation(LL to HL at Full Load)
Load Regulation(0% to 100% Full Load)
Output Ripple & Noise, 20MHz bandwidth
(Measured with a 0.1μF/50V MLCC)
Device
Min
Typ
Max
Unit
xxS1P5
1.485
1.500
1.515
Vdc
xxS1P8
1.782
1.800
1.818
Vdc
xxS2P5
2.475
2.500
2.525
Vdc
xxS3P3
3.267
3.300
3.333
Vdc
xxS05
4.95
5.00
5.05
Vdc
xxS12
11.88
12.00
12.12
Vdc
xxS15
14.85
15.00
15.15
Vdc
All
-0.2
0.2
%
All
-0.5
0.5
%
xxS1P5
60
xxS1P8
60
xxS2P5
60
xxS3P3
60
xxS05
75
xxS12
75
xxS15
Temperature Coefficient
Output Current
Output Over Voltage Protection Zener diode clamp
Output Over Current Protection
Output Short Circuit Protection
Output Capacitor Load
mVp-p
75
All
-0.02
+0.02
%/℃
xxS1P5
0
6000
mA
xxS1P8
0
6000
mA
xxS2P5
0
6000
mA
xxS3P3
0
5000
mA
xxS05
0
4000
mA
xxS12
0
1670
mA
xxS15
0
1330
mA
xxS1P5
3.9
Vdc
xxS1P8
3.9
Vdc
xxS2P5
3.9
Vdc
xxS3P3
3.9
Vdc
xxS05
6.2
Vdc
xxS12
15
Vdc
xxS15
18
Vdc
All
All
150
% FL
Hiccup, automatics recovery
xxS1P5
65000
μF
xxS1P8
65000
μF
xxS2P5
33000
μF
xxS3P3
13000
μF
xxS05
6800
μF
xxS12
2200
μF
xxS15
755
μF
4
Data Sheet
Thermal Consideration
The power module operates in a variety of thermal environments. However, sufficient cooling should be provided to help ensure
reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding environment. Proper cooling
can be verified by measuring the point as indicated in the figure below. The temperature at this location should not exceed 100°C. When
operating, adequate cooling must be provided to maintain the test point temperature at or below 100°C. Although the maximum
temperature of the power module is 100°C, decreasing this temperature will yield higher reliability.
TOP VIEW
Measurement shown in inches(mm)
Following are derating curves for models: PXD20-24S1P8, 48S05 and 48S15.
PXD20-24S1P8 Derating Curve
120.0
Output Power(%)
100.0
80.0
60.0
40.0
Nature convection
Nature convection
With heat-sink
20.0
0.0
-4 0 -30 -20 -10
0
10
20
30
40
50
60
70
80
90
100
Amb ient Temperature( °C)
5
Data Sheet
PXD20-48S05 Derating Curve
120.0
O utput Power( %)
100.0
80.0
60.0
40.0
Nature convection
Nature convection
With heat-sink
20.0
0.0
-40 -3 0 -20 -10
0
10
20
30
40
50
60
70
80
9 0 1 00
A mbient Tempe rature( °C)
PXD20-48S15 Derating Curve
1 20.0
O utp ut P ower(% )
1 00.0
80.0
60.0
40.0
Nature convection
Nature convection
With heat-sink
20.0
0.0
- 40 - 30 - 20 - 10
0
10
20
30
40
50
60
70
80
90
100
A mbien t Tempe rature( °C)
6
Data Sheet
Output Over Current Protection
When excessive output currents occur in the system, circuit protection is required on all power supplies. Normally,
overload current is maintained at approximately 150 percent of rated current for PXD20-xxSxx series.
Hiccup-mode is a method of operation in a power supply whose purpose is to protect the power supply from
being damaged during an over-current fault condition. It also enables the power supply to restart when the fault is
removed. There are other ways of protecting the power supply when it is over-loaded, such as the maximum current
limiting or current foldback methods.
One of the problems resulting from over current is that excessive heat may be generated in power devices;
especially MOSFET and Schottky diodes and the temperature of those devices may exceed their specified limits. A
protection mechanism has to be used to prevent these power devices from being damaged.
The operation of hiccup is as follows. When the current sense circuit sees an over-current event, the controller
shuts off the power supply for a given time and then tries to start up the power supply again. If the over-load condition
has been removed, the power supply will start up and operate normally; otherwise, the controller will see another
over-current event and shut off the power supply again, repeating the previous cycle. Hiccup operation has none of
the drawbacks of the other two protection methods, although its circuit is more complicated because it requires a
timing circuit. The excess heat due to overload lasts for only a short duration in the hiccup cycle, hence the junction
temperature of the power devices is much lower.
The hiccup operation can be done in various ways. For example, one can start hiccup operation any time an
over-current event is detected; or prohibit hiccup during a designated start-up interval (usually a few milliseconds).
The reason for the latter operation is that during start-up, the power supply needs to provide extra current to charge
up the output capacitor. Thus the current demand during start-up is usually larger than during normal operation and it
is easier for an over-current event to occur. If the power supply starts to hiccup once there is an over-current, it might
never start up successfully. Hiccup mode protection will give the best protection for a power supply against over
current situations, since it will limit the average current to the load at a low level, so reducing power dissipation and
case temperature in the power devices.
Short Circuitry Protection
Continuous, hiccup and auto-recovery mode.
During short circuit, the converter shuts down. The average current during this condition will be very low and the
device is protected.
7
Data Sheet
Soldering and Reflow Consideration
Lead free wave solder profile for PXD20-xxSxx DIP type
Zone
Preheat zone
Reference Parameter
Rise temp. speed : 3°C / sec max.
Preheat temp. : 100~130°C
Actual heating
Peak temp. : 250~260°C
Peak time (T1+T2 time) : 4~6 sec
Reference Solder: Sn-Ag-Cu/Sn-Cu
Hand Welding: Soldering iron- Power 90W
Welding Time: 2-4 sec
Temp.:380-400 °C
8
Data Sheet
External trim adjustment
Output voltage set point adjustment allows the user to increase or decrease the output voltage set point of a module. This is
accomplished by connecting an external resistor between the TRIM pin and either the Vo (+) or Vo (-) pins. With an external resistor
between the TRIM and Vo (+) pin, the output voltage set point decreases. With an external resistor between the TRIM and Vo (-) pin,
the output voltage set point increases.
TRIM DOWN
+Output♁
♁+Input
♁-Input
TRIM♁
-Output♁
♁CTRL
TRIM UP
+Output♁
♁+Input
♁-Input
TRIM♁
-Output♁
♁CTRL
EXTERNAL OUTPUT TRIMMING
TRIM TABLE
PXD20-xxS1P5
Trim down
1
2
3
4
5
6
7
8
9
10
Vout=
1.485
1.470
1.455
1.440
1.425
1.410
1.395
1.380
1.365
1.350
Volts
Rx=
5.704
2.571
1.527
1.005
0.692
0.483
0.334
0.222
0.135
0.065
K Ohms
Trim up
1
2
3
4
5
6
7
8
9
10
%
Vout=
1.515
1.530
1.545
1.560
1.575
1.590
1.605
1.620
1.635
1.650
Volts
Rx=
4.578
2.065
1.227
0.808
0.557
0.389
0.270
0.180
0.110
0.054
K Ohms
Trim down
1
2
3
4
5
6
7
8
9
10
%
Vout=
1.782
1.764
1.746
1.728
1.710
1.692
1.674
1.656
1.638
1.620
Volts
Rx=
14.66
6.57
3.874
2.525
1.716
1.177
0.792
0.503
0.278
0.098
K Ohms
Trim up
1
2
3
4
5
6
7
8
9
10
%
Vout=
1.818
1.836
1.854
1.872
1.89
1.908
1.926
1.944
1.962
1.98
Volts
Rx=
11.639
5.205
3.060
1.988
1.344
0.915
0.609
0.379
0.200
0.057
K Ohms
%
PXD20-xxS1P8
9
Data Sheet
PXD20-xxS2P5
Trim down
1
2
3
4
5
6
7
8
9
10
%
Vout=
2.475
2.450
2.425
2.400
2.375
2.350
2.325
2.300
2.275
2.250
Volts
Rx=
49.641
22.481
13.428
8.902
6.186
4.375
3.082
2.112
1.358
0.754
K Ohms
Trim up
1
2
3
4
5
6
7
8
9
10
%
Vout=
2.525
2.550
2.575
2.600
2.625
2.650
2.675
2.700
2.725
2.75
Volts
Rx=
37.076
16.675
9.874
6.474
4.434
3.074
2.102
1.374
0.807
0.354
K Ohms
Trim down
1
2
3
4
5
6
7
8
9
10
%
Vout=
3.267
3.234
3.201
3.168
3.135
3.102
3.069
3.036
3.003
2.970
Volts
PXD20-xxS3P3
Rx=
69.470
31.235
18.490
12.117
8.294
5.745
3.924
2.559
1.497
0.647
K Ohms
Trim up
1
2
3
4
5
6
7
8
9
10
%
Vout=
3.333
3.366
3.399
3.432
3.465
3.498
3.531
3.564
3.597
3.630
Volts
Rx=
57.930
26.165
15.577
10.283
7.106
4.988
3.476
2.341
1.459
0.753
K Ohms
PXD20-xxS05
Trim down
1
2
3
4
5
6
7
8
9
10
%
Vout=
4.950
4.900
4.850
4.800
4.750
4.700
4.650
4.600
4.550
4.500
Volts
Rx=
45.533
20.612
12.306
8.152
5.660
3.999
2.812
1.922
1.230
0.676 K Ohms
Trim up
1
2
3
4
5
6
7
8
9
10
%
Vout=
5.050
5.100
5.150
5.200
5.250
5.300
5.350
5.400
5.450
5.500
Volts
Rx=
36.570
16.580
9.917
6.585
4.586
3.253
2.302
1.588
1.032
0.588 K Ohms
Trim down
1
2
3
4
7
8
9
Vout=
11.880
11.760
11.640
PXD20-xxS12
Rx=
6
1
2
3
Vout=
12.120
12.240
12.360
367.910 165.950 98.636
10
11.520 11.400 11.280 11.160 11.040 10.920 10.800
460.990 207.950 123.600 81.423 56.118 39.249 27.199 18.162 11.132
Trim up
Rx=
5
4
5
6
7
8
9
8.879
Volts
5.509 K Ohms
10
12.480 12.600 12.720 12.840 12.960 13.080 13.200
64.977 44.782 31.318 21.701 14.488
%
%
Volts
4.391 K Ohms
PXD20-xxS15
Trim down
1
2
3
Vout=
14.850
14.700
14.550
Rx=
5
6
7
8
1
2
3
Vout=
15.150
15.300
15.450
9
10
14.400 14.250 14.100 13.950 13.800 13.650 13.500
499.820 223.410 131.270 85.204 57.563 39.136 25.974 16.102
Trim up
Rx=
4
4
5
6
7
8
8.424
9
6.687
Volts
2.282 K Ohms
10
15.600 15.750 15.900 16.050 16.200 16.350 16.500
404.180 180.590 106.060 68.796 46.437 31.531 20.883 12.898
%
%
Volts
1.718 K Ohms
10
Data Sheet
Characteristic Curve
Efficiency
a. Efficiency with load change under different line conditions at room temperature
PXD20-24S1P8
95.00
Eff(%)
85.00
75.00
65.00
18V
24V
36V
55.00
45.00
0.6 1.2 1.8 2.4
3 3.6 4.2 4.8 5.4
lout(A )
6
PXD 20-48S05
95.00
Eff(%)
85.00
75.00
36V
48V
75V
65.00
55.00
0.4 0.8
1.2
1.6
2 2.4 2.8 3.2
lout(A)
3.6
4
PXD20-48S15
95.00
Eff(%)
85.00
75.00
65.00
36V
48V
75V
55.00
45.00
0.13 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.17 1.3
lout(A )
11
Data Sheet
b. Efficiency with line change under different load conditions at room temperature
PXD20-24S1P8
82.50
80.00
Eff(%)
77.50
6000mA
3000mA
600mA
75.00
72.50
70.00
18V 20V 22V 24V 26V 28V 30V 32V 34V 36V
Vin(V)
PXD20-48S05
92.50
Eff(%)
90.00
87.50
85.00
82.50
4000mA
2000mA
400mA
80.00
36V 40V 44V 48V 52V 56V 60V 64V 68V 75V
Vin(V)
PXD20-48S15
90.00
Eff(%)
85.00
80.00
1330mA
665mA
133mA
75.00
70.00
36V 40V 44V 48V 52V 56V 60V 64V 68V 75V
Vin(V)
12
Data Sheet
Power dissipation curve
PXD20-24S1P8
3.500
pd(w)
3.000
2.500
18V
24V
36V
2.000
1.500
1.000
0.6 1.2 1.8 2.4
3 3.6 4.2 4.8 5.4
lout(A )
6
PXD20-48S05
3.000
36V
48V
75V
pd(w)
2.500
2.000
1.500
1.000
0.500
0.4 0.8 1.2 1.6
2
2.4 2.8 3.2 3.6
4
lout(A )
PXD20-48S15
4.000
pd(w)
3.500
3.000
36V
48V
75V
2.500
2.000
0.13 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.17 1.3
lout(A )
13
Data Sheet
Output ripple & noise
PXD20-24S1P8
Low Line, Full Load
Normal Line, Full Load
High Line, Full Load
Output Ripple Noise=24.4mV
Output Ripple Noise=36.4mV
Output Ripple Noise=42.4mV
PXD20-48S05
Low Line, Full Load
Normal Line, Full Load
High Line, Full Load
Output Ripple Noise=14.0mV
Output Ripple Noise=16.4mV
Output Ripple Noise=20.8mV
PXD20-48S15
Low Line, Full Load
Normal Line, Full Load
High Line, Full Load
Output Ripple Noise=24.0mV
Output Ripple Noise=25.7mV
Output Ripple Noise=37.6mV
14
Data Sheet
Transient Peak and Response
PXD20-24S1P8
Low Line, Full Load
Normal Line, Full Load
High Line, Full Load
Transient Peak 110.0mV
Transient Peak 108.0mV
Transient Peak 110.0mV
Transient Response 84uS
Transient Response 96uS
Transient Response 164uS
PXD20-48S05
Low Line, Full Load
Normal Line, Full Load
High Line, Full Load
Transient Peak 42mV
Transient Peak 40.8mV
Transient Peak 46.4mV
Transient Response 72uS
Transient Response 72uS
Transient Response 72uS
PXD20-48S15
Low Line, Full Load
Normal Line, Full Load
High Line, Full Load
Transient Peak 91mV
Transient Peak 93mV
Transient Peak 89mV
Transient Response 88uS
Transient Response 88uS
Transient Response 88uS
15
Data Sheet
Inrush Current
PXD20-24S1P8
Low Line, Full Load
Inrush current=(58.4/10) X200mA=1168mA
Normal Line, Full Load
Inrush current=(38.0/10) x200mA=760mA
Low Line, Full Load
Duration: 360uS
Normal Line, Full Load
Duration: 280uS
High Line, Full Load
Inrush current=(26.2/10) x200mA=524mA
High Line, Full Load
Duration: 260uS
PXD20-48S05
Low Line, Full Load
Inrush current=(41.6/10) X200mA=832mA
Normal Line, Full Load
Inrush current=(33.8/10) x200mA=676mA
Low Line, Full Load
Duration: 520uS
Normal Line, Full Load
Duration: 460uS
High Line, Full Load
Inrush current=(25.2/10) x200mA=504mA
High Line, Full Load
Duration: 400uS
16
Data Sheet
PXD20-48S15
Low Line, Full Load
Normal Line, Full Load
High Line, Full Load
Inrush current=(50.6/10) X200mA=1012mA
Inrush current=(37.8/10) x200mA=756mA
Inrush current=(23.0/10) x200mA=460mA
Low Line, Full Load
Normal Line, Full Load
High Line, Full Load
Duration: 700uS
Duration: 620uS
Duration: 420uS
17
Data Sheet
Input Ripple Current
PXD20-24S1P8
Low Line, Full Load
Ripple current=(2.6/10) x20=5.2mA
Normal Line, Full Load
Ripple current=(2.8/10) x20=5.6mA
High Line, Full Load
Ripple current=(3.0/10) x20=6.0mA
PXD20-48S05
Low Line, Full Load
Normal Line, Full Load
High Line, Full Load
Ripple current=(2.8/10) x20=5.6mA
Ripple current=(2.60/10) x20=5.2mA
Ripple current=(3.2/10) x20=6.4mA
PXD20-48S15
Low Line, Full Load
Ripple current=(2.6/10) x20=5.2mA
Normal Line, Full Load
Ripple current=(2.4/10) x20=4.8mA
High Line, Full Load
Ripple current=(2.8/10) x20=7.6mA
18
Data Sheet
Delay Time and Rise Time
PXD20-24S1P8
Normal Line, Full Load
Normal Line, Full Load
Rise Time=235uS
Delay Time= 380uS
PXD20-48S05
Normal Line, Full Load
Rise Time=234.9uS
Normal Line, Full Load
Delay Time= 520uS
PXD20-48S15
Normal Line, Full Load
Rise Time=448.3uS
Normal Line, Full Load
DelayTime=620uS
19
Data Sheet
Testing Configurations
Input reflected-ripple current Measurement Test:
Component
L
C
Value
12μH
100μF
Voltage
---100V
Reference
---Aluminum Electrolytic Capacitor
Peak-to-peak output ripple & noise Measurement Test:
Output Voltage and Efficiency Measurement Test:
Note: All measurements are taken at the module terminals.
V Io
Efficiency o
Vin I in
100%
20
Data Sheet
Part Number Structure
PXD 20 – 24 S 12
Total Output power
20 Watt
Output Voltage
1P5:1.5V
1P8:1.8V
3P3 : 3.3V
05 : 5V
12 : 12V
15 : 15V
Input Voltage Range
12 : 9~18V
24 : 18~36V
48 : 36~75V
Single
Output
Mechanical Data
1.00(25.4)
0.50
(12.7)
0.40
(10.2)
DIA. 0.04(1.0)
5
Bottom
View
1 2
6
0.80(20.3)
4
Pin
1
2
3
4
5
6
0.60(15.2)
2.00(50.8)
3
0.40
(10.2)
0.40
(10.2)
0.10(2.5)
0.20(5.1)
PIN CONNECTION
Function
+ INPUT
- INPUT
+ OUTPUT
TRIM
- OUTPUT
CTRL (Option)
EXTERNAL OUTPUT TRIMMING
Output can be externally trimmed by
using the method shown below.
0.22(5.6)
TRIM UP
TRIM DOWN
5
1.All dimensions in Inches (mm)
2. Pin pitch tolerance ±0.0014(0.35)
3. Tolerance:x.xx±0.02 (x.x±0.5)
x.xxx±0.01 (x.xx±0.25)
4
RU
4
RD
3
21
Data Sheet
Safety and Installation Instruction
Isolation Consideration
The PXD20-xxSxx series features 1.6k Volt DC isolation from input to output, input to case, and output to case. The
9
input to output resistance is greater than 10 ohms. Nevertheless, if the system using the power module needs safety
agency approval, certain rules must be followed in the design of the system using the model. In particular, all of the
creepage and clearance requirements of the end-use safety requirement must be observed. These documents
include UL-60950-1, EN60950-1 and CSA 22.2-960, although specific applications may have other or additional
requirements.
Fusing Consideration
Caution: This power module is not internally fused. An input line fuse must always be used. This encapsulated power
module can be used in a wide variety of applications, ranging from simple stand-alone operation or an integrated part
of a sophisticated power architecture. For maximum flexibility, internal fusing is not included; however, to achieve
maximum safety and system protection, always use an input line fuse. The safety agencies require a slow-blow fuse
with maximum rating of 3 A. Based on the information provided in this data sheet on inrush energy and maximum DC
input current, the same type of fuse with lower rating can be used. Refer to the fuse manufacturer’s data for further
information.
MTBF and Reliability
The MTBF of PXD20-xxSxx series of DC/DC converters has been calculated using
1.MIL-HDBK-217F under the following conditions:
Nominal Input Voltage
Io = Io, max
Ta = 25°C ℃
5
The resulting figure for MTBF is 6.842× 10 hours.
2.Bell-core TR-NWT-000332 Case I:
50% stress, Operating Temperature at 40°C ℃ (Ground fixed and controlled environment)
6
The resulting figure for MTBF is 1.791× 10 hours.
22